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1 Introduction

Over the past fifteen years multidimensional upwinding techniques have been developed with
the intention of superseding the well-established upwind finite volume methods which rely on
the solution of one-dimensional Riemann problems. The new methods attempt a more gen-
uinely multidimensional approach to the solution of nonlinear systems of conservation laws
by considering a piecewise linear continuous representation of the flow with the data stored
at the nodes of the grid (more in line with finite elements). The schemes are constructed
from three separate stages: the decomposition of the system of equations into simple, usually
scalar, components (see, for example [22, 4, 16, 19]), the construction of a consistent, con-
servative discrete form of the equations [6] and the subsequent solution of the decomposed
system using scalar fluctuation distribution schemes [23, 7]. A detailed description of each
of these stages can also be found in [5].

These multidimensional upwind schemes will capture shocks within two or three cells when
they are aligned with the mesh [17] and grid adaptation can be used to take advantage of
this. On unstructured grids this can be accomplished by refinement [2], which reduces the
size of the cells, and by edge swapping, which realigns the grid. However, both selective
refinement and edge alignment can, to a large extent, be achieved by a third option, grid
movement, which has the added advantage of avoiding the expensive process of changing the
number of nodes or the connectivity of the grid.

A general overview of multidimensional upwind techniques on triangular grids will be given
here, focusing on the most successful developments to date. In Section 2, fluctuation distri-
bution schemes for solving the scalar advection equation will be described, mainly for steady
state problems although recent improvements in the modelling of time-dependent flows will
also be described briefly. Section 3 contains details of the discretisation for nonlinear sys-
tems of equations, taking as an example the shallow water equations. This includes both
the linearisation process and the decomposition stage of the algorithm. Following this, in
Section 4 a very simple and cheap algorithm for moving grid nodes is presented, which is then
used to improve the accuracy of two-dimensional steady state solutions of these conservation
laws on unstructured triangular grids. The effectiveness of the techniques described in each
section will be illustrated using a small selection of numerical results, and at the end a brief
discussion of the current state of multidimensional upwinding will be given.



2 The Scalar Advection Equation

2.1 One-Dimensional Fluctuation Distribution

In this section a method is constructed for the solution of the one-dimensional scalar advection
equation,

ut + fx = 0 or ut + λ ux = 0 , (2.1)

where f = f(u) and λ(u) = ∂f
∂u

defines the advection velocity associated with the variable u.
Assuming for the moment that the advection velocity is locally constant, the approximation
to u is chosen to vary linearly over each cell with continuity at the nodes (see Figure 2.1),
in the manner of a finite element scheme rather than the finite volume schemes with which
these methods usually compete.
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Figure 2.1: The representation of the solution in one dimension.

The fluctuation φ is now defined. This is a cell-based quantity (closely related to the resid-
ual) which, when non-zero, indicates that the system has not yet reached equilibrium [21],
and it can be distributed to the nodes of the grid to bring the system closer to equilibrium.
In a cell bounded by nodes at xR (right) and xL (left), it is given by

φ =
∫ xR

xL

ut dx = −
∫ xR

xL

fx dx = − (fR − fL) , (2.2)

where fR and fL are the values of the flux function f at xR and xL respectively. Since by
construction ux is constant within the cell, a second, equivalent, expression can be obtained
for the fluctuation,

φ = −
∫ xR

xL

λ(u) ux dx = − 1

∆x

( ∫ xR

xL

λ(u) dx
)

(uR − uL) , (2.3)

where ∆x = xR − xL is the length of the cell, cf. Figure 2.1.

The integral in (2.3) cannot always be evaluated easily (exact evaluation is important in the
construction of a conservative linearisation) but it clearly represents a cell-averaged value



of the advection velocity. However, in this simple case a consistent approximation λ̃ of this
average can always be obtained locally by comparing (2.2) and (2.3), giving

λ̃ =
fR − fL

uR − uL

, (2.4)

where from here onwards ·̃ indicates a linearised quantity. This quantity determines the
direction of the flow in a cell, which is employed in the construction of any upwind scheme.
Note that the discrete fluctuation φ̃ = −λ̃(uR − uL) from (2.3), so when uR = uL, φ̃ = 0 and
λ̃ is not needed.

When combined with a forward Euler discretisation of the time derivative in (2.1), the dis-
tribution of the fluctuations can be written in the form of a nodal update scheme,

un+1
i = un

i +
∆t

∆xi

Nc
∑

j=1

α̃j
i φ̃j , (2.5)

where ∆xi is the length of the median dual cell of node i (the distance between the centroids
of the two cells adjacent to the node, not necessarily the ∆x of (2.3)), α̃j

i is the distribution
coefficient which indicates the proportion of the fluctuation φ̃j sent from cell j to node i, and
Nc is the number of grid cells. Since the resulting iterative scheme is explicit, the superscript
n has immediately been dropped from the update for clarity of presentation, and will be
assumed from now on.

Summing the fluctuations in equation (2.2) over the whole domain leads to an expression
which consists solely of contributions from the boundary. Therefore, as long as each fluctu-
ation is distributed completely, that is

Nn
∑

i=1

α̃j
i = 1 for j = 1 , 2 , . . . , Nc , (2.6)

where Nn = Nc+1 is the number of grid nodes, a scheme of the form (2.5) will be conservative.

The scheme itself is determined by the choice of the distribution coefficients α̃j
i , e.g. if they

are chosen so that the whole fluctuation is sent to the downstream node of the cell according
to the sign of λ̃, then the resulting scheme is simply first order upwinding. In fact, any
one-dimensional finite volume scheme can be rewritten in terms of fluctuation distributions
[21]. The advantage of the new form of the scheme is that it generalises naturally to higher
dimensions.

2.2 Two-Dimensional Schemes

In two dimensions, the scalar advection equation takes the form

ut + fx + gy = 0 or ut + ~λ · ~∇u = 0 , (2.7)

where ~λ =
(

∂f
∂u
, ∂g

∂u

)T
defines the velocity of the advected variable u which, in simple cases,

is again approximated by a piecewise linear continuous representation on a triangular grid



(it is slightly less straightforward on quadrilaterals). A scheme can be constructed for the
solution of (2.7) by calculating the fluctuation,

φ̃ = −S△
~̃λ · ~∇u = −

∫ ∫

△

~λ · ~∇u dx dy , (2.8)

within each cell and then distributing it to the nodes of the grid. The integration in (2.8),
when it can be done exactly under the assumption that u varies linearly within each cell
(so ~∇u is locally constant), introduces the factor of S△, the area of the triangle, and a
cell-averaged wave speed,

~̃λ =
1

S△

∫ ∫

△

~λ dx dy . (2.9)

Note that given this local approximation and the condition that ~∇·~λ = 0, application of the
divergence theorem and a small amount of algebraic manipulation leads to

φ̃ = −1

2

Ne
∑

l=1

(~̃λ · ~nl) ul

∮

∂△
(f, g) · d~n , (2.10)

an alternative form for the discrete fluctuation in which ∂△ is the boundary of the cell,
Ne = 3 is the number of edges of the cell, and ~nl is the inward pointing normal to edge l,
scaled by the length of that edge.

For simplicity and compactness, a cell is allowed to contribute its fluctuation only to its
own vertices. Since summing the fluctuations over the whole domain reduces to a sum of
boundary contributions, a conservative scheme is again assured as long as the whole of each
fluctuation is distributed, cf. (2.6).

If explicit forward Euler time-stepping is used, this leads to a scheme of the form

un+1
i = un

i +
∆t

Si

∑

j∈∪△i

α̃j
i φ̃j , (2.11)

where Si is the area of the median dual cell for node i (one third of the total area of the
triangles with a vertex at i), α̃j

i is the distribution coefficient which indicates the proportion
of the fluctuation φ̃j (a linear function of the data) to be sent from cell j to node i, and ∪△i

represents the set of cells adjacent to node i, as illustrated in Figure 2.2. Note that a slightly
more accurate scheme is given by

un+1
i = un

i +
∆t

∑

j∈∪△i
α̃j

i S△j

∑

j∈∪△i

α̃j
i φ̃j . (2.12)

This corresponds to a consistent, mass-lumped, upwind finite element discretisation.

The scheme (2.11) can be written in the form

un+1
i =

∑

k

cik u
n
k . (2.13)

If the coefficients cik are allowed to depend on the data, the scheme becomes nonlinear and
can be designed to satisfy the following four criteria:
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Figure 2.2: The notation used in the representation of the two-dimensional scheme.

• upwindedness - the fluctuation within a cell is only sent to the downstream vertices

of that cell i.e. vertices opposite inflow edges, for which ~̃λ ·~n > 0, where ~n is an inward
pointing normal to the edge.

• positivity - the coefficients cik are positive, so the scheme cannot produce new extrema
in the solution at the new time-step, spurious oscillations will not appear in the solution
and the scheme is stable, all for an appropriate time-step restriction.

• linearity preservation - no update is sent to the nodes when a cell fluctuation is
zero, so linear steady states are preserved and the scheme is second order accurate at
the steady state on a regular mesh with a uniform choice of diagonals [7].

• continuity - the contributions to the nodes, α̃j
i φ̃j, depend continuously on the data,

avoiding limit cycling as convergence to a steady state is approached.

Note that a linear scheme cannot satisfy both the positivity and the linearity preservation
properties simultaneously.

In the search for a scheme which satisfies all of the above properties it is initially advantageous
to consider a linear, positive, upwind scheme, the N scheme [7]. By the above definition of
upwind, any triangle with only one downstream vertex sends the whole of its fluctuation to
that node. This makes these triangles both positive and linearity preserving. For a cell with
two inflow sides (choosing, without loss of generality, vertices 1 and 2 to be the downstream
nodes), considered in isolation, the N scheme can be written as

S1u
n+1
1 = S1u

n
1 − ∆t k̃1(u

n
1 − un

3 )

S2u
n+1
2 = S2u

n
2 − ∆t k̃2(u

n
2 − un

3 )

S3u
n+1
3 = S3u

n
3 , (2.14)

where k̃l = 1
2
~̃λ ·~nl, cf. (2.11). Contributions from other triangles are temporarily suppressed.

By considering the complete nodal update (2.11), this scheme can be shown to be positive
for a restriction on the time-step at a node i, given by

∆t ≤ Si
∑

j∈∪△i
max(0, k̃j

i )
. (2.15)



A linearity preserving scheme (which also retains the upwind and continuity properties) can
be obtained from a positive upwind scheme [25] such as the N scheme by replacing the
overall contributions, ψ̃1 and ψ̃2, to the downstream nodes in the two-target case by ‘limited’
contributions,

ψ̃∗

1 = ψ̃1 − L(ψ̃1 ,−ψ̃2)

ψ̃∗

2 = ψ̃2 − L(ψ̃2 ,−ψ̃1) . (2.16)

where, in the case of the N scheme presented in (2.14),

ψ̃1 = −k̃1(u
n
1 − un

3 ) , ψ̃2 = −k̃2(u
n
2 − un

3 ) . (2.17)

L(x, y) is any member of the family of symmetric limiter functions, although the minmod
limiter [26], given by

L(x, y) =
1

2
(1 + sgn(xy))

1

2
(sgn(x) + sgn(y)) min(|x|, |y|) , (2.18)

is the only one for which the ‘limited’ scheme remains positive. The resulting scheme is
equivalent to the Positive Streamwise Invariant (PSI) scheme [7], satisfies all of the desired
properties and is the scheme which is generally used for the distribution of scalar fluctuations
for steady state problems.

2.3 Time-Dependent Problems

Whilst the methods described above model steady state flows accurately, none of the positive
schemes developed originally [7] is higher than first order accurate in space for time-dependent
problems. This problem has recently been addressed successfully:

• by equating the PSI scheme with a mass-lumped finite element scheme, then construct-
ing an appropriate mass matrix (using standard linear trial functions and SUPG-style
linear test functions) to give the corresponding full finite element method (which gives
up to third order accuracy in some special cases, at the expense of inverting the mass
matrix) [15]. flux-corrected transport (FCT) has been applied to enforce a local maxi-
mum principle.

• by combining the PSI and Lax-Wendroff schemes in a manner similar to (but more gen-
eral than) flux-corrected transport, maintaining the local maximum principle satisfied
by the PSI scheme but combining it with optimal accuracy [12].

The latter technique will be discussed below in a little more detail. Note first though that
the distribution coefficients of the Lax-Wendroff scheme are given by

α̃j
i =

1

3
+

∆t

4S△j

~̃λj · ~nj
i . (2.19)

First some relevant concepts are defined [12], and illustrated in Figure 2.3. Consider a single
grid cell in isolation: the distribution point is defined to be the point whose local area
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Figure 2.3: The distribution point, diffusion vector and monotonicity region.

coordinates are the distribution coefficients of the scheme for that triangle. The movement
of the distribution point is equivalent to the redistribution of the fluctuation within the
triangle. The diffusion vector represents the displacement of the distribution point from
the centroid of the triangle (the distribution point of a symmetric central scheme). A scheme

with diffusion vector ~d has the second order equivalent equation

ut + ~λ · ~∇u = ~d · ~∇(~λ · ~∇u) , (2.20)

in which the right hand side represents the numerical diffusion of the distribution scheme.

The diffusion vector of the Lax-Wendroff scheme is ~d = 1
2
∆t ~λ and the equivalent equation

(2.20) can be rewritten as

ut + ~λ · ~∇u =
~λ∆t

2
· ~∇(~λ · ~∇u) +




~d−

~λ∆t

2



 · ~∇(~λ · ~∇u) . (2.21)

Hence, any choice of ~d such that

~d−
~λ∆t

2
⊥ ~∇(~λ · ~∇u) = −~∇ut (2.22)

will not alter the second order error term in the approximation, so the corresponding distri-
bution scheme should be second order accurate for the given local data. Therefore, moving
the distribution point perpendicular to the local value of ~∇(~λ · ~∇u) should not change the

order of accuracy of the local discretisation. It is important to note here that ~∇ut in (2.22)
can be approximated locally using the unlimited high order update (which has already been
calculated as part of this FCT-type limiting procedure). This allows the overall algorithm
to remain compact.

By considering a generalised FCT-like algorithm, in which the monotonic scheme is written
in terms of low order (LO) and high order (HO) updates, the distribution coefficients can be
expressed locally as

α̃1 = α̃LO
1 + β1

(

α̃HO
1 − α̃LO

1

)

,

α̃2 = α̃LO
2 + β2

(

α̃HO
2 − α̃LO

2

)

,

α̃3 = α̃LO
3 + β3

(

α̃HO
3 − α̃LO

3

)

, (2.23)



in which the βk are limiting coefficients. Bounds are constructed on the solution at the new
time level which ensure that a local maximum principle is satisfied [12]. These are easily
translated into restrictions on the limiting coefficients, generally expressed as

βmin
k ≤ βk ≤ βmax

k , k = 1, 2, 3 , (2.24)

which describes three pairs of ‘tramlines’ parallel to the edges of the triangle. Placing the
distribution point anywhere within the region defined by (2.24), the monotonicity region,
ensures that the subsequent nodal updates will not create any new local extrema at the next
time level and as a result imposes stability on the scheme. Note that the monotonicity region
always contains the PSI distribution point so values of βk always exist.

The calculation of the limited distribution coefficients, given those of the high order (Lax-
Wendroff) and low order (PSI) schemes, is as follows:

• find the line passing through the high order distribution point perpendicular to the
locally constructed value of ~∇ut (i.e. a contour line of ut).

• calculate the position of the point in the monotonicity region closest to the line defined
above (indicated by an asterisk in Figure 2.3) and take this to be the distribution point
of the limited scheme. If the line intersects the region then take the point of intersection
closest to the high order distribution point.

This process has been called fluctuation redistribution. Note that flux-corrected trans-
port, for which

β1 = β2 = β3 = min
k=1,2,3

βmax
k , (2.25)

is a special case of this.

2.4 Results

The test case used is that of clockwise circular advection, ~λ = (y,−x)T, of a given wave
profile within the domain (x, y) ∈ [−1, 1] × [0, 1]. The mesh used is a uniform triangulation
created from a regular 65 × 33 node rectangular grid by inserting diagonals which alternate
in direction. Two cases are presented, one being the advection of a square wave profile, for
which the inflow boundary conditions are taken to be

u(x, 0) = 1 for − 0.65 ≤ x ≤ −0.35

u(x, 0) = 0 elsewhere , (2.26)

and a second which convects a triangular wave profile with the same zero boundary conditions
as above but now

u(x, 0) = 1.0 − |x+ 0.5|
0.15

for − 0.65 ≤ x ≤ −0.35 . (2.27)

In both cases the solution is initially set to zero in the whole of the domain’s interior. The
results obtained using the N, PSI and Lax-Wendroff schemes are compared with the exact
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Figure 2.4: Solution on the boundary y = 0 for the advection of the square wave (left) and
the triangular wave (right).

solution on the given grid in Figure 2.4, illustrating how at the steady state the PSI scheme
achieves high accuracy without oscillations.

Unfortunately, this accuracy does not carry over to time-dependent problems, as can be seen
in Figure 2.5. This shows that for a simple test case, the advection of a double sine wave
profile,

u = sin(2πx) sin(2πy) , (2.28)

with velocity ~λ = (1, 2)T over the domain [0, 1] × [0, 1], the PSI scheme is only first order
accurate. Surprisingly, the high resolution cell centre finite volume scheme [1] with which it is
compared is little better on this type of grid (with alternating diagonals) and the consistent
finite element scheme of [15] loses accuracy dramatically as the grid is refined. The fluc-
tuation redistribution approach retains the accuracy achieved by the Lax-Wendroff scheme
throughout.

-2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0
LOG(dx)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

LO
G

(e
rr

or
)

PSI

Lax-Wendroff

Fluctuation Redistribution

Consistent PSI

Cell Centre

-2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0
LOG(dx)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

LO
G

(e
rr

or
)

PSI

Lax-Wendroff

Fluctuation Redistribution

Consistent PSI

Cell Centre

Figure 2.5: L1 (left) and L∞ (right) errors for the double sine wave test case on a uniform
triangular grid of alternating diagonals for t = 1.0.



3 The Shallow Water Equations

3.1 One-Dimensional Flow

A general one-dimensional, homogeneous system of conservation laws can be written

U t + F x = 0 or U t + AUx = 0 , (3.1)

where A = ∂F
∂U

is the conservative flux Jacobian matrix. The flux balance corresponding to
this system is defined in much the same way as the fluctuation in the scalar case, being the
cell-based quantity

Φ =
∫ xR

xL

U t dx = −
∫ xR

xL

F x dx = − (F
R
− F

L
) . (3.2)

The aim is to linearise this quantity and then decompose it into scalar components to which
the fluctuation distribution schemes of Section 2.1 can be applied. The contributions made
by the scalar fluctuations to the nodes are then transformed into updates for the original
conservative system (3.1). Conservation is assured as long as the system is linearised correctly
and the whole of each discrete conservative flux balance Φ̃ is distributed to the grid nodes.

In the first step, a consistent linearisation (indicated again by ·̃) is sought for the flux Jacobian
A which ensures that

Φ̃ = − (F
R
− F

L
) = −Ã (U

R
− U

L
) and Ã =

∂F

∂U

∣

∣

∣

∣

∣

Z̃

, (3.3)

where Ã should have a full set of linearly independent eigenvectors. This is essentially Roe’s
Property U [20] with, for the purposes of the subsequent decomposition of the discrete system,
the additional specification that the discrete flux Jacobian is simply the evaluation of the
analytic Jacobian at a given ‘Roe-average’ state. A number of different possibilities exist for
the choice of Z̃ in the case of the one-dimensional shallow water equations (see, for example,
[9]), all of which are constructed specifically so that (3.3) is satisfied.

In one dimension the shallow water equations can be completely decoupled by diagonalising
the system, and this forms the foundation of the decomposition. The linearised equations
are transformed into characteristic variables W , so

W t + Λ̃W x = 0 , (3.4)

in which

Λ̃ =
∂̃U

∂W

−1
∂̃F

∂U

∂̃U

∂W
(3.5)

is a diagonal matrix composed of the eigenvalues λ̃ of the Jacobian Ã, and ∂̃U
∂W

is the matrix

of right eigenvectors of Ã. This decouples the system into three independent equations, each
of the form

Wt + λ̃Wx = 0 , (3.6)



precisely the scalar advection equation solved in Section 2.1. This means that the same
numerical schemes can be applied in order to distribute the fluctuation due to (3.6). The
original system (3.1), and hence the conservative flux balance, is regained by premultiplying
equation (3.4) by ∂U

∂W
. Thus, the flux balance for the conservative system is

Φ̃ = − ∂̃U

∂W
Λ̃(W

R
−W

L
) = −

Neq
∑

k=1

λ̃k(W k
R
−W k

L
)r̃k =

Neq
∑

k=1

φ̃kr̃k , (3.7)

where φ̃k is the scalar fluctuation corresponding to the kth component (cf. (3.6)) of the

decomposition, r̃k is the kth column of ∂̃U
∂W

(the kth eigenvector of Ã) and Neq is the number

of decoupled equations (2 for the one-dimensional shallow water equations).

Thus, the overall scheme can be written in a similar form to the nodal update for the scalar
scheme (2.5), being

Un+1
i = Un

i +
∆t

(∆x)i

Nc
∑

j=1

Neq
∑

k=1

(α̃j
i )

kφ̃k
j r̃

k
j , (3.8)

where each (α̃j
i )

k is calculated from the distribution of the individual components (3.6) and
represents the proportion of the scalar fluctuation φ̃k

j due to the kth wave in the jth cell to
be sent to node i.

3.2 Conservative Linearisations in Two Dimensions

In conservative form, the two-dimensional shallow water equations are written

U t + F x +Gy = 0 , (3.9)

where

U =







d
du
dv





 , F =







du
du2 + 1

2
gd2

duv





 , G =







dv
duv

dv2 + 1
2
gd2





 , (3.10)

are the vectors of conserved variables and the corresponding conservative fluxes, respectively,
in which d is depth, u and v are the x- and y-velocities, and g is the acceleration due to gravity.
The associated conservative flux balance is given by

Φ =
∫ ∫

△

U t dx dy = −
∫ ∫

△

(

F x +Gy

)

dx dy =
∮

∂△
(F ,G) · d~n , (3.11)

where ~n is an inward pointing normal to the boundary ∂△ of the cell.

A linearisation (indicated below by ·̃) is sought by which the discrete flux balance can be
written

Φ̃ = −S△ (AUx + BUy)
∣

∣

∣

Z̃
, (3.12)

where A = ∂F
∂U

and B = ∂G
∂U

are the flux Jacobian matrices, so that the decompositions

described below can be applied while retaining conservation [17]. Underlying the construction



of the linearised flux balance is the assumption that if a chosen set of independent variables
Z varies linearly within each cell (with continuity between cells) then Φ = Φ̃. This is not
straightforward for the shallow water equations [18] and it turns out to be more practical to
choose

Z =







√
d√
du√
dv





 or even Z =







d
u
v





 (3.13)

to average and put into the flux balance (3.12), so the Jacobians are evaluated at Z̃ (the
arithmetic mean of the vertex values), and the discrete gradients are calculated consistently
from the gradient of the linearly varying quantities

˜~∇Z =
1

2S△

Neq
∑

l=1

Z l ~nl , (3.14)

where ~nl is the inward pointing normal to the edge opposite vertex l, scaled by the length
of the edge. A small correction, in the form of a source term which can be distributed
appropriately, may be added to ensure conservation [11].

3.3 Multidimensional Wave Models

The decomposition stage of the algorithm dictates how the linearised conservative flux bal-
ance within each triangle of the grid, namely

Φ̃ = −S△(Ã, B̃) · ~∇U , (3.15)

is divided into simpler components. The fact that Ã and B̃ are not in general simultaneously
diagonalisable makes the two-dimensional situation considerably more complicated than that
in one dimension. It is also important to note that Φ̃ is simply the analytic quantity Φ
evaluated at a given average state, since this means that decompositions can be applied
equivalently to both the original and the linearised equations. For the purposes of simplicity,
the notation ·̃ can therefore be dropped from the following analysis.

So far, three main types of multidimensional decomposition have been proposed:

• simple wave models: Φ is decomposed into contributions due to plane wave solutions
of the shallow water equations. These correspond to eigenvalues λ, which give the
wave speeds, and eigenvectors r, which give the transformation of the individual wave
fluctuations back to perturbations of the conservative variables, of the matrix (A,B)·~nθ,
θ being the propagation direction. This gives three possible wave types (one shear and
two gravity) which can be used.
The wave model consists of a set of Nw such waves, the number of each type being
prespecified (making sure that all types of solution can be modelled), each of which is
associated with a propagation direction θ and a strength ϕ. Some of the values of θ are
also specified so as to leave, in this case, 6 (#space dimensions×#waves) parameters.
The remaining values of θ and ϕ are calculated by solving the gradient decomposition

~∇U =
Nw
∑

k=1

rk (~∇W k)T =
Nw
∑

k=1

ϕk rk (~nθk)T (3.16)



(a system of 6 equations in 6 unknowns), W k nominally being a variable associated
with the kth plane wave. This leads immediately to the decomposed flux balance

Φ = −S△(A,B) · ~∇U = −S△

Nw
∑

k=1

ϕk λk rk =
Nw
∑

k=1

φk rk . (3.17)

Each simple wave contribution is assigned a velocity ~λ and a gradient ~∇W so that

φ = −S△ ϕλ = −S△
~λ · ~∇W (3.18)

gives the fluctuation in the usual form, cf. (2.8), which can be distributed using the
methods of Section 2.2. Compare the models of Roe [22] and Rudgyard [24] for different
ways in which (3.18) may be constructed.
Several alternative simple wave models have been suggested [19] but they have so far
proved unsatisfactory for two main reasons: (i) the propagation directions depend on
solution gradients which vary rapidly from cell to cell, inhibiting convergence to the
steady state and robustness in general, (ii) every practical model contains too many
waves, leading to a surfeit of numerical dissipation and hindering accuracy. Ideally for
the two-dimensional shallow water equations Nw = 3 (the number of equations in the
system) so that the linearity preserving nature of the scalar scheme is retained.

• characteristic decompositions: although the matrices A and B cannot generally be
diagonalised simultaneously, an approximate diagonalisation can be constructed via a
3-parameter similarity transformation [3], giving a system in ‘characteristic’ variables
W ,

W t + AWW x + BWW y = 0 , (3.19)

in which the 3 free parameters are chosen so that the new Jacobians AW and BW are, in
some sense, close to being diagonal. This is treated as a decoupled set of inhomogeneous
equations, each with a fluctuation of the form

φ = −S△(~λ · ~∇W + q) , (3.20)

(the distribution coefficients can be calculated as they would for the homogeneous
fluctuation but then used to distribute the complete φ) and a conservative flux balance,

Φ =
Neq
∑

k=1

φk rk , (3.21)

in which rk are the columns of the similarity transformation matrix ∂U
∂W

.

These methods have the correct number of components for linearity preservation (Nw =
Neq) but the propagation directions, which depend on the parameters which define
the similarity transformation, are sometimes chosen to depend on solution gradients.
However, their main disadvantage is the presence of the source terms in (3.21) which
destroy positivity and hence robustness.

• preconditioned decompositions: the effect of the source terms created by the char-
acteristic decomposition can be minimised by attempting to diagonalise a precondi-
tioned form of the equations [19]. The decomposed flux balance once more takes the



form (3.21), but now rk are the columns of the matrix ∂U
∂Q

P−1 ∂Q

∂W
, Q being an interme-

diate set of (symmetrising) variables, introduced to simplify the algebra, and P is the
preconditioning matrix. Careful choice of the preconditioner gives an optimal decou-
pling of the system, complete in supercritical flow but unavoidably including a coupled
2 × 2 elliptic subsystem for subcritical flow.
One of the most successful of these schemes, adapted from the hyperbolic/elliptic de-
composition for the Euler equations of Mesaros and Roe [16], is discussed in more detail
below.

In all of the above cases, the application of forward Euler time-stepping results in a scheme
which, if it is assumed that only scalar schemes will be used in the distribution, even when
components are coupled, takes the form

Un+1
i = Un

i +
∆t

Si

∑

j∈∪△i

Nw
∑

k=1

(αj
i )

kφk
j r

k
j , (3.22)

cf. (3.8) and (2.11), where φk
j and rk

j take their forms from the particular wave model used,

and (αj
i )

k are the appropriate distribution coefficients.

3.4 An Optimal Decomposition

In order to simplify the analysis the system (3.9) is first transformed into the symmetrising
variables,

∂Q =









√

g
d
∂d

∂q
q ∂θ









, (3.23)

where q =
√
u2 + v2 is the flow speed and θ = tan−1

(

v
u

)

is the direction of the flow. The
shallow water equations therefore become

Q
t
+ AQQx

+ BQQy
= 0 , (3.24)

in which the flux Jacobians are symmetric matrices given by

AQ =
∂Q

∂U
AU

∂U

∂Q
and BQ =

∂Q

∂U
BU

∂U

∂Q
. (3.25)

The system (3.24) is simplified even further when it is written in terms of the streamwise
coordinates, ξ and η, for which

∂

∂ξ
=

u

q

∂

∂x
+
v

q

∂

∂y
and

∂

∂η
= −v

q

∂

∂x
+
u

q

∂

∂y
, (3.26)

leading to the equations
Q

t
+ AS

QQξ
+ BS

QQη
= 0 , (3.27)

where

AS
Q =

uAQ + vBQ

q
and BS

Q =
−vAQ + uBQ

q
. (3.28)



These equations are preconditioned by an appropriate matrix P, giving

Q
t
+ P

(

AS
QQξ

+ BS
QQη

)

= 0 , (3.29)

and this system is transformed into ‘characteristic’ variables,

W t + AS
WW ξ + BS

WW η = 0 , (3.30)

where

AS
W =

∂W

∂Q
PAS

Q

∂Q

∂W
and BS

W =
∂W

∂Q
PBS

Q

∂Q

∂W
. (3.31)

For an appropriate choice of P the system (3.30) is either fully or partially diagonalised
depending on whether the flow is supercritical or subcritical.

The original system (3.9) is recovered by reversing the transformation carried out above.
This leads back to the conservative flux balance,

Φ =
∂U

∂Q
P−1

∂Q

∂W
ΦW =

Nw
∑

k=1

φk rk , (3.32)

where ΦW is the flux balance of (3.30).

The preconditioner of Mesaros and Roe [16] (which in turn was based on that of van Leer,
Lee and Roe [28] developed originally for the purpose of convergence acceleration) can be
adapted straightforwardly to a form which can be used with the shallow water equations [11],
giving

P =
1

q









εF 2

βκ
−εF

βκ
0

−εF
βκ

ε
βκ

+ ε 0

0 0 β
κ









, (3.33)

where F = q/
√
gd is the local Froude number of the flow,

β =
√

|F 2 − 1| , κ = max(F, 1) , (3.34)

and ε = ε(F ) is a function which satisfies ε(0) = 1
2

and ε(F ) = 1 for F ≥ 1 (giving the
correct behaviour in the preconditioned system at stagnation and continuity of the optimal
decomposition through the critical point), and is taken here to be

ε(F ) =

{

−F 3 + 3
2
F 2 + 1

2
for 0 ≤ F ≤ 1

1 for F > 1 .
(3.35)

Two different forms for the characteristic variables W are taken, depending on whether the
flow is supercritical or subcritical. These are given by, respectively,

∂W sup =











√

g
d
β ∂d + Fq ∂θ

√

g
d
β ∂d − Fq ∂θ

√

g
d
∂d+ F ∂q











and ∂W sub =









βg
q
∂d

q ∂θ
√

g
d
∂d+ F ∂q









, (3.36)



and this choice gives a continuous representation through the critical point [16]. Note though
that the decomposition is singular when F = 0, at stagnation points. In supercritical flow
this leads to characteristic Jacobians in (3.30) of the form

AS
W =







β
κ

0 0

0 β
κ

0
0 0 1





 , BS
W =







1
κ

0 0
0 1

κ
0

0 0 0





 , (3.37)

the system is fully decoupled and each component can be treated as a scalar advection
equation. In subcritical flow (and at the critical point since the above decomposition is
actually singular at F = 1, not a problem in practice),

AS
W =







−εβ 0 0
0 β 0
0 0 ε





 , BS
W =







0 ε 0
1 0 0
0 0 0





 (3.38)

which contains a coupled 2 × 2 subsystem.

In remains slightly unclear as to the best method of distribution for the elliptic subsystem.
One possibility is to treat it as a pair of scalar equations with source terms [19], but it seems
to be more accurate to use a system Lax-Wendroff scheme with 2 × 2 matrix coefficients

α
j
i =

1

3
I +

∆t

4S△j

(A,B)j · ~n
j
i , (3.39)

even though this necessarily introduces a discontinuity into the distribution at the critical
point, even though the overall representation is continuous. It is the latter approach which
will be used here so, rather than (3.22), the scheme actually takes the form

Un+1
i = Un

i +
∆t

Si

∑

j∈∪△i

(

(r1
j , r

2
j) α

j
i φj + (αj

i )
3φ3

j r
3
j

)

, (3.40)

containing one scalar component and one subsystem, with corresponding vector fluctuation
φj.

3.5 System Distribution Schemes

A closely related scheme developed recently opts for a generalisation of the scalar schemes to
systems of equations [27] rather than employing a wave model along with scalar distribution
schemes. The discretisation therefore has the form

Un+1
i = Un

i − ∆t

Si

∑

j∈∪△i

α̃
j
i Φ̃j (3.41)

in which the distribution coefficients α̃
j
i are now matrices.

The distribution coefficients can be constructed so that they satisfy generalised positivity
and linearity preservation properties, but they should also be invariant under similarity



transformations, i.e. the contribution made from the conservative flux balance to the vertices
of the cell is independent of the choice of variables for which the actual distribution is
performed. Generalisations of all of the major scalar schemes have been constructed, although
it is not yet clear which of the current versions of the system PSI scheme is the best, since the
different possible ways of applying the limiter have different advantages, the most obvious
being rather expensive.

3.6 Results

The test case presented here is that of flow through a symmetric constricted channel of length
4, whose breadth is given by

B(x) =

{

1.0 − (1.0 −Bmin) cos2(π(x− 2.0)) for |x− 2.0| ≤ 0.5
1.0 otherwise ,

(3.42)

where Bmin = 0.92 is the minimum channel breadth and x is the distance into the channel
(so the throat is positioned at the midpoint of the constriction, x = 2.0). The 2114 node,
4054 cell grid on which the numerical results have been obtained is shown in Figure 3.1
along with three steady state solutions distinguished by their freestream Froude numbers:
(i) F∞ = 0.5, completely subcritical and hence symmetric about the throat of the channel, (ii)
F∞ = 0.71, transcritical with a stationary hydraulic jump in the constriction downstream of
the throat, and (iii) F∞ = 2.0, completely supercritical, with a criss-cross pattern of undular
jumps downstream of the throat. Simple characteristic boundary conditions are applied
in each case. The solutions have been obtained using the hyperbolic/elliptic decomposition
described in Section 3.4, applying the PSI scheme to each of the decoupled scalar components
and the system Lax-Wendroff scheme to the subcritical elliptic subsystem. The results show
that the scheme can accurately model each of these different types of flow.

4 Grid Adaptation

4.1 A Simple Node Movement Algorithm

The two-dimensional grid adaptation algorithm presented here is a very simple form of node
movement. It takes the form of an iteration where, at each step, nodes are moved to a
weighted average of the positions of the centroids of the neighbouring triangles [8, 10]. The
new nodal position can thus be written as

~xnew
i =

∑

j∈∪△i
wj~xj

∑

j∈∪△i
wj

, (4.1)

where the ~xj are the positions of the centroids, wj are the cell weights and j indicates the
cells adjacent to node i.



Figure 3.1: The grid and contours of depth for solutions of the subcritical (top), transcritical
(middle) and supercritical (bottom) symmetric constricted channel test cases.



The weights here are chosen to depend on local approximations to the first and second
derivatives of the solution (u for the scalar advection equation), so

w =
(

1 + β1|~∇u|2 + β2(~∇2u)2
)1/2

, (4.2)

where β1 and β2 are arbitrary parameters and S△ is the area of the triangle (u is replaced by
d, the flow depth, in the case of the shallow water equations). The choice of β1 = 1 and β2 = 0
gives a simple generalisation of the weights which lead to arc length equidistribution in one
dimension. Although there is no corresponding equidistribution property in two dimensions,
the algorithm will still tend to move nodes towards regions where the weights are high. In the
above case this means regions of high first and/or second derivatives, such as those found at
shocks, but the weights can be modified so that nodes are attracted towards any detectable
feature of the flow. The algorithm can also be easily generalised to three dimensions.

In one dimension mesh tangling can be avoided by ensuring that the chosen weights are
always positive. In higher dimensions though, particularly on the highly distorted grids
which become common once the mesh is allowed to move, tangling occurs quite readily.
Even with positive weights in (4.1), it is possible for a node at the vertex of a triangle to
be overtaken by the opposite edge of that triangle, thus causing the cell to ‘flip’ and acquire
a negative area. This can be avoided by artificially limiting the distance which a node can
move [10]. A simple but rather restrictive limit is

(∆xi)max = min
j∈∪△i

(

Sj

maxk=1,3 ljk

)

, (4.3)

where Sj is the area of cell j and ljk is the length of edge k of cell j. This expression is
equivalent to half the smallest height of the surrounding triangles. A second restriction is
also imposed which places a lower limit on the radius of the inscribed circle of each cell.
This avoids extremely distorted meshes and the possibility of a prohibitively small limit on
the time-step. Using this strategy, a displacement can be found for all nodes, including
boundary nodes which must then be projected back on to the nearest point on the boundary,
and ‘corner’ nodes, even though they are then forced to remain fixed.

Once all the displacements have been found, the nodal positions are updated in a block.
The solution is then obtained on the new grid using linear interpolation of the solution
on the previous grid (although the solution need not be updated at all - both choices are
non-conservative but this is subsequently rectified).

4.2 Solution strategy

The method by which node movement is combined with multidimensional upwinding to
obtain steady state solutions to the two-dimensional conservation laws can be expressed in
three stages:

1) run the time-stepping algorithm on an initial, fixed grid until the solution appears
steady (but long before convergence is achieved).



2) run the time-stepping interspersed with the grid movement until the grid has adapted
to the steady solution. In this work, each time-step is alternated with a single node
movement iteration.

3) fix the grid and run the time-stepping algorithm to convergence using the solution from
step 2) as initial conditions.

The grid movement in step 2) can be initiated when the L2 norm of the residual over the grid
drops below a certain level (typically a drop of 2 or 3 orders of magnitude from the initial
residual), effectively when the flow has stopped changing.

It is unlikely that the combination of time-stepping and grid movement will lead to a con-
verged solution if allowed to run indefinitely, and it would be impractical to attempt this.
Also, this stage of the method is not, as it stands, conservative due to the simple interpolation
step of the grid movement. However, since steady state solutions are sought, the grid can
be frozen after a fixed number of time-steps ( 100 for scalar advection, 500 for the shallow
water equations) after which the solution strategy returns solely to the conservative time-
stepping scheme. Local time-stepping has been used throughout to accelerate convergence,
particularly useful on the more distorted meshes.

4.3 Results

The grid adaptation algorithm described above has been combined with the PSI scheme and
applied to the two circular advection test cases of Section 2.4. For the square wave profile the
adaptation parameters have been taken to be β1 = 1.0 and β2 = 0.01, while for the triangular
profile, for which the curvature of the solution profile has more importance, β1 = 0.1 and
β2 = 1.0. Figure 5.1 shows that in both cases the solution is improved enormously by the
application of this simple grid adaptation procedure, as long as the adaptation parameters
are chosen with care.

The adaptation has also been applied to the shallow water equations and is illustrated here
by supercritical flow over a wedge, which induces an oblique hydraulic jump at its foot. In
the case used here, the slope of the wedge is given by θ = 8.95◦ and the inflow conditions
are given by d = 1.0m, u = 8.57ms−1 and v = 0.0ms−1. The unadapted and adapted grids
(taking β1 = 1.0 and β2 = 0.001) and their respective solutions are depicted in Figure 5.2,
showing how much the capturing of the hydraulic jump can be improved by the movement
of the nodes. More surprisingly, it has also been noticed that convergence to the steady
state is generally faster on the adapted grids than on the more uniform starting grids. The
hyperbolic/elliptic scheme described in Section 3.4 has again been used to approximate the
shallow water equations.
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Figure 5.1: Adapted grids and solution on the boundary y = 0 for the advection of the square
wave (left) and the triangular wave (right). Solid lines indicate the adapted solution, dotted
lines the unadapted solution.

5 The Current State

Some of the more well-established multidimensional upwind schemes have been presented
here, along with a brief description of a few of the more recent advances. This family
of methods has now achieved a degree of success which has allowed them to be applied in
practical situations where two-dimensional steady state flows are being approximated (see, for
example [14]), although up to now this has been predominantly in the field of aerodynamics.
More recently, they have also been applied to problems in hydraulic engineering (the source
terms which appear commonly in the modelling can be incorporated simply, but only at the
expense of positivity). Note though that all of the applications presented here have been on
triangular grids because, although the schemes can be extended to quadrilateral meshes [19],
the linearisation procedure is less natural.

Furthermore, the methods have been shown to combine well with the standard techniques for
improving accuracy and efficiency, such as implicit time-stepping [13] and grid adaptation
through both refinement [2] and movement [10]. Viscous flow models have also been ap-
proximated [27] (the Navier-Stokes equations) using these methods but, although the scalar
fluctuation distribution technique can be extended to the advection-diffusion equation (by
treating the viscous terms as sources), a Galerkin finite element discretisation of the viscous



Figure 5.2: The grids and local Froude number contours for the oblique hydraulic jump test
case with and without adaptation.

terms is often used [19, 27].

Even now, though, these schemes have their limitations, the most noticeable being that the
most accurate of the existing two-dimensional wave models have a singularity at a stagnation
point. This can be dealt with satisfactorily in steady state calculations by careful use of
standard stabilisation techniques, but remains a problem for time-dependent flows. Because
of this, the recent advances in accurate fluctuation distribution schemes for time-dependent
problems [12, 15] cannot be taken full advantage of: there is still much work to be done to
construct appropriate decompositions for unsteady flows, and this may require an alternative
approach to those used so far.

The situation with three-dimensional calculations is less well developed (and of less relevance
to shallow water modelling). The system decompositions [27] have been applied with some
success and the fluctuation distribution schemes readily generalise to the three-dimensional
scalar advection equation (on tetrahedral meshes). It is also fairly simple to construct wave
models along similar lines to those described here, but none has yet been proposed which
incorporates the additional features apparent in the underlying three-dimensional models,
e.g. bicharacteristics. Of more relevance to this discussion, the methods can also be adapted
to model flow over curved surfaces (flow on a sphere, with meteorological and oceanographical
applications), but it is not yet completely clear how the two-dimensional wave models can
be applied in such situations.
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