
Grid Adaptation and

Multidimensional Upwinding 1

M.E.Hubbard

Numerical Analysis Report 8/94

Department of Mathematics

P.O.Box 220

University of Reading

Whiteknights

Reading

RG6 2AX

United Kingdom

1The work reported here forms part of the research programme of the Oxford/Reading

Institute for Computational Fluid Dynamics and was supported by DRA Farnborough.

Abstract

The quality of the solution to systems of di�erential equations can be

improved signi�cantly by adapting the computational grid on which they

are calculated so that nodes are concentrated in signi�cant regions of the

solution.

In this report, two very simple schemes are described for moving the

grid to improve the solution without altering the number of nodes or the

connectivity of the grid. These are used on unstructured triangular meshes

to �nd accurate steady state solutions to the linear advection equation

and the Euler equations for inviscid uid ow in two dimensions using

multidimensional upwinding.

2.1 Monitor Surfaces 3

2.2 One Dimension 4

2.2.1 Baines' Algorithm 4

2.2.2 Weighted Averaging 7

2.3 Two Dimensions 9

2.3.1 Baines' Algorithm 9

2.3.2 Weighted Averaging 11

i

Contents

1 Introduction 1

2 Grid Movement 3

3 Solution Strategy 14

4 Results 16

5 Conclusions 43

Acknowledgements 44

References 45

: :

: :

: :

: :

: :

: :

: :

It is widely known that the quality of the solution of a scalar di�erential equation

or a system of di�erential equations can be improved by means of grid adaptation

techniques. The philosophy behind these methods is that the error will be reduced

if the computational mesh on which the calculation is being carried out can be

changed to better represent the solution.

On triangular grids this can be done in two distinct ways; re�nement and

movement. Edge swapping is another technique which can be used, since many

schemes for solving di�erential equations give better results when edges of the

mesh are aligned with particular ow features. A detailed discussion of grid

adaptation techniques can be found in [9, 10].

The simplest way to re�ne the grid is to do so throughout the ow domain,

but this is unnecessarily expensive, as it introduces extra nodes in regions where

their e�ect on the solution quality is negligible, if the solution is constant

over the domain then increasing the number of nodes will have no e�ect on it.

Instead, some form of selective re�nement is required, dependent on the solution

itself.

However, both selective re�nement and edge alignment can, to a large extent,

be achieved by the third option, grid movement, which has the added advantage of

involving no change in the number of nodes or the connectivity of the grid, which

can become expensive and messy. This report has been written to illustrate

the use of a couple of very simple and cheap grid movement strategies used

in conjunction with recently developed multidimensional upwinding techniques

[2, 4, 5, 6, 8] for solving test problems involving the linear advection equation

and the Euler equations for inviscid uid ow. It is known [3] that shocks are

captured across 2 or 3 cells when these methods are used, so it is obvious that an

appropriate repositioning of the nodes can signi�cantly improve the de�nition of

such ow features. The task is greatly simpli�ed by considering only steady state

solutions to these equations. This allows a number of di�culties to be ignored

which would otherwise have to be dealt with if the solutions were time dependent.

The following section describes the grid movement strategies which have been

used. First, the concept of the monitor surface is de�ned and, in particular, its

rôle in driving the adaptation. If the surface is chosen so as to accurately repre-

sent the character of the solution, then if the grid can be moved to improve the

resolution of the monitor surface it can be expected to also decrease the error in

the solution. Therefore, the adaptation algorithms are designed to move nodes

towards regions of the solution with a particular character. For the purposes of

this report these will be taken to be regions of high gradient. This means that

for the Euler equations, for example, nodes will tend to move towards features

1

1 Introduction

e.g.

such as shocks. Future work will also take into account those areas where the

surface curvature is high, to further improve results. Two very simple algorithms

are described for moving nodes in one dimension and these are generalised for use

in two dimensions. The overall solution strategy is then described for producing

converged, steady state solutions on adapted grids using multidimensional up-

winding, and a wide variety of results is presented to show the features of each

of the two-dimensional methods.

2

The intention of this work is to investigate and develop a simple grid movement

algorithm which can be used in conjunction with multidimensional upwinding

techniques to improve the accuracy of the solution of systems of hyperbolic con-

servation laws without signi�cantly increasing the work needed to achieve them.

This task is simpli�ed greatly by considering only steady state solutions to these

equations. None of the methods described here could be used in their current

form to solve time dependent problems since they are unable to track rapidly

changing ow features and are non-conservative.

The adaptation schemes used here could hardly be simpler since they con-

sist only of a single local node movement step. The number of nodes and the

connectivity of the grid remains unchanged throughout the solution procedure,

thus avoiding a signi�cant contribution to the expense of the algorithm. Also,

the displacement of a node depends only on information stored at adjacent nodes

(or in adjacent cells) which ensures that the extra cost of moving the grid is neg-

ligible. The main extra expense incurred is due to the occurrence of very small

cells, reducing the allowable time-step (for stability) which is proportional to the

cell size. This is a problem with any grid adaptation scheme used in conjunction

with an explicit solver, though, and can be partially alleviated by the use of lo-

cal time-stepping, giving a remarkably cheap and e�ective algorithm. It is also

necessary to ensure that the procedure does not cause the grid to become highly

distorted, since this may hinder convergence to the steady state solution.

It is instructive here to introduce the idea of a monitor surface [9], or monitor

curve in one dimension. The behaviour of the solution of a system of di�erential

equations is usually well monitored by a quantity or combination of quantities,

so it can be expected that by accurately resolving these quantities on the com-

putational mesh the error in the solution to the di�erential equation can be kept

low.

Taking the Euler equations as an example, the quantity may be chosen to be

the density whose values at the nodes of the mesh de�ne a function which, when

raised above the plane of the grid, creates the monitor surface such as that shown

in Figure 2.1. The monitor curve is de�ned in a similar way in one dimension.

To gain a more accurate approximation to the solution as it develops in time,

the grid should be adapted to improve the resolution of the monitor surface. The

adaptation is carried out so as to cluster nodes in appropriate regions of the

domain. Initially these regions can be considered to be where the gradient of the

3

2 Grid Movement

2.1 Monitor Surfaces

x-y plane

monitor surface

Figure 2.1: An example of a monitor surface.

monitor surface is high, and this report is concerned with methods of this form.

However, for even greater accuracy it may be necessary to consider adapting to

regions of high surface curvature, so that large variations in the gradient of the

surface can be resolved as well as steep slopes. All the algorithms presented here

can be altered quite simply to account for this but such improvements are not

considered here.

Two distinct one-dimensional algorithms have been considered, although both

actually reduce to very similar methods and are essentially iterative schemes

which attempt to satisfy some form of mesh equidistribution at convergence.

The �rst algorithm was developed by Baines [7] with the intention of producing

best �ts to continuous functions by piecewise polynomials with variable nodes.

Two distinct algorithms were devised, one which attempts to �nd best piecewise

linear discontinuous approximations and the other to �nd the best piecewise con-

stant approximation. The nodal movement is designed to minimise the error at

the discontinuities. Since the underlying continuous function used in multidimen-

sional upwinding methods is already piecewise linear, �nding the best piecewise

linear approximation to this function would not achieve any node movement.

Therefore, it is only the piecewise constant algorithm which is of any use here. If

the monitor function is represented by the piecewise linear continuous function

then the scheme in one dimension can be written in the algorithmic form

4

2.2.1 Baines' Algorithm

L

l

u

2.2 One Dimension

2

2

n-1 n n+1

u(x)=un

a) For each node , calculate an average value of ,

=
+ 2 +

4
=

1

2

+

2
+

+

2
(2 1)

b) Extend the linear approximations in the adjacent cells until they intersect

the horizontal line () = .

c) Choose the intersection point closest to and move node there.

If the intersection points in c) are both the same distance from the node then

take an average of these two positions and move the node there. This is shown

graphically in Figure 2.2. The intersections of the horizontal line, () = ,

and the extended solution approximations in the neighbouring cells give the two

possibilities for the the new position of node (shown by the �lled circles) and

the closer of these to the original position is taken. The new nodal position is

shown by a circle.

Figure 2.2: Baines' algorithm in one dimension.

It is easy to see from this construction that, as long as the monitor curve is

monotonic within the two cells, this algorithm will always move nodes towards the

cell which has the larger value of � and never move them beyond the centroid

of either cell. This latter property is important because it ensures that mesh

tangling cannot occur. The former indicates that at convergence (when � = 0)

the grid equidistributes � . This should cluster nodes in regions where the

solution gradient is high, as desired.

5

n u

u
u u u u u u u

: :

u x u

x n

u x u

n

u

x

u

1 +1 1 +1
n

n n n n n n n

n

n

n

� �

� �

j j

j j

n-1 n n+1

u(x)=un

Unfortunately, none of this remains true when the function has a turning

point in the interior of the domain. As Figure 2.3 demonstrates, when a mini-

mum (or a maximum) occurs, particular on highly irregular grids, not only is it

possible for a node to move away from the larger value of � , it can also move

beyond the neighbouring node, causing tangling. Worse still, nodes can be moved

large distances when � is almost the same on either side of the node and the

convergence of the method is a�ected.

Figure 2.3: The failure of Baines' algorithm in one dimension at a minimum.

This problem can be recti�ed easily by not allowing nodes at turning points

to move. The function is now split into monotonic portions and the converged

grid will equidistribute � within each of these regions separately. The same

procedure must also be carried out in regions where the gradient is zero, otherwise

the algorithm does not produce a unique displacement for the nodes.

An interesting side issue here is the existence and uniqueness of grids which

equidistribute � when the monitor curve is not monotonic. To illustrate the

problem, consider the simple case of a function with a single maximum in the

domain and a grid of nodes. If = and is even, then no equidistributed

grid exists. If is odd, though, there are in�nitely many. If = then there

is always at least one equidistributed grid, while sometimes, very rarely, there is

a second. The inclusion of more turning points further complicates the problem.

This gives another reason for dealing separately with nodes at turning points,

although it suggests that a more sophisticated approach is needed than that used

above.

6

u

u

u

u

N u u N

N u u

0

0

N

N

j j

j j

j j

j j

6

Returning to the algorithm, simple algebraic manipulation leads to an expres-

sion for the nodal displacement in terms of � and � ,

� =
� �

4
(2 2)

as long as the derivative is not zero here and where

=
�

�

�

�
(2 3)

The explicit expression (2.2) for the nodal displacement given by Baines' algo-

rithm leads neatly to the consideration of a second kind of method which is, if

anything, even simpler. It consists of moving each node to a weighted average of

the positions of the centroids of the adjacent cells, so the new position of node

is given by

=
+

+
(2 4)

where the weights can be chosen appropriately and are the coordinates

of the midpoints of the cells. If the weights are of the same sign throughout the

grid then the node cannot move beyond the midpoints of its neighbouring cells

and so tangling is automatically avoided.

If the weights are chosen to be = then the nodal displacement becomes

� =
� �

2 +

(2 5)

which di�ers from that in equation (2.2) only in the denominator. For comparison

with Baines' algorithm, Figure 2.4 shows the construction of the node movement

for a weighted average of the positions of the adjacent . It is clear, in this

case, that for monotonic functions this choice of weight will move nodes in the

same direction as Baines' algorithm but, in general, further - possibly too far -

since the displacement depends on the average of the two gradients rather than

the one with higher magnitude. However, carrying out a weighted average of the

nodal positions only ensures that node doesn't overtake either of its neighbours

provided that the updates are carried out in a Gauss-Seidel manner (each node

is moved before the displacement of the next node is calculated). If a Jacobi

update is used instead (all the displacements are found before any of the nodes

are moved) then tangling can occur. This is recti�ed by halving the displacements

or, equivalently, using the centroids of the adjacent cells in the averaging as in

(2.4). Unless otherwise stated, Jacobi updating is used in this report because it

7

2.2.2 Weighted Averaging

u x

x
u u

:

� sign
u

x

u

x
: :

n

x
w x w x

w w
:

w x

w

x
u u

:

n

nodes

+

�

� +

+

+ +

+

�

�

+

�

�

�

�

n

n n

u

x n

n n

new
n

n n n n

n n

n n

u

x

n

n n

u

x

u

x

�

�

� �

�

� �

�

� �

 ����
����

����
����

!

 !

�

�

�

1

2

1

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

+ 1
2

+ 1
2

1
2

1
2

�

n

n

n

n

�

�

n-1 n n+1

n-1/2

n+1/2

u(x)=un

is independent of the order in which the nodes are moved although, in practice,

little di�erence has been found between the two updating procedures.

Generally, the choice of = leads to grids which equidistribute � at

convergence, where is usually a function of the solution data and should be

monotonic to assure convergence. The above choice of weight should therefore

equidistribute � . Figure 2.4 also shows that these weights can be considered

as = tan where is the angle between the normal to the monitor surface and

the vertical. This is useful when considering generalisations to two dimensions.

Figure 2.4: Weighted averaging in one dimension.

This similarity between the two methods also means that they have the same

problems when the monitor curve is not monotonic. At turning points the weights

now have di�erent signs, so that tangling can occur. Moreover, a unique equidis-

tributed grid can no longer be guaranteed and convergence su�ers as a result.

This can be partially recti�ed by modifying the weights to give = tan which

removes the possibility of tangling, by ensuring that the weights are always pos-

itive, and signi�cantly improves the behaviour at turning points. However, as

before, nodes at maxima and minima must be �xed to improve convergence and

gain `piecewise equidistribution'.

An alternative, and more usual, choice for the weights is = , where is

the cumulative arc length of the monitor curve [1]. It can be seen from Figure

2.4 that these weights can also be written as = sec which are always positive,

so the scheme is tangle free. Nodes always move into the adjacent cell with the

higher arc length and it is this quantity that is equidistributed on the converged

8

w f

f

u

w � �

w �

w s

w �

�

�

�

�

f

x

s

x

j j

j j

j j

grid. Unfortunately, since the arc length is not calculated exactly by integrating

along the curve but is approximated by the chord length between the nodes, the

equidistribution is not necessarily unique for non-monotonic functions. However,

the likelihood of this di�culty causing problems, particularly when the algorithm

is used in conjunction with a time-stepping scheme, is negligible, so nodes do not

need to be �xed at turning points. As with the previous choice of weight, nodes

will be attracted towards regions where the gradient of the monitor curve is high,

but the tangling and equidistribution problems have largely been eradicated and

there is no longer a singularity when the derivative of the monitor curve is zero.

Clearly other quantities could be equidistributed by an appropriate choice of

weight, and this is one way by which the method can be extended to include

curvature monitoring on the surface although this is not considered here.

Each of the two-dimensional node movement algorithms used in this report is,

in some sense, a generalisation of one of the schemes presented in the previous

section and, as before, they tend to attract nodes towards regions on the monitor

surface where the gradient is high. All the schemes can also be extended further

into three dimensions, but that is not dealt with in this report.

The �rst method tried was an extension, by Baines [7] of his own one-dimensional

algorithm. As before, it is only the piecewise constant algorithm which is of any

use since the underlying solution is already represented by a continuous piecewise

linear function.

The algorithm in two dimensions is

a) For each node , calculate an average value of ,

=
1 +

2
(2 6)

where is one of the grid edges emanating from node (spokes) and

is the value of at the end of the spoke .

b) Extend each of the spokes until it intersects the horizontal plane () =

.

c) Choose the intersection closest to () and move node there.

As in one dimension, if two or more intersection points in c) are the same distance

from the node then an average of the displacements is taken. The scheme is shown

9

2.3.1 Baines' Algorithm

n u

u
N

u u
:

i N n u

u i

u x; y

u

x ; y n

2.3 Two Dimensions

=1

n

N

i

i n

i

n

n n

X

n

graphically in Figure 2.5. The dotted lines represent the cells raised on to the

plane () = and the larger dots mark the intersections of the extended

spokes with this plane. (There are only 5 because one spoke is parallel to the

plane.) The nearest of these to the original nodal position is taken and the node

is moved to the position marked by the circle.

Figure 2.5: Baines' algorithm in two dimensions.

On closer examination of this scheme, it soon becomes apparent how few of

the nice one-dimensional properties remain satis�ed in higher dimensions. It is

no longer true that the node always moves towards the neighbour which gives the

highest value of � , although it will move along the extended spoke with the

gradient of highest magnitude. Also, the grid no longer satis�es an equidistribu-

tion property at convergence, even when the underlying function has no turning

points. Convergence itself is also a�ected since mesh tangling is no longer avoided

automatically, even when there are no turning points, and must be imposed arti-

�cially.

The link with weighted averaging has become more tenuous too, since in

Baines' algorithm the choice of the direction of the nodal displacement can be

easily separated from the calculation of how far it should move in that direction.

This gives an expression for the displacement of the form

� = () (2 7)

where is the index of the node at the far end of the chosen spoke.

10

u x; y u

u

~x
u u

u u
~x ~x :

j

n

n
n n

j n
j n

 !

j j

�

�
�

n

The two-dimensional form of the weighted averaging algorithm is a very straight-

forward generalisation, whereby each node is moved to a weighted average of the

positions of the centroids of the surrounding triangles, giving

= (2 8)

where the are the positions of the centroids of the neighbouring triangles and

is the number of cells adjacent to node . It would be just as simple to take

an average of the positions of the neighbouring nodes, but the weights used here

are essentially cell-based quantities so centroids are more appropriate.

Figure 2.6: The two-dimensional weighted averaging algorithm.

However, because of the lack of a neat equidistribution property, the weighting

function has to be chosen on a somewhat basis. An obvious extension is to

use precisely the same form of weight as in one dimension, so the choice leading

to the equidistribution of � would give = tan whereas the arc length

equidistribution gives = sec . is simply the angle between the normal to

the triangle in the monitor surface and the normal to the grid plane, as shown in

Figure 2.6. Alternatively, Eiseman and Erlebacher [1] suggest moving each node

to the `centre of mass' of the surrounding triangles on the monitor surface. The

weights then become = sec where is the corresponding cell area. These

weights are, in fact, simply the areas of the triangles on the monitor surface. Both

choices tend to move nodes towards regions where the solution gradient is high

11

2.3.2 Weighted Averaging

~x
w ~x

w
:

~x

N n

u w �

w � �

i

w A � A

ad hoc

=1

=1

new
n

N
i i i

N
i i

i

i i

i i i

i i i i

P
P

j j j j

1

2
3

4

and can be modi�ed to account for curvature modelling but, as in one dimension,

the best method is not yet apparent.

From a practical point of view, the loss of most of the properties satis�ed

by the schemes in one dimension is not signi�cant because the methods retain

the more important qualitative features. This is not true of the non-tangling

property, however. In two or more dimensions, particularly on the highly distorted

grids which become common once the mesh is allowed to move, tangling occurs

quite readily. The restriction to positive weights merely stops nodes from moving

beyond the convex hull created by the centroids of the surrounding cells (a form

of dual cell) so the algorithm is only guaranteed to be tangle free if every patch of

cells associated with a node is convex. Figure 2.7 shows how tangling can occur.

The dotted lines indicate the dual cells which bound the node movement and it is

easy to see that, even if node 1 remains �xed, nodes 2 and 3 can move far enough

upwards to cause triangle 123 to `ip'.

Figure 2.7: Tangling in two dimensions.

This can be avoided by arti�cially limiting the distance which a node can

move. A simple but rather restrictive limit is

(�) = min
max

(2 9)

where indexes the cells surrounding the node, is the area of cell and

is the length of the edge of cell . This expression is equivalent to half the

smallest height of the surrounding triangles. This can be increased by a factor of

two if Gauss-Seidel updating is used. A more sophisticated limit would require

12

x
A

l
:

i A i l

j i

=1 3

max
i

i

j ; ij

i ij

 !

knowledge of the direction and magnitude of the displacement of the adjacent

nodes and its calculation would cause unnecessary expense.

The �nal step in each of these algorithms is the interpolation of the solution

on to the new grid. This is very simple since the underlying solution has been

considered throughout to be piecewise linear continuous. However, the new ap-

proximation is then assumed to be piecewise linear continuous on the new grid,

so information and accuracy is lost with each iteration. This results in a loss of

conservation when it is combined with a time-stepping algorithm, which must be

recti�ed by considering Langrangian type node movement algorithms [10] if time

dependent problems are to be considered.

13

The method by which steady state solutions to all of the equations used here are

found can be expressed very simply:

a) Run the time-stepping algorithm on an initial, �xed grid until the solution

appears steady (but long before convergence is achieved).

b) Run the time-stepping interspersed with the grid movement until the mesh

has adapted to the steady solution.

c) Run the time-stepping algorithm to convergence using the new grid and the

solution from step b) as initial conditions.

Multidimensional upwind schemes are used here for the time-stepping [4, 5].

The decision to start moving the grid in step b) can be taken when the RMS

of the residual over the grid drops below a certain level (typically a drop of 2

or 3 orders of magnitude from the initial residual), so that the signi�cant ow

features, such as shocks, have e�ectively stopped moving, but the choice of when

to stop the grid movement is currently made on a much more basis. In this

work the number of grid iterations is prespeci�ed but in the future some form of

grid convergence monitor might be used.

It is not possible to simply run the time-stepping and grid movement to conver-

gence together for a number of reasons. The convergence of the two-dimensional

grid movement schemes on �xed functions is open to question, but when the func-

tion is changing with each iteration, as it is here, there is no reason to believe

that the overall strategy will converge. Also, this stage of the method is not, as

it stands, conservative due to the interpolation step of the grid movement. This

can be recti�ed by moving the nodes in a modi�ed Lagrangian manner [10] and

including node velocities in the time-stepping scheme, but for steady state calcu-

lations this is not necessary. Either the grid converges (unlikely) or it is �xed after

a certain number of iterations, after which the solution strategy returns solely to

the conservative time-stepping scheme.

In one dimension it is necessary to �x nodes at turning points of the solution

in order to gain converged grids for �xed functions. This also seems desirable in

two dimensions but, with the introduction of a solution iteration between each

grid iteration, convergence is lost anyway so it may be unnecessary. With the

insistence on positive weights, it is assured that nodes at turning points (maxima,

minima, saddles, etc.) behave in a correct qualitative manner and this, together

with the solution iterations and the limit on the number of grid iterations, ensures

that these features aren't rapidly eroded by interpolation and node movement. In

fact, the �xing of these nodes increases the signi�cance of node locking. This is

14

3 Solution Strategy

ad hoc

a phenomenon where nodes which would, under normal circumstances, be moved

by the adaptation scheme are �xed by other restrictions, such as imposing a limit

on the cell size or forcing boundary nodes to remain on the boundary. To avoid

this, no special treatment is given to nodes at turning points.

For the purposes of this report, stage b) of the strategy has always used

alternating grid and solution iterations. It is possible, and may be even desirable

to carry out more time-steps between each grid iteration, but that option is not

considered here. It could though be too expensive to increase the number of grid

iterations since the nodes could no longer be guaranteed to remain within its

patch of adjacent cells.

One remaining problem in two dimensions is the treatment of boundary nodes.

All interior grid points can use the full two-dimensional strategy but the posi-

tion of the boundary nodes can be updated in one of two ways. One method is

to compute a new position using the corresponding one-dimensional adaptation

scheme along the boundary. Alternatively, a displacement can be found by the

two-dimensional strategy and the node projected back on to the boundary. `Cor-

ner' nodes remain �xed. In fact the �rst option also involves a projection step

if the boundary is curved, a step which, if it is not done carefully, can lead to

tangling when the curvature of the boundary is high. This means that the one-

dimensional treatment is, in fact, no simpler or cheaper than using a modi�ed

two-dimensional update, so the second method, which is more consistent with the

movement in the interior should be used.

15

A large number of results are presented in this section, which are used to highlight

the speci�c features of the di�erent schemes described in the previous sections

and to show the importance of certain parameters which need to be speci�ed for

the algorithms.

Two-dimensional steady state solutions of both the linear advection equation,

+ = 0 (4 1)

and the Euler equations,

+ () = (4 2)

are shown for a variety of test cases. A detailed understanding of these equations

is not necessary - equation (4.1) represents the translation of an initial solution

pro�le without changing its shape and with velocity , while (4.2) is the standard

system of equations for compressible inviscid uid ow.

One �nal adjustment to the solution algorithm is necessary from a practical

point of view. This is the imposition of a lower limit on the cell size in the

adapted grids. Here a limit of 10 is placed on the radius of the inscribed circle

of each triangle. This not only stops cell sizes from reaching machine precision,

but also ensures that the limit on the time-step - which is proportional to the cell

size - does not become prohibitively small, hindering convergence. Surprisingly, if

this limit is reduced, the results can become worse, especially when the solution

contains a curved discontinuity. In such a case, cells can become too thin to

adequately capture the discontinuity, so it extends into larger cells and becomes

more di�use.

No one-dimensional results are shown here since this work focuses on the inter-

action between these grid adaptation algorithms and multidimensional upwinding

techniques.

In two dimensions, the linear advection equation is considered �rst, since it

provides very simple steady state solutions on which to test the various grid

movement algorithms. The test case used has a nonuniform velocity �eld =

() over a rectangular domain, [1 1] [0 1], with the boundary conditions,

= 1 when = 0 and 0 65 0 35 and = 0 on all other inow

boundaries [4]. This represents the clockwise semicircular advection of a square

pro�le. These were also used, with = 0 everywhere else, as the initial conditions

for all the calculations, including the adaptive ones, no solution iterations

were carried out before starting to move the mesh.

In all cases the mesh used for calculating the �xed grid solutions, and as the

initial grid for all the adaptive calculations, is very simple and regular, formed by

dividing the domain up evenly into quadrilaterals and then inserting diagonals

16

4 Results

u f u 0

u ~a ~ u ; :

~ ; :

~a

~a

y; x ; ;

u y : < x < : u

u

i.e.

3

t

t

�

� r

r

� � �

� �

which alternate in direction between cells. Figure 4.1 shows the grid used in

this case (2145 nodes, 4096 cells) and the steady state solution produced on it

using Roe's Level scheme [4]. This was chosen from the many positive, linearity

preserving schemes available simply because it produced the least di�usive results

on the adapted meshes for linear advection. Here, as for all the linear advection

results, contours are plotted between = 0 and = 1 at intervals of � = 0 05.

Figure 4.2 shows the grid resulting from the use of the basic algorithm of

Baines and the converged solution obtained on that grid. There are two things

which are immediately obvious from this, that the solution looks very good and

the grid looks very bad. The actual quality of the grid is probably better repre-

sented by the accuracy of the solution on it but a grid such as this still introduces

a sense of unease. The result was attained from 1000 grid iterations (the number

used throughout this section) and already the mesh has become wildly distorted

since the method attempts to move all of the nodes into the discontinuity, thus

depleting the rest of the domain of nodes and producing huge triangles. Also, the

grid is still moving, and if more iterations are used all the interior nodes move

inexorably towards the discontinuities. This has little e�ect on the results here

because the depleted region is at, but it is both unnecessary and may become

signi�cant when the solution is more sensitive.

This can be improved, but only by introducing a tolerance to indicate where

the solution is nearly constant. In these regions, a smoothing iteration can be

carried out, moving each node to the mean position of its neighbours. This

gives the results shown in Figure 4.3. The solution is slightly better than the

previous one, particularly near the outow boundary, and the grid is signi�cantly

smoother, although large triangles are still being produced in the region between

the discontinuities.

The weighted averaging produces altogether more satisfactory results. The

initial choice of = tan , which was intended to emulate Baines' algorithm,

gives a similar solution quality, Figure 4.4, although there is still a worrying

tendency for all the nodes to drift towards the discontinuities. This seems to be

because both methods are based on one-dimensional schemes intended to equidis-

tribute � , so the �nal grid would not be expected to have any nodes in regions

where the solution gradient is zero. Figures 4.5 and 4.6 show the results which are

obtained using the weights = sec and = sec respectively. Again the so-

lution has been greatly improved from that achieved on the �xed grid, particularly

in the �rst case, but now the grids exhibit all the desired (aesthetic) qualities,

they are no longer highly distorted away from the discontinuities. Figure 4.6 is

slightly misleading because it can be improved signi�cantly by changing the scale

of the grid. With these last two choices of weight, the size of the cells relative to

the change in the solution across a cell becomes signi�cant. For example, if the

17

u u u :

w �

u

w � w A �

i.e.

j j

j j

grid is scaled so that the cell sizes are very large compared to the solution values

then sec 1 over the whole domain and the grid is hardly moved at all. Figure

4.7 shows the quality of result which can be achieved if a grid scaling parameter

is introduced. In this case the grid is reduced in size by a factor of ten, giving

extremely sharp discontinuities without unnecessary distortion of the mesh, and

the solution at the outow face is an almost square pro�le of height 0.994. If

either the weight is chosen to be = tan or Baines' algorithm is used, then

scaling the grid has no e�ect.

The results for this calculation bear comparison with those on a �xed �ne

grid (8385 nodes, 16192 cells), Figure 4.8, giving much sharper discontinuities

and using less than half the cpu time. It should be noted though that the grid

must be �ne enough to begin with. Figure 4.10 shows the result of attempting

to adapt a grid, using = sec , with too few nodes to adequately cover the

region. Although it improves on the results obtained on the �xed mesh, Figure

4.9, there are not enough nodes to achieve the quality of the solution on the �xed

medium grid, even when grid scaling is used.

A second linear advection test case can be mentioned briey here in order

to exhibit the occurrence of node locking. This has a uniform velocity �eld of

= (cos 8 sin 8) over the domain [0 1] [0 1], and boundary conditions

= 0 when = 0, = 1 when = 0 [4]. These are used as the initial conditions

for the calculations with = 0 everywhere else. The unadapted solution on a

1089 node, 2048 cell grid is shown in Figure 4.11. The result shown in Figure

4.12 was created using = sec and the grid is scaled down by a factor of ten.

At �rst glance the result appears extremely good, but on closer examination of

the bottom left hand corner, node locking becomes apparent. Ideally, the �rst

node along the lower boundary would move nearer to the discontinuity to further

improve the solution. In fact, the movement algorithm attempts to move the node

upwards but it is immediately projected back on to the boundary so it e�ectively

remains �xed. There seems to be no simple solution to this problem, but it only

becomes signi�cant in regions where surrounding nodes are severely restricted in

their movement, such as at corners, and so provides a strong argument against

the �xing of nodes at turning points in the solution.

Although the e�ect on the steady state solution is small here, it does suggest

that some form of selective grid re�nement is necessary to produce solutions

of best possible accuracy. In fact this could be used in most cases simply to

introduce nodes in regions where the movement algorithm requires them to obtain

high accuracy. For example, in both of the above test cases, solutions of similar

quality could be obtained with far fewer nodes in the regions away from the

discontinuities.

The results from these simple test problems suggest that the best strategies

18

�

w �

w A �

~a �= ; �= ; ;

u y u x

u

w A �

�

j j

�

for moving the nodes are those which involve weighted averaging and are gen-

eralisations of the one-dimensional scheme which equidistributed arc length. To

give the methods a more stringent test, more complicated ows are needed, and

these can be provided by the Euler equations. The �rst test case shown here is

air ow (left to right) with freestream Mach number = 1 4 through a channel

of length 3 and unit height with a circular arc bump of length 1 and height 0.04

in the middle of the lower surface [12]. The solution obtained using multidimen-

sional upwinding (the PSI advection scheme with the Mach angle wave model

[4, 5]) on a �xed, regular 2145 node, 4096 cell grid is shown in Figure 4.13. The

steady state solution exhibits a distinctive shock pattern which one would expect

to be mirrored by the grid after the adaptation has taken place.

The adapted grids - all obtained by running the time-stepping to create a near

steady state solution and then carrying out 1000 grid/solution iterations - and

the converged solutions produced on them are shown in Figures 4.14-4.19. The

solution contours shown are of local Mach number, plotted at intervals of 0 05

with one contour at the freestream Mach number of 1 4, and density has been

used to create the monitor surface. In some cases, particularly when the adapted

grid is highly distorted, converged solutions were not achieved, but the RMS of

the residual was still reduced to below 10 .

It is immediately apparent that Baines' algorithm and the weighted averaging

with = tan provide the nodes with the greatest incentive to move towards

the high gradients. As expected, they are both tending to drag all of the nodes

out of the constant ow region in front of the bump, and would do so if the grid

were allowed to continue to move. With this more complicated ow structure, the

node depletion away from the shocks is more signi�cant because the solution here

is not always constant. Immediately behind the shock reection o� the upper

boundary, the Mach number reaches a minimum which isn't captured nearly so

well on the adapted meshes because the nodes have moved away. (The maximum

and minimum values of the local Mach number are given in the captions to

the �gures.) The maximum value is achieved at the upper end of the outow

boundary and su�ers in a similar way. The resolution of any ow feature in the

regions where the cells have increased in size is bound to su�er and this, together

with the high distortion of the mesh, means that these solutions are of limited

accuracy.

Of the other two choices of weight, = sec gives the greater bias towards

high gradients, as can be seen in Figures 4.16 and 4.18, but the two solutions

shouldn't be compared until the grid scaling has been taken into account. Figures

4.17 and 4.19 show the results obtained by reducing the grid size by a factor of

ten.

It is now apparent that, = sec is probably the better choice since it

19

M :

:

:

w �

w �

w A �

12

1

�

j j

achieves a similar sharpness of the shock with less node depletion in the nearby

regions of the grid. When compared with the result from the same test case

on a �ner grid (which took nearly 8 times as long to produce), the shocks are

less di�use, and the only region where the solution su�ers is on either side of the

shocks where nodes are drawn from. As a result the ridges created on the solution

surface, particularly at their the maxima and minima, are not so well captured -

another case for selective grid re�nement.

It is also a case for the inclusion of curvature modelling in the adaptive scheme.

This would be used to bias the grid movement towards regions of high solution

curvature as well as high gradient and would be expected to stop nodes from

leaving these turning points of the solution. However, no results using either

selective re�nement or curvature modelling are presented here.

The last of these weighted averaging schemes, where = sec , has also been

used with other test cases, the most interesting of which is the ow, with =

3 0, in a channel of height 1 and length 3 over a forward facing step of height 0.2 at

a distance of 0.6 into the channel [11]. The results from this can be seen in Figures

4.21 and 4.22, where the scaling has been chosen to give the best results from the

adaptation. The adapted grid nicely mirrors the shock structure of the solution

and the shock capturing has correspondingly been improved. This time neither

of the solutions shown have converged, but this is due to the multidimensional

upwinding being unable to cope with the large subsonic region in front of the step

(and the stagnation point).

20

w A �

M

:

1

Figure 4.1: The unadapted grid (top) and the converged solution contours on this

grid (bottom) for the circular shear test case.

21

Figure 4.2: The adapted grid using Baines' algorithm (top) and the converged

solution contours on this grid (bottom) for the circular shear test case.

22

Figure 4.3: The adapted grid using Baines' algorithm with smoothing (top) and

the converged solution contours on this grid (bottom) for the circular shear test

case.

23

Figure 4.4: The adapted grid using = tan (top) and the converged solution

contours on this grid (bottom) for the circular shear test case.

24

w �j j

Figure 4.5: The adapted grid using = sec (top) and the converged solution

contours on this grid (bottom) for the circular shear test case.

25

w �

Figure 4.6: The adapted grid using = sec (top) and the converged solution

contours on this grid (bottom) for the circular shear test case.

26

w A �

Figure 4.7: The adapted grid using grid scaling and = sec (top) and the

converged solution contours on this grid (bottom) for the circular shear test case.

27

w A �

Figure 4.8: The unadapted �ne grid (top) and the converged solution contours

on this grid (bottom) for the circular shear test case.

28

Figure 4.9: The unadapted coarse grid (top) and the converged solution contours

on this grid (bottom) for the circular shear test case.

29

Figure 4.10: The adapted coarse grid using grid scaling and = sec (top)

and the converged solution contours on this grid (bottom) for the circular shear

test case.

30

w A �

Figure 4.11: The unadapted grid (top) and the converged solution contours on

this grid (bottom) for the linear shear test case.

31

Figure 4.12: The adapted grid using = sec (top) and the converged solution

contours on this grid (bottom) for the linear shear test case.

32

w A �

Figure 4.13: The unadapted grid (top) and the local Mach number contours of

the converged solution on this grid (bottom) for a 4% circular arc bump in a

channel - = 1 4, = 0 946696, = 1 67190.

33

M : M : M :
1 min max

Figure 4.14: The adapted grid using Baines' algorithm with smoothing (top) and

the local Mach number contours of the converged solution on this grid (bottom)

for a 4% circular arc bump in a channel - = 1 4, = 0 982458, =

1 67612.

34

M : M : M

:

1 min max

Figure 4.15: The adapted grid using = tan (top) and the local Mach number

contours of the converged solution on this grid (bottom) for a 4% circular arc

bump in a channel - = 1 4, = 0 927394, = 1 65941.

35

w �

M : M : M :
1 min max

j j

Figure 4.16: The adapted grid using = sec (top) and the local Mach number

contours of the converged solution on this grid (bottom) for a 4% circular arc

bump in a channel - = 1 4, = 0 934373, = 1 67046.

36

w �

M : M : M :
1 min max

Figure 4.17: The adapted grid using = sec and grid scaling (top) and the local

Mach number contours of the converged solution on this grid (bottom) for a 4%

circular arc bump in a channel - = 1 4, = 0 925287, = 1 65952.

37

w �

M : M : M :
1 min max

Figure 4.18: The adapted grid using = sec (top) and the local Mach number

contours of the converged solution on this grid (bottom) for a 4% circular arc

bump in a channel - = 1 4, = 0 899419, = 1 65642.

38

w A �

M : M : M :
1 min max

Figure 4.19: The adapted grid using = sec and grid scaling (top) and the

local Mach number contours of the converged solution on this grid (bottom) for

a 4% circular arc bump in a channel - = 1 4, = 0 894084, =

1 65589.

39

w A �

M : M : M

:

1 min max

Figure 4.20: The unadapted �ne grid (top) and the local Mach number contours

of the converged solution on this grid (bottom) for a 4% circular arc bump in a

channel - = 1 4, = 0 886538, = 1 68859.

40

M : M : M :
1 min max

Figure 4.21: The unadapted grid (top) and the local Mach number contours of

the solution on this grid (bottom) for a 20% step in a channel - = 3 0,

= 0 0, = 3 00140.

41

M :

M : M :

1

min max

Figure 4.22: The adapted grid using = sec (top) and the local Mach number

contours of the solution on this grid (bottom) for a 20% step in a channel -

= 3 0, = 0 0, = 3 0.

42

w A �

M : M : M :
1 min max

The simple and very cheap algorithms described in this report can be used to

signi�cantly improve the quality of the solution by not only clustering nodes in

regions where the solution gradient is high, but also aligning the cell edges with

features such as discontinuities and with negligible increase in e�ort. All of this

has been achieved without any change in the connectivity of the grid or increasing

the number of cells, although it is almost certain that the optimal grid adaptation

strategy will include selective re�nement and edge swapping as well as movement.

Even so, the current method can already be used to gain great improvements to

steady state solutions of the linear advection and the Euler equations, without

much increase in the expense.

Further improvement in the grid movement methods should be made possible

by increasing the sophistication of these schemes, either by choosing the direction

of the displacement in a more intelligent manner or the inclusion of solution

curvature in the monitoring procedure, although it is not yet clear how best to

do this. It would also be preferable to automate the switching on and o� of the

movement in the overall solution strategy and to �nd a less method of

deciding the mesh scaling.

43

5 Conclusions

ad hoc

M.E. Hubbard is supported �nancially by a contract funded by DRA Farnbor-

ough. He wishes to thank Prof. M.J. Baines of the Mathematics Department,

University of Reading his advice and assistance during this work.

44

Acknowledgements

[1] G.Erlebacher and P.R.Eiseman. Adaptive triangular mesh generation.

, 25:1356{1364, 1987.

[2] H.Deconinck. Analysis of wave propagation properties for the Euler equa-

tions in two space dimensions. In , number

1994-05 in VKI Lecture Series, 1994.

[3] H.Deconinck, R.Struijs, G.Bourgois, H.Paillere, and P.L.Roe. Multidimen-

sional upwind methods for unstructured grids. In

, May 1992. AGARD Report 787.

[4] H.Deconinck, R.Struijs, G.Bourgois, and P.L.Roe. High resolution shock

capturing cell vertex advection schemes for unstructured grids. In

, number 1994-05 in VKI Lecture Series, 1994.

[5] H.Paillere, J-C.Carette, and H.Deconinck. Multidimensional upwind and

SUPG methods for the solution of the compressible ow equations on un-

structured grids. In , number 1994-05 in VKI

Lecture Series, 1994.

[6] M.A.Rudgyard. Multidimensional wave decompositions for the Euler equa-

tions. In , number 1993-04 in VKI Lecture

Series, 1993.

[7] M.J.Baines. On algorithms for best �ts to continuous functions with vari-

able nodes. Report 1/93, Department of Mathematics, University of Reading,

1993.

[8] P.L.Roe. Multidimensional upwinding: Motivation and concepts. In

, number 1994-05 in VKI Lecture Series, 1994.

[9] P.R.Eiseman. Grid generation for uid mechanics computations.

, 17:487{522, 1985.

[10] P.R.Eiseman and G.Erlebacher. Grid generation for the solution of partial

di�erential equations. Report 87-57, ICASE, 1987.

[11] P.Woodward and P.Colella. The numerical simulation of two-dimensional

uid ow with strong shocks. , 54(1):115{173, April 1984.

[12] R.H.Ni. A multiple grid scheme for solving the Euler equations.

, 20(11):1565{1571, 1982.

45

l

References

AIAA

Journal

Computational Fluid Dynamics

Unstructured Grid Methods

for Advection Dominated Flows

Compu-

tational Fluid Dynamics

Computational Fluid Dynamics

Computational Fluid Dynamics

Com-

putational Fluid Dynamics

Ann. Rev.

Fluid Mech.

J. Comp. Phys.

AIAA

Journal

2

