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1 IntroductionHigh order Total Variation Diminishing (TVD) schemes have been developedin one dimension into reliable tools for numerically predicting the solution ofhyperbolic systems of equations, including models of convection dominated ows.However, in higher dimensions it has proved di�cult to obtain the same degreeof robustness and accuracy with extensions of these one-dimensional techniques,particularly on unstructured grids. As a consequence, a great deal of researchhas been carried out into the generation of genuinely multidimensional high orderTVD schemes.One avenue has led to the development of multidimensional limiting strategiesfor modifying high order �nite volume schemes in such a way that the resultingmethod is monotonic, thus avoiding the creation of spurious oscillations in the nu-merical solution and so improving the robustness of the algorithm. Monotonicityis achieved by imposing limits on the solution gradients, obtained via reconstruc-tion of the solution within each cell, so that no new extrema are created by theapproximation.This report addresses a number of issues relating to the application of a speci�ctype of limiter to a simple second order accurate �nite volume scheme. Theunderlying numerical scheme, described in Section 2 for the solution of the scalaradvection equation, is a standard upwind cell-centre �nite volume method of theMUSCL type with linear reconstruction of the solution within each grid cell [9].A standard technique for limiting the gradient of the reconstruction to enforcemonotonicity [2] is then briey described, together with a new limiting procedurewhich is both faster and removes the dependence of the limited reconstruction ina grid cell on the geometry of its neighbouring cells. The description of the newlimiter introduces the notion of a monotonicity region for the gradients withinwhich all of the reconstructions must lie to attain monotonicity. The extension ofthese ideas to quadrilaterals (and general polygonal grids) is also discussed, andthe resulting schemes compared with a standard operator split scheme. Resultsare presented for each of the schemes described.Section 3 describes the extension of these methods to solve nonlinear systems2



of equations, speci�cally the shallow water equations and the Euler equations.The basic high order scheme is described, in which Roe's approximate Riemannsolver is applied at the grid edges to decompose the system into components forwhich the scalar scheme can be used. The limiting procedure is carried out onboth the conservative variables and the characteristic variables in turn and theresults compared.2 The Scalar Advection EquationIn conservation form the two-dimensional scalar advection equation is writtenut + fx + gy = 0 ; (2:1)where the conservative uxes f = f(u) and g = g(u) are functions of the solutionvariable u.A MUSCL type cell-centre �nite volume method for the numerical solution ofthe scalar advection equation is described as follows. Integrate (2.1) over a controlvolume, 
 say, (here taken to be a single grid cell) and apply the divergencetheorem to the resulting ux integral, giving the equationZ Z
 ut dxdy + I@
 ~f � d~n = 0 ; (2:2)where ~f = (f; g)T is the ux function and ~n represents an outward pointingnormal to the boundary @
 of the control volume.Approximation of the boundary integral in (2.2) leads to the �nite volumediscretisation @u@t = � 1V NeXk=1 ~f�k � ~nk ; (2:3)in which u is de�ned to be the average value of u over the control volume 
, Vis the area of the control volume, Ne is the number of its edges and ~nk is theoutward pointing normal to the kth edge scaled by its length. Note that since thecontrol volumes coincide with the grid cells, the numerical ux function ~f�k is anapproximation to the ux at a particular grid edge.Assuming that the approximation to u is piecewise constant within each celland generally discontinuous at the cell edges, as illustrated in Figure 2.1, a scheme3
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Figure 2.1: The limiting planes as de�ned for a triangular control volume (left)and a piecewise constant reconstruction of the solution (right).which is �rst order accurate in space is obtained. The scheme can be mademonotonic by introducing an upwind bias into the evaluation of the numericalux function. The word monotonic is slightly ambiguous when used in a two-dimensional context but will be used from now on to denote a scheme whichdoesn't create spurious extrema at the new time level. Taking as an example thekth edge of cell 0 in Figure 2.1, the upwinding is applied [5] by de�ning~f�(u0; uk) � ~nk = 8><>: u0 ~~� � ~nk if ~~� � ~nk � 0uk ~~� � ~nk otherwise ; (2:4)where uk is the value of u in the adjacent grid cell and ~~� is an appropriate averageof the advection velocity vector ~� = �@f@u ; @g@u� evaluated from the solution valuesu0 and uk. In the special case of constant advection,~~� = ~� = 0B@ ab 1CA (2:5)where a and b are constant throughout the domain. Note that an equivalentexpression to (2.4) is given by~f�(u0; uk) � ~nk = 12(~f0 + ~fk) � ~nk � 12 j~~� � ~nkj(uk � u0) (2:6)which is preferred in the generalisation to nonlinear systems of equations becauseof its symmetry. Furthermore, although only triangular grid cells are illustratedin Figure 2.1, Equations (2.4) and (2.6) are valid for any polygonal grid cells,such as quadrilaterals. 4



2.1 Gradient Operators and Higher Order SchemesHigher order spatial accuracy is achieved here by introducing a higher orderreconstruction of the variable u within each grid cell. For example, a piecewiselinear approximation to the solution, such as that shown in Figure 2.2, which isexact for linear initial data, leads to a second order method.Thus, given an initial constant (or average) solution value u within a cell wecarry out a linear reconstruction of u within that cell expressed asu = u+ ~r � ~L ; (2:7)where ~r is a position vector relative to the centroid of the cell and ~L is a gradientoperator, yet to be de�ned. It is easy to show that such a reconstruction isconservative in the sense that 1V Z Z
 u dxdy = u : (2:8)It can also be shown [2] that when (2.8) is satis�ed the resulting numerical scheme(2.3) can be guaranteed to be monotonic for an appropriate restriction on thetime-step as long as the reconstruction (2.7) within each cell does not lead to thecreation of any new extrema at the midpoints of the edges of that cell.u
Figure 2.2: A piecewise linear reconstruction of the solution for a triangularcontrol volume. 5



In the present case the numerical ux function of Equation (2.6) at a cell edge,such as one of those shown in Figure 2.2, is written in terms of the reconstructedsolution values from the two neighbouring cells at the midpoint of the edge, sothat ~f� is now written~f�(uL; uR) = ~f�(u0 + ~r0k � ~L0; uk + ~rk0 � ~Lk) ; (2:9)where ~rij is the vector from the centroid of cell i to the midpoint of the edgebetween cells i and j, and ~Li is the gradient of the reconstructed solution in cell i.In the notation used here uL is considered to be an interior reconstructed solutionvalue relative to the cell under consideration and uR is the corresponding exteriorvalue, taken from the adjacent cellwhich is generally di�erent. This motivates thesubsequent use of a Riemann solver to evaluate the edge uxes. It now remainsto de�ne an appropriate gradient ~L for the linear reconstruction of the solutionwithin each cell of the grid.A simple gradient operator which is exact for linear data can be de�ned onany grid by taking the (constant) solution value in three arbitrarily chosen, butpreferably adjacent, cells (i, j and k say, forming a triangle with anticlockwiseindexing of its vertices) and de�ning~r(4ijk) = 8>>>>>>>><>>>>>>>>: 0B@ �nxnu�nynu 1CA for nu � �0B@ 00 1CA otherwise ; (2:10)in which � � 10�10 and nx, ny and nu are the components of the vector n normalto the plane de�ned by the triangle ijk in xyu-space given byn = (P i � P k)� (P j � P k) ; (2:11)where P � = 0BBBBB@ x�y�u� 1CCCCCA : (2:12)The vector ~n has been constructed in such a way that nu always has the samesign as the area of 4ijk, so the second option in (2.10) has been introduced to6



deal with the possibility of 4ijk having a non-positive area. An example of sucha triangle is shaded in Figure 2.3. ij kFigure 2.3: A reconstruction triangle with negative area (shaded).Selecting ~L in (2.9) to be the ~r operator of (2.10) leads to a second order ac-curate method but doesn't prohibit overshoots and undershoots at the midpointsof the cell edges and therefore the scheme does not satisfy the monotonicity con-dition. In order to impose monotonicity the gradient operator ~L must be de�nedto be a `limited' form of ~r.2.1.1 Gradient LimitersPreviously constructed gradient limiters [2, 3] applied to the above scheme haverequireda) the construction of a gradient operator of the form (2.10) from which tochoose the (unlimited) reconstruction of the solution.b) the limiting of the chosen gradient operator to impose monotonicity.On a triangular grid the simplest approach, known as the Limited Central Dif-ference (LCD) scheme, considers only ~r(4123) (in the notation of Figure 2.1) instep a) above. The limiting stage involves the calculation of�k � 8>>>>><>>>>>: max(uk�u0 ;0)~r0k �~L if ~r0k � ~L > max(uk � u0; 0)min(uk�u0;0)~r0k �~L if ~r0k � ~L < min (uk � u0; 0)1 otherwise (2:13)for each edge k. The LCD limited gradient is then given by~L = �~r(4123) = � mink=1;2;3�k� ~r(4123) : (2:14)7



The Maximum Limited Gradient (MLG) scheme devised by Batten et al. [2]improves on the LCD scheme by using the ideas of Durlofsky et al. [3] to create afar more compressive limiter. The MLG scheme chooses its initial reconstructionfrom the four gradient operators~r(4123) ; ~r(4023) ; ~r(4103) ; ~r(4120) : (2:15)Each of these is limited using the procedure described by (2.13) and (2.14), leadingto the limited gradient planes~L0 = �0~r(4123) ; ~L1 = �1~r(4023) ;~L2 = �2~r(4103) ; ~L3 = �3~r(4120) : (2.16)The MLG limited gradient operator is then taken to be the ~Li of (2.16) withthe largest slope j~Lij. The main disadvantage of this limiter is the extra expenseinvolved in computing and limiting four gradient planes rather than just one,although it is signi�cantly more accurate than the LCD scheme.In one dimension the MLG limiter reduces to the well-known Superbee limiter[8]. Note though that this two-dimensional generalisation does not depend con-tinuously on the data. It is simple to construct a situation where the value of u0 isallowed to vary continuously (with u1, u2 and u3 remaining �xed) but the limitedgradient operator in (2.16) varies discontinuously as the operator on which it isbased switches between the planes de�ned in (2.15). This is most signi�cant closeto a steady state solution when the discontinuity may interfere with convergenceby causing limit cycling. The limiter of Durlofsky et al. [3] su�ers from the sameproblem.It is worth commenting that steps a) and b) of the limiting procedure, asdescribed at the start of this section, can easily be extended to arbitrary polyg-onal/polyhedral control volumes in two and three dimensions. This is useful ifgeneral polygonal or hybrid grids are to be used, or even for highly distortedquadrilateral grids on which the standard directionally split techniques give pooraccuracy.On quadrilaterals, for example, an MLG-type limiter may be constructed inessentially the same manner as for triangles, the main di�erence being in the8
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Figure 2.4: The limiting planes as de�ned for a quadrilateral control volume.
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selection of the gradient operators, cf. (2.14) and (2.15) in the �rst step of thelimiting. A grid cell now has four edge-neighbours and hence ten possible choicesfor the gradient operator (all shown in Figure 2.4). For the sake of computationalspeed not all of these operators would be considered. In particular, the twotriangles in Figure 2.4b) have no natural order to their vertices; this introducesan ambiguity into the de�nition of negative areas and so it is natural to excludethem from the algorithm. In general there are Cn3 possible choices of gradientplane for a shape with n edges/faces. The limiting procedure (2.16) can thenbe applied as before to the chosen operators. This technique readily carries overto general polygonal and polyhedral grids in two and three dimensions, even ifadaptive grid re�nement creates hanging nodes.2.1.2 A `Maximum Slope' LimiterConsider a triangular cell, as illustrated in Figure 2.1, and its three edge-neighbours.Each of the gradient operators of (2.15) de�nes a directionc~Li = ~r(4ijk)j~r(4ijk)j ; (2:17)in which the reconstructed gradient is to be maximised subject to the creation ofno new extrema at the midpoints of the cell edges. The gradient operator whichis ultimately chosen by the MLG scheme is the plane from (2.15) which allowsthe `steepest' limited slope. However, there is only a �nite number of gradientplanes to choose from, there is no reason why the algorithm should have pickedout the steepest monotonic reconstruction possible. Only this reconstruction willlead to the most compressive limiter.The monotonic linear reconstruction ~L with maximal gradient can be calcu-lated in a cell 0 from the following simple constrained optimisation problem:� Maximise j~Lj subject tomin(uk � u0; 0) � ~r0k � ~L � max(uk � u0; 0) (2:18)for k = 1; 2; 3, where ~r0k is the vector from the centroid of cell 0 to themidpoint of the edge between cells 0 and k.For clarity, this may be rewritten as 10



� Maximise f(x; y) = x2 + y2 subject tomin (uk � u0; 0) � (rx)0k x+ (ry)0k y � max(uk � u0; 0) (2:19)for k = 1; 2; 3. The desired gradient operator is then given by ~L = (x; y)T.
~r01~r02 ~r03 2

3
1Figure 2.5: An example of a monotonicity region (shaded) - the black dot indicatesthe position representing the steepest monotonic gradient plane.The solution of this optimisation problem is illustrated in Figure 2.5. Theshaded area indicates the region within which f(x; y) satis�es the criteria (2.19),from now on called the monotonicity region. Since the family of curves given byf(x; y) = constant de�nes a set of concentric circles then f(x; y) is maximisedat an intersection of the boundary edges of the monotonicity region. In the caseof the MLG limiter, four further constraints are added; f(x; y) is still maximisedbut now it must not only satisfy (2.19) but also the resulting gradient operator~L must be parallel to one of (2.15). There are in�nitely many ways in which thelimited gradient operator but no others will be discussed here.11



For an arbitrary triangular grid and solution data there are at most ten distinctintersections of the straight lines de�ned by the constraint inequalities (2.19),including ~L = ~0 (when x = y = 0) which is optimal only when u0 is a localextremum. Generally there is a maximum of 32n(n� 1) + 1 possible solutions foran n-sided polygon. Although more sophisticated techniques can be used, ~L isoptimised here by calculating each feasible solution and choosing the appropriateone. With a more complicated logical structure only one gradient operator needbe evaluated in each cell.Although the optimisation problem proves to be relatively expensive to solve,it need only be considered in cells where the initial reconstruction gives rise toovershoots and undershoots. Furthermore, the limiter does not have to be appliedexplicitly if the cell value u0 is detected to be a local extremum a priori since then~L = ~0. Hence the additional expense is only incurred in a small proportion of thegrid cells. In fact the implementation described below is signi�cantly cheaper inpractice than the MLG algorithm.It should also be noted that the new limiting procedure depends only on thevalues of the solution in the edge-neighbours of a cell and not on the position oftheir centroids, removing one aspect of grid dependence from the algorithm.The Grid-Independent (GI) limiter on a triangular grid can be summarisedas follows:� Calculate the gradient operator ~r(4123) as in the LCD scheme and checkwhether it creates any new local extrema at the edge midpoints.{ if it doesn't, set ~L = ~r(4123).{ otherwise calculate the monotonic gradient operator ~L with maximalgradient from (2.19).In fact all four gradient operators of the MLG limiter (2.15) could be checkedfor monotonicity, but the small increase in compression is not worth the extracomputational expense (even though it would then reduce to the Superbee limiterin one dimension).As it stands, the gradient operators calculated by the above algorithm donot depend continuously on the data. This can be corrected in the case when12



only a single gradient operator is considered by constructing a transition functionwhich imposes a continuous change between the unlimited gradient operator ~L0 =~r(4123) and the optimal gradient operator ~Lopt calculated from (2.19). Thisresulting gradient operator is taken to be~L = �0~L0 + 1�max(�0; 1� �)� (~Lopt � �0~L0) ; (2:20)where 0 � � < 1 (typically � = 0:01) and �0 is the limiting factor associated with~L0 as de�ned in (2.13). The important property of this operator is that~L = 8><>: ~L0 when �0 = 1~Lopt when �0 = 1� � : (2:21)In practice, this additional restriction appears to be unnecessary for time-dependentapplications.As with the MLG limiter, the GI limiter in its discontinuous form is easilygeneralised to other polygonal shapes of control volume. For example, it canbe seen that on a two-dimensional quadrilateral grid where the control volumescoincide with the grid cells the di�erences from the algorithm on triangles arein the initial choice of gradient operators (cf. Figure 2.4) and the inclusion of afourth monotonicity constraint in (2.18) and (2.19). Unfortunately, the searchfor the optimal direction is complicated considerably by the addition of this ex-tra equation. There are now 19 feasible solutions for the resulting optimisationproblem, each of which must be checked for its optimality. This is not straight-forward, particularly on regular grids since the region satisfying the inequalitiesoften reduces to a straight line which can be di�cult to detect. This problemcould not arise on a triangular grid.2.2 A Directionally Split LimiterOn structured quadrilateral grids it is easy to construct a directionally split lim-iter, e.g. in two dimensions a one-dimensional limiter is applied in two indepen-dent directions determined by the grid. The Directionally Split (DS) limitingprocedure described in [1] is used here to construct an operator splitting methodto compare with the multidimensional limiters described above.13



The DS limiter is similar in many ways to the slope limiters described above,and the multidimensional gradient operators can be modi�ed and limited so thatthe resulting scheme is equivalent on rectangular grids. The gradient operatorsare decoupled into components in the two grid directions and a separate value of� is calculated in the manner of (2.13) (taking into account only the constraintsin the relevant grid directions) for each of the components, so~L = 0B@ �xLx�yLy 1CA : (2:22)The MLG-type limiting procedure calculates a single value of � which satis�es� = min (�x; �y) (2:23)and is therefore far less compressive.The type of modi�cation given by (2.22) cannot be applied on grids wheresuccessive cell centroids do not lie in a straight line, but then the DS approachas described in [1] is not actually linearity preserving on such grids since the grid`directions' become meaningless.The GI approach is more exible since it only requires a short calculation tocheck whether new extrema have been created by the chosen gradient operators.If so then the optimal gradient operator is constructed from (2.19) which, onrectangular grids, is equivalent to the gradient operator derived from the splitapproach above (2.22). Although the GI scheme is linearity preserving on anymesh, the extra speed and in general higher compression of the DS scheme givesit a considerable advantage on structured grids.2.3 BoundariesThe limiting procedure is applied very simply at boundaries of the domain. Instep a) of the limiting procedure only those gradient operators which can beconstructed from centroids of control volumes within the domain are includedand the others are assumed to be zero. Also, only internal solution values areconsidered in the search for new extrema in the reconstruction. On a triangulargrid this means that only a single gradient operator is constructed (and limited)14



in each cell with just one boundary edge. The scheme therefore produces an exactreconstruction of linear data on triangles except in cells with multiple boundaryedges. When periodic boundary conditions are used no special treatment of theboundaries is needed.On structured quadrilateral grids at least one gradient operator can always beconstructed in each cell, so the scheme reconstructs linear data exactly throughoutthe domain.2.4 Time IntegrationSecond order temporal accuracy may be obtained using a Runge-Kutta time-stepping method such as that given byu0 = un0 � �tV NeXk=1 ~f �un0 + ~r0k � ~Ln0 ; unk + ~rk0 � ~Lnk� � ~nkun+10 = 12  un0 + u0 � �tV NeXk=1 ~f �u0 + ~r0k � ~L0; uk + ~rk0 � ~Lk� � ~nk!= un0 � �t2V (�u0 + �u0) : (2.24)However, the cost of the reconstructions and the local Riemann solutions is pro-hibitively expensive, so the following approximation to the above update scheme[10] is used instead:u0 = un0 � �t2V NeXk=1 ~f �un0 + ~r0k � ~Ln0� � ~nkun+10 = un0 � �tV NeXk=1 ~f �u0 + ~r0k � ~Ln0 ; uk + ~rk0 � ~Lnk� � ~nk : (2.25)It has been shown [2] that on triangular grids any limiter of the type describedin this report is monotonic for a restriction on the time-step within each cell givenby �t � V3maxk j~~� � ~nkj : (2:26)It can also be shown easily that the corresponding restriction necessary for mono-tonicity to be satis�ed on quadrilateral grids is�t � V4maxk j~~� � ~nkj : (2:27)15



In both of the above limits the maximum is taken over the adjacent cells.The global time-step restriction used with the DS limited scheme is de�nedto be �t � mini;j j~xijj2 �c+pu2 + v2�ij ; (2:28)where ~xij is the vector joining the centroid of cell i to the centroid of cell j, anedge-neighbour of cell i.2.5 ResultsNumerical experiments have been carried out to test the behaviour of all of theschemes described in this report. The �rst test presented here is the advection ofan initial pro�le given by the double sine wave functionu = sin(2�x) sin(2�y) ; (2:29)with velocity ~� = (1; 1)T over the domain [0; 1] � [0; 1]. This problem has beensolved on three types of grid each of which is illustrated in Figure 2.6. Periodicboundary conditions are applied.A B CFigure 2.6: The three grid types used for the numerical experiments.Error estimates in the L2 norm for the solution when t = 0:1 are shown inFigure 2.7. The errors in the L1 and L1 norms behave in a similar manner forall of the grids used. In all of the numerical experiments the ratio dt=dx = 0:04where dx is the length of any horizontal grid edge in Figure 2.6. The �rst orderscheme is unsurprisingly the least accurate. Of the second order schemes theMLG limiter gives easily the most accurate results on grid A and is the only oneof the schemes on triangles that approaches second order accuracy (roughly 1.88at the �nest grid level), better even than the dimensionally split quadrilateralscheme for which errors are also shown in the �gure. It should be noted that for16



a precise comparison in terms of computational e�ort (i.e. number of cells ratherthan grid size) the graph for the quadrilateral grid should be shifted 0.15 to theright. Even then the MLG scheme is better. On the coarsest grid the GI schemeis best but it rapidly deteriorates until it is only slightly more accurate than theLCD scheme.On grid B all of the linear reconstruction schemes on triangles give consider-ably worse results than on grid A, in particular the MLG scheme, which is nowthe worst on the �nest grids. It is now the GI scheme which is the most accu-rate, although the results are nowhere near the quality of those obtained on thequadrilateral grids.The advantage of using the GI scheme is clari�ed by considering a secondtest case. It involves the circular advection of the `cone', given by the initialconditions (when t = 0)u = 8><>: cos2(2�r) for r � 0:250 otherwise (2:30)where r2 = (x + 0:5)2 + y2, with velocity ~� = (�2�y; 2�x)T around the domain[�1; 1] � [�1; 1], the solution being continually set to zero at each of the inowboundaries. The initial pro�le should be advected in a circle without change ofshape until it returns to its original position when t = 1:0.Four solution pro�les obtained on a 64� 64 type B grid are shown in Figures2.8 and 2.9. Of the four, the GI scheme clearly retains the peak best, followedby the MLG, LCD and �rst order schemes in decreasing order of accuracy. Theerrors in the solutions are shown in Table 1, along with computing times, andthese clearly show the GI scheme to be the most accurate for this test case. Thetable also shows that the GI scheme, although slower than the LCD scheme, isabout 12% faster than the MLG method.3 Systems of EquationsThe extension of these cell centred �nite volume schemes to nonlinear systems ofequations is straightforward. The conservative equations take the general formU t + F x +Gy = 0 ; (3:1)17
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Figure 2.7: L2 errors for the double sine wave test case.18
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Figure 2.8: Solutions for the rotating cone test case.19
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Figure 2.9: Solutions for the rotating cone test case.20



Scheme L1 L2 L1 Peak value Time (s)First order 0.0152 0.0621 0.7161 0.284 94LCD 0.0094 0.0431 0.5358 0.479 120MLG 0.0055 0.0281 0.3855 0.617 154GI 0.0029 0.0152 0.2009 0.887 137Table 1: Error norms of solutions to the rotating cone problem at t = 1:0 on a64 � 64 type B grid.in which U is the vector of conserved variables and F , G are the conservativeux vectors. These are de�ned explicitly for the shallow water equations and theEuler equations in Appendices A and B respectively.Integrating the equations (3.1) over a control volume 
 (taken as before to bea grid cell) and applying the divergence theorem to the ux integral results inZ Z
 U t dxdy + I@
 (F; G) � d~n = 0 ; (3:2)where ~n again represents an outward pointing normal to the boundary. Approx-imating the boundary integral and de�ning U0 to be the average value of U overthe control volume 
 leads to the �nite volume discretisation@U0@t = � 1V NeXk=1 (F �; G�) � ~nk ; (3:3)where V is the area of the control volume, Ne is the number of edges of thecontrol volume and ~nk is the outward pointing normal to the kth edge scaled byits length.The scalar numerical ux function of (2.9) is given by the generalisation of(2.6) to systems of equations, namely(F �(UL; UR); G�(UL; UR)) � ~nk = 12 ((FL; GL) + (FR; GR)) � ~nk�12j( ~A; ~B) � ~nkj(UR � UL) ; (3.4)in which A = @F@U and B = @G@U are the ux Jacobians. The construction of ~A and~B, the conservative approximations to the Jacobian matrices, and subsequentlythe numerical ux at the midpoint of the cell edge follows the technique suggested21



by Roe [7]. The evolution of the discontinuous approximation to the solutionis modelled by constructing a series of approximate Riemann problems at theedge midpoints with left and right states UL and UR respectively (the internaland external states relative to the control volume). Each Riemann problem issolved by decomposing the ux di�erence across the edge into its characteristiccomponents, which results in a numerical ux function for edge k given by(F �(UL; UR); G�(UL; UR)) � ~nk = 12 ((FL; GL) + (FR; GR)) � ~nk�12PNwj=1 ~�j j~�jj~rj : (3.5)Here Nw is the number of components (or `waves') in the decomposition, thesymbol ~� represents the Roe average value at the discontinuity (which is con-structed so as to ensure that the linearised decomposition is conservative), �j isa wave `strength' and �j and rj, respectively the eigenvalues and eigenvectors ofthe matrix (A;B) �~nk, represent the speed of the wave and the transformation ofa perturbation of the characteristic variables into a perturbation of the conserva-tive variables. Details of the exact values of these averages for the shallow waterequations and the Euler equations are contained in Appendices A and B. Thesubstitution of (3.5) into (3.3) together with the application of an appropriatetime-stepping scheme gives the �nal algorithm.One question remains: to which set of independent variables should the lim-iting procedures of Section 2.1 be applied? This is important because the choicea�ects the values of UL, UR, FL and FR in (3.4) and (3.5). The simplest approachis to apply the limiting to the conservative variables in a �eld by �eld manner(taking appropriate measures to ensure that negative pressures are not createdby the reconstruction). It is also straightforward to limit the primitive variablesvia a simple transformation but, particularly since a characteristic decompositionis used in the calculation of the ux function (3.5), limiting the characteristicvariables W appears to be more appropriate.Unfortunately, unlike the primitive variables, the characteristic variables Ware related to the conservative variables in terms of di�erences, that is�W = d@W@U �U ; (3:6)22



so the limiting procedure must be recast in the same terms. Hence the limitingis carried out not on the values of the reconstructed solution at the midpoints ofthe cell edges, but on the di�erences between these values and the solution at thecell centroid.The procedure de�ned in Section 2.1 is modi�ed by rede�ning the vector P �in (2.12) to be P � = 0BBBBB@ x�y��w� 1CCCCCA ; (3:7)where �w� = w� � w0 and w is a component of the vector W of characteristicvariables. Each value of �w is calculated using the formula (3.6) in which theapproximate Jacobian d@W@U is evaluated at an appropriate average state, takenhere to be the local approximation 12(U0 + U�) at the relevant grid edge.The limiting is applied to each component of �W in turn and the correspond-ing values of �U are retrieved by inverting (3.6). Therefore, on the occasionswhen no limiting is applied within a cell, the original values of �U are obtained.It is unfortunate that advantage cannot be taken of the fact that the wavestrengths in (3.5) are in fact di�erences in the characteristic variables, i.e. �j =�Wj, but there appears to be no way of evaluating the Roe average states to givea conservative algorithm. Therefore, even though the limiting is applied to thecharacteristic variables, the conservative variables must be calculated before theapproximate Riemann problems are constructed and solved.3.1 Boundary ConditionsSimple characteristic boundary conditions are applied, in which the ux at aboundary edge is evaluated directly using information from within the boundarycell to supplement the imposed boundary values. The physical conditions appliedat a given edge correspond to the positive eigenvalues of the matrixC = A cos �+B sin �, where the conservative ux Jacobian matrices A and B are given in theappendices for the shallow water and Euler equations.At a freestream boundary four possibilities pertain: (a) supercritical inow,where all four eigenvalues are positive and the boundary ux is determined com-23



pletely by the imposed solution values, (b) supercritical outow, where no eigen-value is positive and the ux is calculated from internal solution values, (c) sub-critical inow, where one eigenvalue is negative whose corresponding Riemanninvariant is given its internal value and everything else is imposed, and �nally(d) subcritical outow, for which one eigenvalue is positive and the value of theassociated Riemann invariant is imposed. At a solid wall the normal velocitycomponent is set to zero while the rest of the information required to calculatethe ux is taken from the interior of the domain.This crude treatment of the boundaries has proved to be adequate for many ofthe cases considered, but in the future a ghost cell approach should be consideredto improve the modelling.3.2 ResultsThe �rst test case considered here is that of shallow water ow for a partial dambreak problem [4]. The computational domain consists of a 200m � 200m basinbisected by a dam. When t = 0:0s a break in the dam appears between 95m and170m from one end. Initially h = 10m on one side and h = 5m on the other,while the water has zero velocity everywhere. The 3688 cell grid on which thecalculations were carried out is shown in Figure 3.1. Each of the boundaries istreated as a solid wall except those on the left and right.Figures 3.2-3.3 show the surface elevation of the water at t = 7:2s for fourschemes. The �rst order scheme is clearly the most di�usive of those shown butthe other three give very similar results, particularly in the sharpness with whichthey capture the front of water moving downstream. Small di�erences appear inthe minimum value of the depth of the water which occurs just downstream ofthe dam close to the edges of the gap where the ow is highly rotational. This isindicated by the slight di�erences in the scales on the vertical axes of the graphs.It is the MLG scheme which gives the lowest minimum while the LCD and GIschemes give roughly similar results.Figure 3.4 shows the result obtained when the GI limiter is applied to thecharacteristic variables instead of the conservative variables. It is immediatelyobvious that the characteristic limiting is considerably more di�usive and there24



Figure 3.1: The grid for the partial dam break test case.seems little reason to apply it.A second dam break test case has been compared with experimental results[]. This time a reservoir of water 0:2m deep is released into an L-shaped channelwith initial depth of 0:01m. The velocity of the ow is zero everywhere whent = 0:0s. Bed friction e�ects are also modelled in this test case. A Manningroughness coe�cient of 0.0095 was used and the appropriate source terms weretreated in a simple node-by-node manner as described in [6]. The ow depth issampled at the six points shown in Figure 3.5 at regular intervals until t = 41:0s.The �gure also shows the geometry of the test case and the 2240 cell grid onwhich the solution has been approximated. Each boundary is treated as a solidwall except the one in the top right hand corner at which a supercritical outowcondition is applied. It should be noted that it was not possible to attain theexact initial conditions in the experiment, so the initial data for points P5 andP6 di�ers slightly from those of the numerical results.The experimental results are pictures together with results obtained from the�rst order and LCD schemes. The boundary conditions proved to be inadequatefor the more compressive limiters and the calculations blew up when the initial25



First order scheme

LCD scheme

Figure 3.2: Solutions for the partial dam break test case.26



MLG scheme

GI scheme

Figure 3.3: Solutions for the partial dam break test case.27



Characteristic GI scheme

Figure 3.4: Solutions for the partial dam break test case when limiting is appliedto the characteristic variables.
P1 P2 P3 P4 P5P6Figure 3.5: The grid and geometry for the dam break with L-shaped channel testcase. 28



wave front reached the corner. The agreement with experimental data is good forboth schemes at P1. At P2 the reected wave front is captured more sharply andmore accurately by the LCD scheme although neither agrees closely with experi-ment when the wave front �rst passes the point. The two numerical solutions areagain in good agreement at P3 and P4, with the second order scheme capturingthe fronts slightly more sharply. At P5 the LCD scheme gives a considerablybetter approximation to the experimental data while at P6 neither scheme givesparticularly good agreement.These schemes have also been applied to the Euler equations. One standardtest case which has been used is that of Mach 3 ow over a forward facing stepin a tunnel [11]. The tunnel is 3 units long and 1 unit wide and a step of height0.2 is located 0.6 units into the tunnel. Initially the ow has density 1.4, pressure1.0 and velocity 3.0 from left to right in Figure 3.7, which also shows the 2286cell grid on which the problem was approximated. Both freestream boundarieshave supercritical boundary conditions applied at them. The numerical solutionobtained from the LCD scheme when t = 4:0 is shown in Figure 3.8. It compareswell with each of the other second order schemes illustrated in [11] on grids withsimilar numbers of cells, although the Mach stem on the step indicates that themodelling at the top corner of the step is more di�usive than desired. As in theprevious test case the boundary conditions were not su�ciently robust to achievesolutions for the MLG or GI schemes.4 ConclusionsIn this report the construction of second order accurate monotonic cell centre�nite volume schemes on triangular grids has been discussed. The methods arebased on MUSCL-type schemes [10] in two dimensions in which a linear recon-struction of the solution is created within each cell from local data, the gradientof which is limited to impose monotonicity on the approximation. The methodshave been tested on the scalar advection equation and then extended to nonlinearsystems of equations via Roe's approximate Riemann solver. The extension ofthese schemes to general polygonal grids and three dimensions is also discussed29
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Figure 3.6: Comparison of experimental and numerical data for the dam breakwith L-shaped channel test case. 30



Figure 3.7: The grid for the forward facing step test case.

Figure 3.8: Density contours for the forward facing step test case.31



briey.It has been shown that the family of monotonicity enforcing limiters can becompletely de�ned by constraints applied at the midpoints of the edges of thecells. These constraints de�ne a region within which every valid limiter lies.Furthermore, it follows that a limiter can be constructed which gives the maxi-mum possible slope for the reconstruction. It has the property of removing thedependence of the reconstruction on the geometry of the surrounding grid cellsbut, although it is considerably cheaper than the most accurate of the previouslyconstructed limiters and preserves peaks far better, the general quality of thesolutions is worse. However, given the monotonicity region it should be possibleto construct a more accurate limiter.AcknowledgementsThe author would like to thank Prof. M. J. Baines for his contributions to thiswork and the EPSRC for providing the funding for the author.References[1] F.Alcrudo and P.Garcia-Navarro, `A high resolution Godunov-type scheme in�nite volumes for the 2d shallow water equations', Int. J. for Num. Methodsin Fluids, 16:489{505, 1993.[2] P.Batten, C.Lambert and D.M.Causon, `Positively conservative high-resolution convection schemes for unstructured elements', Int. J. for Num.Methods in Eng., 39:1821{1838, 1996.[3] L.J.Durlofsky, B.Engquist and S.Osher, `Triangle based adaptive stencils forthe solution of hyperbolic conservation laws', J. Comput. Phys., 98:64{73,1992.[4] R.J.Fennema and M.H.Chaudry, `Explicit methods for 2-D transient free-surface ows', J. Hydraul. Eng. ASCE, 116:1013{1034, 1990.32
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where c = pgh is the gravity wave speed.In Roe's approximate Riemann solver the eigenvalues and eigenvectors of thematrix(A; B) � ~n = 0BBBBB@ 0 nx ny(c2 � u2)nx � uvny 2unx � vny uny�uvnx + (c2 � v2)ny vnx unx + 2vny 1CCCCCA (A:3)are �1 = ~unx + ~vny + ~c ; �2 = ~unx + ~vny ; �3 = ~unx + ~vny � ~c ; (A:4)and r1 = 0BBBBB@ 1~u+ ~cnx~v + ~cny 1CCCCCA ; r2 = 0BBBBB@ 0�~cny~cnx 1CCCCCA ; r3 = 0BBBBB@ 1~u� ~cnx~v � ~cny 1CCCCCA ; (A:5)respectively, and the corresponding wave strengths in (3.5) are given by~�1 = �h2 + 12~c (�(hu)nx +�(hv)ny � (~unx + ~vny)�h)~�2 = 1~c ((�(hv)� ~v�h)nx � (�(hu)� ~u�h)ny)~�3 = �h2 � 12~c (�(hu)nx +�(hv)ny � (~unx + ~vny)�h) ; (A.6)in which the Roe average states are~u = uRphR + uLphLphR +phL ; ~v = vRphR + vLphLphR +phL ; ~c = sg(hR + hL)2 ;(A:7)and the di�erence operator is given by�� = (�)R � (�)L : (A:8)In two dimensions the subscripts �L and �R represent the interior and exterioredge midpoint values relative to the cell under consideration.34



B The Euler EquationsThe Euler equations depend on the conservative variables and uxes given byU = 0BBBBBBBB@ ��u�ve 1CCCCCCCCA ; F = 0BBBBBBBB@ �up + �u2�uvu(e+ p) 1CCCCCCCCA ; G = 0BBBBBBBB@ �v�uvp + �v2v(e+ p) 1CCCCCCCCA ; (B:1)where � is the density of the ow, u and v are the x- and y-velocities, p is pressureand e is the total energy, related to the other variables by an equation of statewhich, for a perfect gas, ise = p � 1 + 12�(u2 + v2) ; (B:2)and result in the following ux Jacobians:A = @F@U = 0BBBBBBBB@ 0 1 0 0�12 (u2 + v2)� u2 (3� )u (1� )v  � 1�uv v u 0�12 u(u2 + v2)� uH u2(1 � ) +H (1 � )uv u 1CCCCCCCCA(B:3)andB = @G@U = 0BBBBBBBB@ 0 0 1 0�uv v u 0�12 (u2 + v2)� v2 (1 � )u (3 � )v  � 1�12 v(u2 + v2)� vH (1 � )uv v2(1 � ) +H v 1CCCCCCCCA ;(B:4)where H = e� � �12 (u2 + v2) is the total enthalpy.In Roe's approximate Riemann solver the eigenvalues and eigenvectors of thematrix (A; B) � ~n = Anx +Bny (B:5)are �1 = ~unx + ~vny + ~c ; �2 = ~unx + ~vny ;�3 = ~unx + ~vny ; �4 = ~unx + ~vny � ~c ; (B.6)35



and r1 = ~�2~c 0BBBBBBBB@ 1~u+ ~cnx~v + ~cny~H + ~c(~unx + ~vny) 1CCCCCCCCA ; r2 = ~�0BBBBBBBB@ 0�nynx�~uny + ~vnx 1CCCCCCCCA ;r3 = 0BBBBBBBB@ 1~u~v12(~u2 + ~v2) 1CCCCCCCCA ; r4 = ~�2~c 0BBBBBBBB@ 1~u� ~cnx~v � ~cny~H � ~c(~unx + ~vny) 1CCCCCCCCA ; (B.7)respectively, and the corresponding wave strengths in (3.5) are given by �j = �Wjfor j = 1; 2; 3; 4; where �W = L�U (B:8)andL = 0BBBBBBBB@ � ~unx+~vny~� + (�1)(~u2+~v2)2~�~c nx~� � (�1)~u~�~c ny~� � (�1)~v~�~c (�1)~�~c~uny�~vnx~� �ny~� nx~� 01 � (�1)(~u2+~v2)2~c2 (�1)~u~c2 (�1)~v~c2 � (�1)~c2~unx+~vny~� + (�1)(~u2+~v2)2~�~c �nx~� � (�1)~u~�~c �ny~� � (�1)~v~�~c (�1)~�~c 1CCCCCCCCA :(B:9)The Roe averages ~u, ~v, ~c and ~H are evaluated consistently from the average valuesof the parameter vector variables given by~Z = 12(ZL + ZR) ; (B:10)where Z = p�0BBBBBBBB@ 1uvH 1CCCCCCCCA : (B:11)
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