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AbstractA framework is presented for the construction of multidimensional slopelimiting operators for two-dimensional MUSCL-type �nite volume schemeson triangular grids. A major component of this new viewpoint is the de�-nition of multidimensional `maximum principle regions'. These are de�nedby local constraints on the linear reconstruction of the solution which guar-antee that an appropriate maximum principle is satis�ed. This facilitatesboth the construction of new schemes and the improvement of existing lim-iters. It is the latter which constitutes the bulk of this paper. Numericalresults are presented for the scalar advection equation and for a nonlinearsystem, the shallow water equations. The extension to systems is carriedout using Roe's approximate Riemann solver. All the techniques presentedare readily generalised to three dimensions.
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1 IntroductionIn one dimension, upwind �nite volume schemes have developed into reliabletools for producing accurate numerical approximations of hyperbolic systems ofpartial di�erential equations. In higher dimensions it has proved di�cult to at-tain the same degree of robustness and accuracy with simple extensions of theseone-dimensional techniques, particularly on unstructured grids. This is in partbecause the additional multidimensional nature is not exploited su�ciently. Asa consequence, a great deal of research has been carried out into the generationof genuinely multidimensional, high order schemes which retain the properties ofthose methods which have had such success in one dimension.High resolution schemes for conservation laws in one dimension are usuallyconstructed using some form of TVD (Total Variation Diminishing) limiter (cf.[16, 11]) so that high order accuracy can be achieved whilst avoiding unphysicaloscillations in the solution. One commonly used approach is the slope limiting(MUSCL) technique of van Leer [17], in which the limiter is applied in a geomet-ric manner, to the gradients of a piecewise linear reconstruction of the solution,to create a monotone scheme. In more than one dimension the generalisationof the TVD condition proves to be prohibitively restrictive on Cartesian meshesbecause the resulting scheme can be no more than �rst order accurate [6], anddi�cult to de�ne on arbitrary unstructured meshes. Consequently, Spekreijse[15] proposed a new class of monotone scheme, based on positivity of coe�cients,a property which is simple to de�ne in any number of dimensions. Much sub-sequent research has been directed towards multidimensional numerical schemeswhich satisfy properties of this type, usually based on ensuring that some form4



of local maximum principle is satis�ed. More recently, there has been a greatdeal of work on limiting reconstructed solutions on unstructured grids, see forexample the work of Perthame and Qiu [13] in which interpolated solution valuesare limited solely to avoid unphysical negative solution values (e.g. of densityand pressure in the Euler equations), or the Local ExtremumDiminishing (LED)schemes of Jameson [10]. More closely related still to the work presented hereare the slope limiting procedures for multidimensional cell-centre �nite volumeschemes for unstructured triangular meshes proposed by Barth and Jespersen [3],Durlofsky et al. [4], Liu [12] and Batten et al. [2]. Each of these schemes involvesthe construction of an appropriate linear representation of the solution withina triangular cell which is then limited in a manner which enforces a positivityconstraint on the scheme. This paper proposes a way in which these limiting tech-niques can be improved by taking more account of the multidimensional natureof the problem.The general two-dimensional MUSCL-type numerical scheme for the solu-tion of the scalar advection equation is described in Section 2. Some existingtechniques for reconstructing and limiting the local solution gradients are thendiscussed briey, followed by a simple technique for improving the accuracy ofmany of these limiting procedures. This involves the construction of a `maximumprinciple region' for each cell, within which a gradient operator must lie in orderto satisfy the desired maximum principle. The framework described also allowsthe construction of new schemes, but discussion of these is kept to a minimumsince a scheme using these ideas has yet to be devised which consistently improveson the existing methods (some preliminary results for a maximally compressive5



limiter are presented in [8]). This is an area which warrants further research. Acritical comparison is then made between the results obtained from the schemesdescribed.Section 3 extends the applications of these methods to a nonlinear system ofequations, speci�cally the shallow water equations. The basic high order scheme isdescribed, in which Roe's approximate Riemann solver is employed at grid edges,locally decomposing the system into components to which the scalar scheme isapplied.2 The Scalar Advection EquationIn conservation form the two-dimensional scalar advection equation is writtenut + fx + gy = 0 ; (2:1)where the conservative uxes f = f(u) and g = g(u) are functions of the solutionvariable u.A MUSCL-type cell-centre �nite volume method for the numerical solution ofthe scalar advection equation is described as follows. Integrate (2.1) over a controlvolume, 
 say, (taken here to be a single grid cell) and apply the divergencetheorem to the resulting ux integral, giving the equationZ Z
 ut dxdy + I@
 ~f � d~n = 0 ; (2:2)where ~f = (f; g)T is the ux function and ~n represents an outward pointingnormal to the boundary @
 of the control volume.Approximation of the boundary integral in (2.2) leads to the �nite volume6



discretisation du0dt = � 1V
 NeXk=1 ~f�k � ~nk ; (2:3)in which u0 is de�ned to be the average value of u over the control volume 
, ~f�k isa numerical ux function, V
 is the area of the control volume, Ne is the numberof edges it has and ~nk is the outward pointing normal to the kth edge, scaled byits length. Note that since the control volumes coincide with the grid cells, thenumerical ux function ~f�k is an approximation to the ux at a particular gridedge.
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Figure 2.1: The limiting planes as de�ned for a triangular control volume (left)and a piecewise constant reconstruction of the solution (right).Assuming that the approximation to u is constant within each cell and discon-tinuous at the cell edges in general, as illustrated in Figure 2.1, a scheme which is�rst order accurate in space and satis�es an appropriate local maximumprincipleis obtained by introducing an upwind bias into the evaluation of the numericalux function. Taking as an example the kth edge of cell 0 in Figure 2.1, the7



upwinding is applied [7] by de�ning~f�(u0; uk) � ~nk = 8>>><>>>: u0 ~~� � ~nk if ~~� � ~nk � 0uk ~~� � ~nk otherwise ; (2:4)where uk is the value of u in the adjacent grid cell and ~~� is an appropriate localaverage of the advection velocity ~� = �@f@u ; @g@u�T, evaluated from the solutionvalues u0 and uk. Note that an equivalent expression to (2.4) is given by~f�(u0; uk) � ~nk = 12(~f0 + ~fk) � ~nk � 12 j~~� � ~nkj(uk � u0) ; (2:5)which is generally preferred because of its symmetry. Although only triangulargrid cells are illustrated in Figure 2.1, the numerical uxes (2.4) and (2.5) can beused on general polygonal cells, such as quadrilaterals.2.1 Gradient Operators and Higher Order SchemesHigher order spatial accuracy is achieved by introducing a higher order recon-struction of the variable u within each grid cell. For example, a piecewise linearapproximation to the solution, such as that shown in Figure 2.2, which is exactfor linear initial data, leads to a method which is second order accurate in space.Thus, given an initial constant (or average) solution value u within a cell wecarry out a linear reconstruction of u within that cell. This is expressed asu = u+ ~r � ~L ; (2:6)where ~r is a position vector relative to the centroid of the cell and ~L is a gradientoperator, yet to be de�ned. It is easy to show that such a reconstruction isconservative in the sense that 1V
 Z Z
 u dxdy = u : (2:7)8



It can also be shown [2] that when (2.7) holds the resulting numerical scheme(2.3) will satisfy a local maximum principle for an appropriate restriction on thetime-step as long as the reconstruction (2.6) within each cell does not lead to thecreation of any new extrema at the midpoints of the edges of that cell. This isless restrictive than the often used constraint [3] that no new extrema be createdat the cell vertices.u u0kuk0 cell k
Figure 2.2: A piecewise linear reconstruction of the solution for triangular controlvolumes.The numerical ux function of Equation (2.5) at a cell edge is now written interms of the reconstructed solution values in the cells on either side of the edgeand evaluated at the midpoint, as depicted in Figure 2.2. Thus, ~f�, as substitutedinto (2.3) is written~f�k = ~f�(u0k; uk0) = ~f�(u0 + ~r0k � ~L0; uk + ~rk0 � ~Lk) ; (2:8)where ~rij is the vector from the centroid of cell i to the midpoint of the edgebetween cells i and j, and ~Li is the gradient of the reconstructed solution in9



cell i. In the notation used here u0k is considered to be an interior reconstructedsolution value relative to the cell under consideration and uk0 is the correspondingexterior value, taken from the adjacent cell (see Figure 2.2). As in the MUSCLapproach, the discontinuity in the reconstruction at the cell edge motivates theuse of a Riemann solver to evaluate the uxes here. It remains to de�ne anappropriate gradient operator ~L with which to create the linear reconstruction ofthe solution within each grid cell.A simple gradient operator, which is exact for linear data, can be de�ned onany grid by taking the (average) solution value in three arbitrarily chosen, butpreferably adjacent, cells (i, j and k say, forming a triangle with anticlockwiseindexing of its vertices) and de�ning~r(4ijk) = 8>>>>>>>>>>>>><>>>>>>>>>>>>>: 0BBB@ �nxnu�nynu 1CCCA for nu � �0BBB@ 00 1CCCA otherwise : (2:9)Here � � 10�10 is a speci�ed tolerance, and nx, ny and nu are the componentsof the vector n normal to the plane, de�ned by the triangle ijk in xyu-space, cf.Figure 2.1, and given by n = (P i � P k)� (P j � P k) ; (2:10)where P � = 0BBBBBBBB@ x�y�u� 1CCCCCCCCA : (2:11)10



The vector ~n has been constructed in such a way that nu always has the samesign as the area of 4ijk. The second option in (2.9) deals with the possibilityof 4ijk having a non-positive area and rejects any such triangle as a basis forreconstruction. Figure 2.3 illustrates that this can happen even on relatively uni-form grids. Note also that any consistent local approximation to ~ru may be usedin place of (2.9), e.g. the Green-Gauss and Linear Least-Squares approximationsused in [3]. ij kFigure 2.3: A reconstruction triangle with negative area (shaded).Selecting ~L in (2.8) to be the ~r operator of (2.9) leads to a second order accu-rate method (a linear solution is modelled exactly) but doesn't prohibit overshootsand undershoots at the midpoints of the cell edges, so the scheme does not satisfya local maximum principle. In order to impose this the gradient operator ~L mustbe de�ned as a `limited' form of ~r.2.1.1 Limited Gradient OperatorsThe imposition of a local maximum principle, as used in the work of [12, 4, 2],can be achieved by constraining the gradient operator to lie within a `MaximumPrinciple (MP) region'. The MP region for a given triangle can be representedsimply by choosing the cell centroid as the origin and then constructing the region11



around it de�ned by the inequalitiesmin(uk � u0; 0) � ~r0k � ~L � max(uk � u0; 0) (2:12)for k = 1; 2; 3 (on triangles), where ~r0k is the vector from the centroid of cell0 to the midpoint of the edge between cells 0 and k. An example of such aregion is depicted in Figure 2.4. The gradient operator ~L = (x; y)T is most easilyconsidered as a vector in two-dimensional space; then each pair of inequalitiesin (2.12) can be depicted by two parallel lines (one solid and one dashed in the�gure) perpendicular to the relevant vector ~r0k. Figure 2.4 illustrates a case whereu1; u2 > u0 and u3 < u0. If uk � u0 has the same sign for each k then the MPregion contains only the centroid of the triangle, as would be expected since thisindicates a local extremum. Hence, any limiting procedure of the type consideredin (2.12) reduces the scheme locally to �rst order in these cases.However, the constraints given by (2.12) ensure that the reconstruction hasthe following two properties:� no new solution extrema are created at the midpoints of the cell edges,enforcing the maximum principle.� u0k � u0 has the same sign as uk � u0.Note that this di�ers from the work of Barth and Jesperson [3] who, in addition,propose that� uk0 � u0k has the same sign as uk � u0.This, in combination with the other two properties, generalises the one-dimensionalTVD constraint on the reconstruction, but it is not necessary for positivity and,12



as in [4, 12, 2], is not enforced in this work. It is not clear how a MP regioncould be constructed which would ensure the third property, but a simple post-processing step, in which the reconstructed solution within the o�ending cells islimited a second time (so that ~L! ��~L), would be enough to attain it.
~r01~r02 ~r03 *Figure 2.4: A Maximum Principle region (shaded).Existing limited schemes based on (2.9) can be expressed quite simply, in twostages, asa) Construct one or more of the gradient operators~r(4123) ; ~r(4023) ; ~r(4103) ; ~r(4120) ; (2:13)(in the notation of (2.9) and Figure 2.1).b) Limit a gradient operator chosen from (2.13).Importantly, the �rst of these two steps ensures that the reconstruction of alinear solution is exact (for higher order accuracy), whichever of the four gradient13



operators is chosen, and the limiting procedure will not interfere with this. Asmentioned earlier, the list given in (2.13) can be augmented by the Green-Gauss(~rGG) and the Linear Least-Squares (~rLLS) gradient reconstructions suggestedin [3], both of which can be treated in the same manner in the second stage.In e�ect, step a) de�nes a �nite set of possible directions for the reconstructedgradient, and step b) chooses one of these directions and bounds the magnitudeof the slope.The Limited Central Di�erence (LCD) scheme is the simplest and cheapestapproach of the type described above. It considers only the operator ~r(4123)in step a), and then limits this by setting�k = 8>>>>>>>><>>>>>>>>: max(uk�u0;0)~r0k �~L if ~r0k � ~L > max(uk � u0; 0)min(uk�u0;0)~r0k �~L if ~r0k � ~L < min(uk � u0; 0)1 otherwise (2:14)for each edge k, from which the LCD gradient operator is calculated using~LLCD = � ~r(4123) = � mink=1;2;3�k� ~r(4123) : (2:15)The action of this limiter is illustrated in Figure 2.5. The initial operator ~r(4123)might place the tip of the vector ~L = (x; y)T at any one of the four points indicatedby asterisks in the �gure. Point A is inside the shaded region and so is una�ectedby the limiting, while points B, C and D all lie beyond the region, and thelimiting moves them in a straight line back towards the centroid until they reachthe boundary of the MP region: for points C and D this means a return to thecentroid and a �rst order reconstruction.Figure 2.5 also depicts an alternative limiting procedure, aimed at improvingthe accuracy. Instead of retaining the direction of the original gradient operator,14



* ** *AB CD
Figure 2.5: The alternative limiting procedures.the limited gradient is de�ned by the point in the MP region closest to the tipof the vector ~L. The dashed arrows indicate the consequent movement of thepoints B, C and D. Points such as C and D are most simply dealt with by aprojection step (on to the lines passing through the centroid perpendicular to~r02 and ~r01 respectively) to obtain the gradient direction, followed by a limitingstep which moves the point on to the boundary of the region if it still remainsoutside. In practice, however, the expense of changing the limiting procedure forpoint B outweighs the resulting improvement in accuracy so the simpler strategyis applied in such cases.The limiter of Durlofsky et al. [4] considers the last three gradient operatorsof (2.13) together with ~L = ~0, discards those which lie outside the MP region andthen chooses ~LDurl to be the remaining operator with greatest magnitude.The Maximum Limited Gradient (MLG) scheme of Batten et al. [2] combinesthe two methodologies described above. It takes all four of the operators of15



(2.13), limits each one in turn in the manner of the LCD scheme (2.14, 2.15) andthen takes ~LMLG to be the remaining operator with largest slope j~Lj. Figure 2.5can again be used as an illustration. If the asterisks represent the four gradientoperators in (2.13) then each one is limited individually in precisely the mannerof the LCD scheme, moving the gradients into the allowed range, and the pointfurthest away from the cell centroid is chosen - in this case the limited positionof point B. As with the LCD scheme the alternative technique of projecting thegradient operators on to the boundary of the MP region can be used to improvethe accuracy, although the resulting scheme can be prohibitively expensive.The MLG scheme gives the most compressive of the limiters described so far,and the only one which reduces to the Superbee limiter [16] in one dimension, butit is also the most expensive since it requires the computation of four gradientplanes. An even more accurate scheme (but yet more expensive) can be devisedby including the Green-Gauss and Limited Least-Squares operators [3] in (2.13)and applying the MLG procedure to these as well. For practical purposes though,it is desirable to construct as few gradient operators as possible.It should be noted that the neither the MLG, the Durlofsky nor the LCDscheme depends continuously on the solution data, since the limited gradientoperator changes discontinuously as the operator on which it is based movesout of the sector enclosing the MP region (see Figure 2.5). Whilst this is oflittle consequence for genuinely time-dependent problems, it may interfere withconvergence to a steady state by causing limit cycling. The inclusion of the`projection' step in the limiting procedure makes the LCD scheme continuousas well as improving its accuracy. It is also worth commenting that the general16



limiting procedure, as described by steps a) and b) earlier in this section, caneasily be extended to arbitrary polygonal/polyhedral control volumes in two andthree dimensions [8]. However, on structured quadrilateral grids this method isconsiderably more di�usive than using a standard, dimensionally split scheme,see for example [1], which is linearity preserving on the uniform grids used here(although it might not be on distorted grids).A �nal point to make in this section is that the construction of the MP regionfacilitates the creation of a range of new limited gradient operators satisfyingthe given maximum principle, even though they can generally only be imposedin a rather arti�cial manner. For example, the steepest gradient operator whichsatis�es the maximum principle is de�ned by the point in the MP region farthestaway from the centroid of the triangle (which is always a `corner' of the region, asindicated by an asterisk for the case shown in Figure 2.4), and this can be takento be the limited gradient, but only when a necessity for limiting is indicated.Further details and preliminary results can be found in [8] and provides a subjectfor further research.A scheme of this form, as applied on a triangular grid, can be summarised asfollows:� Calculate the gradient operator ~r(4123) as in the LCD scheme and checkwhether it creates any new local extrema at the edge midpoints.{ if not, select ~L = ~r(4123).{ otherwise calculate the new gradient operator ~L, e.g. the one withmaximal slope which still satis�es the local maximum principle.17



Finding a gradient operator of this type is relatively expensive, so it should onlybe calculated in cells where the initial reconstruction gives rise to overshoots orundershoots. This process is signi�cantly cheaper than �nding the three othergradient operators of the MLG limiter. In fact the local maximumprinciple couldbe checked for all four gradient operators of the MLG limiter (2.13), but the extracompression which results does not justify the computational expense.2.2 BoundariesThe limiting procedure is applied very simply at boundaries of the domain. Instep a) of the limiting procedure only those gradient operators which can beconstructed from centroids of control volumes within the domain are includedand the others are assumed to be zero. Also, only internal solution values areconsidered in the search for new extrema in the reconstruction. On a triangulargrid this means that only a single gradient operator is constructed (and limited)in each cell with just one boundary edge. (For the LCD scheme this replaces theusual gradient operator.) The scheme therefore produces an exact reconstructionof linear data on triangles except in cells with multiple boundary edges. The uxesthrough the inow boundary edges are overwritten by their exact values. Whenperiodic boundary conditions are used no special treatment of the boundaries isneeded.
18



2.3 Time IntegrationSecond order temporal accuracy may be obtained using a Runge-Kutta time-stepping method such asu0 = un0 � �tV NeXk=1 ~f �un0 + ~r0k � ~Ln0 ; unk + ~rk0 � ~Lnk� � ~nkun+10 = 12  un0 + u0 � �tV NeXk=1 ~f �u0 + ~r0k � ~L0; uk + ~rk0 � ~Lk� � ~nk!= un0 � �t2V (�u0 + �u0) : (2.16)However, the cost of the reconstructions and the local Riemann solutions is pro-hibitively expensive, so the following approximation to the above explicit updatescheme [18] is used instead:u0 = un0 � �t2V NeXk=1 ~f �un0 + ~r0k � ~Ln0� � ~nkun+10 = un0 � �tV NeXk=1 ~f �u0 + ~r0k � ~Ln0 ; uk + ~rk0 � ~Lnk� � ~nk : (2.17)It has been shown [2] that on triangular grids any limiter of the type describedin this paper satis�es the maximum principle for a restriction on the time-stepwithin each cell given by �t � V3maxk j~~� � ~nkj : (2:18)The maximum is taken over the adjacent cells indexed here by k. Note thata slight drawback with the simpli�ed scheme (2.17) is that it may allow smallovershoots and undershoots to appear in the solution. However, these do notinterfere noticeably with the overall robustness of the algorithm.19



2.4 ResultsNumerical experiments have been carried out to test the behaviour of the schemesdescribed in this paper. The �rst test presented here is the advection of an initialpro�le given by the double sine wave functionu = sin(2�x) sin(2�y) ; (2:19)with velocity ~� = (1; 2)T over the domain [0; 1] � [0; 1]. This problem has beensolved on three types of grid, each of which is illustrated in Figure 2.6. Periodicboundary conditions are applied. Note that the advection velocity has beenchosen so that it is not aligned with mesh edges, to provide a more strenuous testthan was used to produce the accuracy study of schemes of this type presentedin [2], and hence there is some loss of accuracy in comparison.A B QFigure 2.6: The three grid types used for the numerical experiments.Errors in the L1 and L1 norms for the solutions obtained when t = 1:0are shown in Figures 2.7 and 2.8. In all of the numerical experiments the ratio�t=�x = 0:16, where �x is the length of any horizontal grid edge in Figure 2.6,giving a CFL of about 0:358.The �rst order scheme is unsurprisingly the least accurate in each case, whilethe unlimited scheme is easily the best: it is the oscillations it allows in solutionswith rapidly varying gradients which cause problems when applied to nonlinear20
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Figure 2.7: Errors for the double sine wave test case on grid A.

-2.2 -2.0 -1.8 -1.6 -1.4 -1.2
LOG(dx)

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

LO
G

(e
rr

or
)

First order

LCD

Projected LCD

MLG

Unlimited

Quadrilaterals

-2.2 -2.0 -1.8 -1.6 -1.4 -1.2
LOG(dx)

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

LO
G

(e
rr

or
)

First order

LCD

Projected LCD

MLG

Unlimited

Quadrilaterals

L1 Error L1 Error
Figure 2.8: Errors for the double sine wave test case on grid B.21



systems since they can lead to unphysical situations. On grid B each of thehigher order schemes produces very similar results, none of which can competewith the accuracy attained on a uniform quadrilateral grid of type Q (using adimensionally split upwind scheme with the Superbee limiter [16]), particularlywhen taking into account the fact that this grid contains only half the number ofcells of the others. It can be seen from Table I that none of the limited schemesachieves even �rst order accuracy on the �nest grids tested. This seems to be dueto the anisotropic connectivity of this type of grid and its e�ect on the limitingprocedure. In essence, the limiting is applied to solution values at the midpointsof the cell edges. On type A grids these lie on the midpoints of the straight linesjoining the cell centroids (see Figure 2.9), so the limiting procedure gives higheraccuracy than on grid B where this is not generally the case. Furthermore, grid Bwill generally give a smaller MP region, simply because the bounds in (2.12) aretighter due to the centroids of the adjacent triangles being closer together whichwill generally give a smaller di�erence in u between cell centres.A B
Figure 2.9: Bounding points (circles) for the limiting of the reconstruction for thetwo grid types.Note that other schemes which calculate only a single gradient operator, such22



as Limited Least-Squares [3], produce results which are almost indistinguishablefrom those of the LCD scheme and so they are not presented here.On type A grids the advantages of adding the projection step to the limitingprocedure become clear, particularly in the comparisons of the L1 error. Theprojected LCD scheme provides a clear improvement, even over the solution ob-tained on the quadrilateral grid. When taking into account the di�ering numbersof grid cells (which would shift the graph of the quadrilateral scheme 0.15 to theright), the projected LCD scheme still produces a solution of a prescribed accu-racy faster than the structured grid schemes. (The �gures given as times in TableI are relative to the time taken to calculate the �rst order solution and are allfound for 64� 64 grids.) On the �nest grids though, it is the MLG scheme whichachieves the highest order of accuracy in terms of the L1 error, the wider choiceof gradient operators being more useful here than the projection of a single one.Grid type A Grid type BScheme Time L1 L1 Peak L1 L1 PeakFirst order 1.00 0.87 0.88 0.23 0.90 0.90 0.28LCD 1.32 0.91 0.67 0.52 0.88 0.70 0.48Projected LCD 1.50 1.87 1.17 0.85 0.85 0.67 0.68MLG 1.73 1.82 0.85 0.93 0.87 0.75 0.62Unlimited 1.23 2.00 2.00 0.95 1.99 1.99 0.96Quadrilaterals 0.75 1.65 0.91 0.86 1.65 0.91 0.86Table I: Numerical orders of accuracy and relative cpu times for the double sinewave test case and peak solution values for the rotating cone test case.23



A second test case has been used to further clarify the relative merits of thegiven schemes. It involves the circular advection of the `cone', given by the initialconditions (when t = 0:0)u = 8>>><>>>: cos2(2�r) for r � 0:250 otherwise (2:20)where r2 = (x + 0:5)2 + y2, with velocity ~� = (�2�y; 2�x)T around the domain[�1; 1]� [�1; 1], with zero conditions at each of the inow boundaries. The initialpro�le should be advected in a circle without change of shape until it returns toits original position when t = 1:0.Solution pro�les obtained on 64 � 64 grids of types A and B are shown inFigures 2.10 and 2.11 respectively. The maximumCFL within the computationaldomain was 0.355. The corresponding peak solution values are shown in Table I.Of the schemes presented on triangular grids, MLG is clearly the most compres-sive on grid type A, con�rming what was seen for the �rst test case, althoughthere is some small upstream distortion of the pro�le. This is not apparent in theprojected LCD solution and this is considerably better than the standard LCDapproach. However, none of the unstructured grid schemes matches the perfor-mance of the dimensionally split Superbee limited upwinding on quadrilaterals.On grid B the projected LCD scheme is now the best of the triangular grid meth-ods. There is little to choose between the solutions obtained from this and theMLG scheme, but the relative cpu times in Table I indicate the greater e�ciencyof the former.In general, it can be seen that the multidimensional projection step improvesthe LCD scheme considerably, to the point where the solutions are at least as24
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Figure 2.10: Solutions for the rotating cone test case on grid type A.25



Exact Solution First Order
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Figure 2.11: Solutions for the rotating cone test case on grid type B.26



accurate as those produced by the more expensive MLG scheme on all but themost uniform grids. Using the projection step also seems to be particularlyadvantageous for reducing the errors in the L1 norm.3 Systems of EquationsThe extension of these cell centred MUSCL-type �nite volume schemes to non-linear systems of equations is straightforward. The conservative equations takethe general form U t + F x +Gy = 0 ; (3:1)in which U is the vector of conserved variables and F , G are the conservative uxvectors. These are de�ned explicitly for the shallow water equations in AppendixA. Integrating the equations (3.1) over a control volume 
 (taken as before to bea grid cell) and applying the divergence theorem to the ux integral results inZ Z
 U t dxdy + I@
 (F; G) � d~n = 0 ; (3:2)where ~n again represents an outward pointing normal to the boundary. Approx-imating the boundary integral and de�ning U0 to be the average value of U overthe control volume 
 leads to the �nite volume discretisation@U0@t = � 1V
 NeXk=1 (F �k; G�k) � ~nk ; (3:3)where F �k and G�k are the numerical ux functions, V
 is the area of the controlvolume, Ne is the number of edges of the control volume and ~nk is the outwardpointing normal to the kth edge, scaled by its length.27



The generalisation of the �rst order scalar numerical ux function of (2.5) tosystems of equations is given by(F �(U0; Uk); G�(U 0; Uk)) � ~nk = 12 ((F 0; G0) + (F k; Gk)) � ~nk�12j( ~A; ~B) � ~nkj(Uk � U 0) ; (3.4)in which A = @F@U and B = @G@U are the ux Jacobians. The construction of ~A and~B, the conservative approximations to the Jacobian matrices, and subsequentlythe numerical ux at the midpoint of the cell edge follows the technique suggestedby Roe [14].The evolution of the discontinuous approximation to the solution is modelledby constructing a series of approximate Riemann problems at the edge midpointswith `left' and `right' states, U0k and U k0 respectively at edge k (the internal andexternal states relative to the control volume), of the reconstructed solution, cf.Equation (2.8) and Figure 2.2. Each Riemann problem is solved using the decom-position of the ux di�erence across the edge into its characteristic components.This results in a high order numerical ux function for edge k given by(F �(U 0k; Uk0); G�(U0k; Uk0)) � ~nk = 12 ((F 0k; G0k) + (F k0; Gk0)) � ~nk�12PNwj=1 ~�j j~�jj~rj : (3.5)Here Nw is the number of components (or `waves') in the decomposition, thetilde represents the Roe average value at the discontinuity (which is constructedso as to ensure that the linearised decomposition is conservative [14]); �j is awave `strength'; �j and rj, respectively the eigenvalues and eigenvectors of thematrix (A;B) � ~nk, represent the speed of the wave and the transformation of aperturbation of the characteristic variables into a perturbation of the conserva-28



tive variables. Details of the exact values of these averages for the shallow waterequations are supplied in Appendix A. The substitution of (3.5) into (3.3) to-gether with the application of an appropriate time-stepping scheme (see Section2.3) gives the �nal algorithm.The slope limiting is commonly applied to the primitive variables which, forthe Euler equations ensures a positive reconstruction of both density and pressure(although this may not be maintained by the subsequent application of Roe'sapproximate Riemann solver). For the shallow water equations both primitiveand conservative variable limiting give positive depths so there is less advantagein using the former, which is also slightly more expensive. Here the limiters areapplied directly to the conservative variables, mainly for the purposes of speedand simplicity. In many ways characteristic limiting would seem to be the mostnatural implementation, see for example [2], but its application to Roe's schemeis not straightforward [8], and the results are not improved greatly so they arenot presented here.3.1 Boundary ConditionsSimple characteristic boundary conditions are applied, in which the ux at aboundary edge is evaluated directly using information from within the boundarycell to supplement the imposed boundary values. The physical conditions appliedat a given edge correspond to the positive eigenvalues of the matrixC = A cos �+B sin �, where (cos �; sin �)T is the local unit inward normal to the boundary. Theconservative ux Jacobian matrices A and B are given for the shallow waterequations in Appendix A. 29



At a freestream boundary four possibilities arise: (a) supercritical inow,where all three eigenvalues are positive and the boundary ux is determinedcompletely by the imposed solution values; (b) supercritical outow, where noeigenvalue is positive and the ux is calculated from internal solution values;(c) subcritical inow, where one eigenvalue is negative and whose correspondingRiemann invariant is given its internal value with everything else imposed; and�nally (d) subcritical outow, for which one eigenvalue is positive and only thevalue of its associated Riemann invariant is imposed. At a solid wall the normalvelocity component is set to zero while the rest of the information required tocalculate the ux is taken from the interior of the domain.3.2 ResultsThe �rst test case considered here is a simple steady state problem with anexact solution, represented by an oblique hydraulic jump in a channel inducedby a wedge [1]. The geometry of the channel is indicated in Figure 3.1: it is40m long, 30m wide at inow and the foot of the wedge is 10m in from theinow boundary. The slope of the wedge is chosen here to be 8:95�, and inowconditions of h = 1:0m, u = 8:57ms�1 and v = 0:0ms�1 (implying a Froudenumber of F = 2:74) are imposed. The resulting steady state ow should bepurely supercritical and divided into two regions by an oblique hydraulic jump atan angle of 30� to the upstream ow. Downstream of this jump the exact solutionis given by hd = 1:5m and Fd = 2:074.Three solutions are illustrated in Figure 3.1 and there is little to choose be-tween them. The �nal solution was obtained using a dimensionally split, van Leer30
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Figure 3.1: Grid and depth contours for the oblique hydraulic jump test case.limited scheme on a regular 40� 30 cell quadrilateral grid, giving the same meshscale as the 2609 cell triangular grid shown, but fewer cells, so it is unsurprisingthat this appears to be the most di�usive of the schemes. When sampling the so-lution at a point on the outow boundary midway between the lower wall and thejump, each of the schemes predicted the downstream ow parameters accurate totwo decimal places.The next test case presented is of shallow water ow for a partial dam breakproblem [5]. The computational domain consists of a 200m�200m basin bisectedby a dam. When t = 0:0s a break in the dam appears between 95m and 170mfrom one end. Initially h = 10m on one side and h = 5m on the other, while thewater has zero velocity everywhere. The 3688 cell grid on which the calculationswere carried out is shown in Figure 3.2. Each of the boundaries is treated as a31



solid wall except those on the left and right which were given simple non-reectingboundary conditions.Grid MLG
Projected LCD Quadrilaterals

Figure 3.2: Grid and depth contours for the partial dam break test case.Figure 3.2 also shows the surface elevation of the water at t = 7:2s for theMLG and projected LCD schemes (using the grid shown) and a superbee limitedscheme on a uniform 50�50 quadrilateral grid. The projected LCD scheme seemsto give a slightly smoother solution than the MLG scheme, and both appear tobe better than the quadrilateral scheme in the sharpness of capturing of thedownstream hydraulic jump. The dimensionally split scheme also appears to betending towards instability within the downstream vortex created at the lower32



edge of the break. The result obtained using the projected LCD scheme is alsopictured in Figure 3.3.

Figure 3.3: Projected LCD solution for the partial dam break test case.Finally, the schemes have been compared using a circular dam break test case.Initially, two regions of still water are separated by a cylindrical wall (radius 11m)centred in the 50m� 50m square domain shown in Figure 3.4. The depth of thewater is 10m within the cylinder and 1m outside. The wall is then removed andthe solutions shown in Figures 3.4 and 3.5 are after t = 0:69s.Once more, the solutions are very similar. The radial symmetry is slightlydistorted by the e�ects of the grid in each case, but otherwise the solutions arevery accurate. In all cases the MLG and projected LCD schemes have givensimilar solutions but the extra speed of the new scheme gives it the advantage interms of e�ciency. 33
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Figure 3.4: Grid and depth contours for the circular dam break test case.
34



Figure 3.5: Projected LCD solution for the circular dam break test case.4 ConclusionsIn this paper the construction, on triangular grids, of second order accurate,cell centre �nite volume schemes which satisfy a local maximum principle hasbeen discussed. The methods are based on MUSCL-type schemes [18] in twodimensions in which a linear reconstruction of the solution is created within eachcell from local data, the gradient of which is limited to impose the desired localmaximum principle on the approximation. The methods have been tested on thescalar advection equation and then extended to nonlinear systems of equationsvia Roe's approximate Riemann solver.The limiters which satisfy the maximumprinciple are de�ned using constraintsapplied at the midpoints of the edges of the cells. It has been shown that theseconstraints de�ne a region within which every limiter of the chosen type lies.35



Having de�ned this region, it is possible to use the multidimensional nature of theproblem to apply a new limiting strategy to the existing schemes which improvestheir accuracy. It is also possible to construct new schemes using these ideas, butthis has been left as a subject for future research. The `projected' limiter schemesare cheaper than the most accurate of the previously constructed limiters, and inthe scalar case it is often considerably more accurate.The scalar schemes have also been successfully applied to the shallow water e-quations using Roe's scheme, and accurate results have been obtained by applyingthe limiting procedure to the conservative variables. Although the improvementin accuracy obtained by using the new scheme is less apparent than in the scalarcase, it is still signi�cantly more e�cient than the best of the existing schemes.Research into more robust and accurate treatments of source terms and boundaryconditions associated with the shallow water equations is ongoing.AcknowledgementsThe author would like to thank Prof. M. J. Baines for his contributions to thiswork and the EPSRC for providing the funding for the author.References[1] F.Alcrudo and P.Garcia-Navarro, `A high resolution Godunov-type scheme in�nite volumes for the 2d shallow water equations', Int. J. for Num. Methodsin Fluids, 16:489{505, 1993. 36
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A The Shallow Water EquationsThe shallow water equations depend on the conservative variables and uxes givenby U = 0BBBBBBBB@ hhuhv 1CCCCCCCCA ; F = 0BBBBBBBB@ huhu2 + gh22huv 1CCCCCCCCA ; G = 0BBBBBBBB@ hvhuvhv2 + gh22 1CCCCCCCCA ; (A:1)where h is the depth of the ow, u and v are the x- and y-velocities and g is theacceleration due to gravity, and result in the following ux Jacobians:A = @F@U = 0BBBBBBBB@ 0 1 0c2 � u2 2u 0�uv v u 1CCCCCCCCA ; B = @G@U = 0BBBBBBBB@ 0 0 1�uv v uc2 � v2 0 2v 1CCCCCCCCA ;(A:2)where c = pgh is the gravity wave speed.In Roe's approximate Riemann solver the eigenvalues and eigenvectors of thematrix(A; B) � ~n = 0BBBBBBBB@ 0 nx ny(c2 � u2)nx � uvny 2unx � vny uny�uvnx + (c2 � v2)ny vnx unx + 2vny 1CCCCCCCCA (A:3)are �1 = ~unx + ~vny + ~c ; �2 = ~unx + ~vny ; �3 = ~unx + ~vny � ~c ; (A:4)and r1 = 0BBBBBBBB@ 1~u+ ~cnx~v + ~cny 1CCCCCCCCA ; r2 = 0BBBBBBBB@ 0�~cny~cnx 1CCCCCCCCA ; r3 = 0BBBBBBBB@ 1~u� ~cnx~v � ~cny 1CCCCCCCCA ; (A:5)39



respectively, and the corresponding wave strengths in (3.5) are given by~�1 = �h2 + 12~c (�(hu)nx +�(hv)ny � (~unx + ~vny)�h)~�2 = 1~c ((�(hv)� ~v�h)nx � (�(hu)� ~u�h)ny)~�3 = �h2 � 12~c (�(hu)nx +�(hv)ny � (~unx + ~vny)�h) ; (A.6)in which the Roe average states are~u = uRphR + uLphLphR +phL ; ~v = vRphR + vLphLphR +phL ; ~c = sg(hR + hL)2 ;(A:7)and the di�erence operator is given by�� = (�)R � (�)L : (A:8)In two dimensions the subscripts �L and �R represent the interior and exterioredge midpoint values relative to the cell under consideration.
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