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1 IntroductionFor speed and simplicity, one-dimensional models are often used in the modellingof two-dimensional shallow water ows. An example of this is the prediction ofthe steady ow through an open channel with variable breadth. However, thevalidity of the one-dimensional model is limited by the assumptions made in itsderivation and its accuracy is bound to decrease as the variations in the channelgeometry become more severe and the transverse acceleration introduced into theow gains in signi�cance. Not only are there quantitative di�erences between theone- and two-dimensional solutions, but the ows obtained may also exhibit majordi�erences in their qualitative features, di�ering predictions of the existence ofhydraulic jumps, for example.In this work we examine the range of ow parameters (ow speed and size ofconstriction) for which the one-dimensional model of steady state shallow waterow through a channel of varying breadth accurately represents the full two-dimensional solution. The investigation is used to highlight the limitations of theone-dimensional model as well as to point out those quantities that it is able topredict accurately, especially when the ow exhibits genuinely two-dimensionalfeatures and the assumptions underlying the one-dimensional model break down.Close examination of the mathematical and numerical models also reveals thedramatic e�ect that changing the form of the boundary conditions can have on thesolution, so the results obtained from two commonly-used boundary procedureshave been compared in order to illustrate this.The one- and two-dimensional shallow water models employed are describedin Sections 2 and 3 respectively. In one dimension a brief derivation of a family ofexact solutions to the equations is also given. The comparison between the twodi�erent models is carried out in Section 4 using state of the art numerical tech-niques to obtain the approximate solutions. This is followed by brief conclusionsabout the validity of the simpler model.2



2 The one-dimensional modelIn one dimension, shallow water ow through an open channel of rectangularcross-section and variable breadth can be modelled by the equations0B@ BdBdu 1CAt + 0B@ BduBdu2 + 12gBd2 1CAx = 0B@ 012gd2Bx 1CA ; (2:1)in which d represents the depth of the ow, u is its velocity, B = B(x) is thevariable breadth of the channel and g is the acceleration due to gravity (see, forexample [2] for their derivation). Essentially, Equation (2.1) can be derived fromthe more general, two-dimensional shallow water model under the assumptionthat Bx = O(�) for �� 1, so that the transverse acceleration of the ow is neg-ligible in comparison with the longitudinal acceleration. In these circumstancesthe variables d and u are considered to be breadth-averaged quantities. Onlysteady state solutions are considered in this work, for which the time derivativesare zero. They are only included in (2.1) because they are often used as a numer-ical device to converge to steady solutions, as is done in the schemes of Section 4which provide the approximate solutions.Exact steady state solutions of (2.1) are simple to construct (see for example[7] and related work in which the source terms represent variable bed topography[4, 1]). For a converging/diverging channel with continuously varying breadththe steady solutions of (2.1) can be divided into four categories:A. continuous - purely subcritical (possibly critical at the most narrow pointof the channel, the throat).B. discontinuous - subcritical at inow, passing smoothly to supercritical atthe throat, then back to subcritical via a stationary hydraulic jump in thediverging region of the channel, remaining so until outow.C. continuous - subcritical at inow, passing smoothly to supercritical at thethroat of the channel, and remaining supercritical to outow.D. continuous - purely supercritical (possibly critical at the throat).3



The particular form taken by the steady solution depends on the boundary condi-tions which are applied at the entrance and the exit of the channel section beingmodelled.The simplest cases are A and D. Integration of the steady equations leads s-traightforwardly to two quantities which remain constant throughout the channel.These are the total discharge Q = Bdu ; (2:2)and the total head HT = u22g + d = Q22gB2d2 + d : (2:3)Given that values for Q and HT can be deduced from the boundary conditions,combining (2.2) with (2.3) leads tod3 �HTd2 + Q22gB2HT3 = 0 ; (2:4)an algebraic equation relating the depth of the ow d to the local channel breadthB. This has a pair of physically admissible (positive) solutions for d, one repre-senting subcritical ow and the other supercritical ow, on condition thatBBin � Fin 3F 2in + 2!32 (2:5)for all values of B in the given channel geometry, where Fin = uin=pgdin is thelocal Froude number speci�ed at inow. The solution which is chosen by theequations (2.1) depends on the boundary conditions applied (unless both Q andHT are speci�ed, in which case the choice remains open).When equality holds in (2.5) for some value of B within the channel geometrythe ow becomes critical for the values of Q and HT implied by the boundaryconditions. However, any critical point of the ow must lie at the throat of thechannel so, unless equality is satis�ed there, the inlet values of Q and/or HTchange automatically to satisfy the boundary condition at inow and the criticalcondition at the throat (F = 1 when B = Bmin). The ow is then of type B or C.Furthermore, the variation of the Froude number upstream of the critical pointin such situations is uniquely de�ned, being the subcritical solution (0 < F < 1)of the equation F 2� 3F 2 + 2�3 = �BminB �2 : (2:6)4



This implies that the Froude number at inow is �xed by the channel geometry,taking the same value whenever the solution is transcritical (so F is not a practicalchoice for speci�cation as an inow boundary condition). The new values of Qand HT for the smooth region of the ow which surrounds the critical point canbe calculated by combining the subcritical inow boundary condition with thisinow Froude number.Downstream of the critical point, the ow type (B or C) is determined by theoutow boundary conditions. Initially, since the ow is continuous through thecritical point, the solution retains the upstream values of Q and HT but switchesto the supercritical branch of (2.4) downstream of the throat. If no jump occursthe supercritical solution values found using (2.4) are retained throughout therest of the channel.When a stationary hydraulic jump occurs (which must always be from super-critical ow to subcritical ow), equations (2.1) lead to two quantities which arecontinuous across the jump. These are given by[du] = 0 and �du2 + 12gd2� = 0 : (2:7)The �rst of these, together with (2.2), implies that Q is constant throughout thedomain for any steady ow, but from the second and (2.3) it is clear that thereis a jump in HT when the ow is discontinuous. Thus the ow downstream of astationary hydraulic jump is determined by the value of Q which has been calcu-lated for the transcritical upstream ow and the boundary condition speci�ed atoutow.Combining the two expressions (2.7) leads to a relationship between thebranches of the solution on either side of the jump, given byd+ = d�2 �q1 + 8F�2 � 1� ; (2:8)in which d+ is the depth immediately downstream of a discontinuity, while d�and F� are the depth and local Froude number immediately upstream. The owsustains a stationary hydraulic jump if(d+)out � dout � din (2:9)5



where (d+)out is calculated using (2.8) together with the assumption that thejump occurs at the furthest downstream point of the constriction. Given theboundary conditions and the critical condition, (which imply the values of Q andHT the solution on either side of the discontinuity can be calculated from (2.4),so it remains to �nd the point within the constriction at which condition (2.8) issatis�ed. Both the upstream and downstream values of total head (HT� and HT+respectively) are known, and the upstream Froude number at the jump (F�) canbe found by solving iteratively the equation16(HT� �HT+)�q1 + 8F�2 � 1�� 2HT�F�2 + 2 �q1 + 8F�2 � 3�3 = 0 ; (2:10)which can be deduced from the jump conditions (2.7). The position of the jumpis then found by combining (2.10) with (2.6).One important point to note here is the e�ect which the choice of bound-ary condition has on the solution. In numerical calculations a wide variety ofconditions are applied, two of the most commonly used forms being1. Q speci�ed at subcritical inow, d at subcritical outow.2. R+ speci�ed at subcritical inow, R� at subcritical outow, where R� =u� 2pgd are the Riemann invariants of the homogeneous system.At a supercritical inow boundary all solution variables are speci�ed, while noth-ing is speci�ed at supercritical outow.Figure 2.1 illustrates the type of solution obtained using both sets of boundaryconditions. Note its close resemblance to Figure 3 of [4] which was constructedin a similar manner for channel ows with variable bed topography instead ofvariable breadth. The ow parameters which have been speci�ed are Bmin, theminimum breadth of the channel (the shape of the channel need not be speci�edyet), and Fin, the `initial' Froude number of the ow (the inow Froude numberproposed before any adjustments are made to Q and HT due to the onset oftranscritical ow). The latter, along with the condition that the `initial' depth isgiven by din = 1:0, determine the values of the variables chosen to be prescribedat inow and outow boundaries (and also the initial conditions required by6
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Figure 2.1: Types of exact solution to constricted channel ow test cases givendi�erent boundary conditions.the numerical schemes in Section 4). The solid line in the �gure indicates thetransition between smooth ow, type A or D, and transcritical ow, type B or C,the broken/dotted lines represent the transition from discontinuous type B owto smooth type C ow. Note that for supercritical `initial' Froude numbers thesethree curves coincide.When Fin is subcritical the transition to transcritical ow is independent of thetype of boundary conditions applied but, particularly for the more severe channelconstrictions, it is noticeable that type 2 boundary conditions are far more likelyto sustain discontinuous ow. This di�erence in behaviour may well be due tothe inhomogeneous nature of the equations (2.1), and the consequence that theRiemann invariants are not constant along characteristics. This suggests thattype 1 boundary conditions should be used, simply to facilitate comparison withexperiment where Q and d are both measurable. The solutions depicted in Figure2.2 con�rm this. Although there is little di�erence to be seen between the depthpro�les when Bmin = 0:9, the more extreme case shows very little resemblancebetween the solutions. Even though one would not expect an accurate predictionby the one-dimensional model for such a narrow constriction, this still suggests7
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4 Numerical resultsThe one-dimensional numerical scheme used in this work combines Roe's approx-imate Riemann solver [11], as applied to the shallow water equations (2.1) [10],with the minmod limiter [12] within a MUSCL algorithm [13], together with a re-cently developed upwind discretisation of the source term [6]. In two dimensions,the discretisation used is the multidimensional upwind method of Mesaros andRoe [3, 8], applied to the shallow water equations, (3.1) and (3.2), on unstructuredtriangular grids [5].For the purposes of this comparison, each of the results presented is for achannel of length 3 units which has a symmetric constriction of length 1 unit atits centre whose breadth is given byB(x) = 8><>: 1:0� (1:0 �Bmin) cos2(�(x� 1:5)) for jx� 1:5j � 0:51:0 otherwise ; (4:1)where Bmin is the minimumchannel breadth and x is the distance into the channel(so the throat is positioned at the midpoint of the constriction). In the two-dimensional case the constriction has been chosen for simplicity to be representedby symmetric indentations on either side of the channel (as illustrated in Figure4.6). Whilst alternative constructions undoubtedly alter the ow in some way,their e�ect on the comparison with one-dimensional results is not signi�cant.Each of the one-dimensional numerical solutions is obtained on a uniform 76node grid, giving comparable resolution to the two-dimensional grids used, eachof which has been constructed using a simple advancing front technique (see forexample [9]) with an underlying mesh spacing parameter of 0.04. The initialconditions for each numerical experiment (in which the steady state solution isachieved by approximating the evolution of the time-dependent shallow waterequations (2.1) with steady boundary conditions and converging to the steadystate from the initial conditions as t ! 1) were d = 1:0 and F = Fin, withv = 0:0 in two dimensions.Figure 4.1 shows how well the one-dimensional numerical results agree withthe theory (as illustrated in Figure 2.1) in terms of the parameter values (Bmin9



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
‘Initial’ Froude number

0.0

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 c
ha

nn
el

 b
re

ad
th

A: sub-critical

B: sub/super/sub-critical

C: sub/super-critical

D: super-critical

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
‘Initial’ Froude number

0.0

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 c
ha

nn
el

 b
re

ad
th

A: sub-critical

B: sub/super/sub-critical

C: sub/super-critical

D: super-criticalFigure 4.1: Types of one-dimensional numerical solution to constricted channelow test cases with boundary conditions of type 1 (left) and type 2 (right).and Fin) at which transition occurs between the di�erent types of steady solutionobtained. Di�erent symbols have been used to indicate the types of solution (A-D) predicted by the numerical scheme. Regions of the graph have been left empty,but the solution type is implied by the symbol on the boundary of the region.(Note that with the more commonly used approximations to the source terms,such as a simple pointwise evaluation, the agreement with theory is less close. Insome cases they can predict unphysical phenomena, such as a continuous steadystate which is supercritical at both inow and outow but has a subcritical regionaround the throat of the channel.)The corresponding two-dimensional numerical results are shown in Figure4.2. In this case, type 1 boundary conditions correspond to specifying du andsetting v = 0 at subcritical inow and d at subcritical outow; type 2 boundaryconditions being whereR+ = u+2pgd and v = 0 are speci�ed at subcritical inowand R� = u � 2pgd is given at subcritical outow (where it has been assumedthat these boundaries are parallel to the y-axis). It is immediately clear that themultidimensional nature of the geometry has a signi�cant e�ect on the solution,the di�erences occurring whenever the two-dimensional ow is not smooth. Thisincludes every steady state which has some supercritical component (cf. Figure4.6). As expected, the more narrow the constriction the greater the e�ect, buteven the smallest indentation allows a steady state solution which is supercritical10



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
‘Initial’ Froude number

0.0

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 c
ha

nn
el

 b
re

ad
th

a) sub-critical

b) sub/super/sub-critical

c) sub/super-critical

d) super/sub/super-critical

e) super-critical

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
‘Initial’ Froude number

0.0

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 c
ha

nn
el

 b
re

ad
th

a) sub-critical

b) sub/super/sub-critical

c) sub/super-critical

d) super/sub/super-critical

e) super-criticalFigure 4.2: Types of two-dimensional numerical solution to constricted channelow test cases with boundary conditions of type 1 (left) and type 2 (right).at both inow and outow but has a subcritical pocket within the constriction.In two dimensions there are �ve di�erent types of solution which may occur:a) Smooth and purely subcritical.b) Subcritical at inow and outow, critical at the channel throat, with asteady discontinuity in the diverging region of the channel.c) Smooth (apart from the oblique jumps in two dimensions), subcritical atinow, critical at the throat, and supercritical at outow.d) Smooth in one dimension, supercritical at inow and outow, with obliquejumps and a subcritical region in the constriction for two-dimensional ow.e) Smooth in one dimension and purely supercritical in every case.This corresponds to the one-dimensional situation, with the addition that case Dof Section 2 has now split into two cases, d) and e).Interestingly, the type of solution generated in two dimensions no longer de-pends to any great extent on the type of boundary condition which has beenemployed. (There is only one di�erence between the two graphs of the numer-ical results in Figure 4.2, at Bmin = 0:2, Fin = 0:7.) This close resemblancemay well be due to the fact that, unlike the one-dimensional system, the two-dimensional equations are homogeneous. Quantitatively though, there is still a11



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance into channel

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

D
ep

th

Exact (1d)

1d

2d

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance into channel

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

D
ep

th

Exact (1d)

1d

2dFigure 4.3: Comparison of depth for Bmin = 0:4 and Fin = 0:5 with boundaryconditions of type 1 (left) and type 2 (right).
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Figure 4.6: Depth contours for Bmin = 0:9 with initial Froude numbers Fin of a)0.5, b) 0.67, c) 1.2, d) 1.7 and e) 2.0. 14
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channel with a quadruple symmetric constriction with Bmin = 0:9 and Fin = 1:9.The one-dimensional model predicts smooth supercritical ow throughout, butthe comparison with two dimensions becomes progressively worse as the jumpsinteract with each other.5 ConclusionsIn this work a comparison has been made between one- and two-dimensionalmodels of steady state shallow water ow through an open channel of varyingbreadth. It has been shown that the numerical and analytical solutions to theone-dimensional model agree closely, provided that an appropriate discretisationof the source terms is employed.When the ow is completely smooth and subcritical these solutions also proveto be an accurate prediction of the breadth-averaged two-dimensional ow. Forsmall constrictions (Bx � 1) the agreement remains good even when the one-dimensional model predicts a discontinuous ow, because the transverse acceler-ation in the ow is negligible and consequently the two-dimensional solution re-mains essentially one-dimensional. As the constriction narrows, however, steadyhydraulic jumps become more curved and the one-dimensional model less accu-rate. When the ow downstream of the constriction is supercritical, the undularjumps which are propagated from the constriction in the two-dimensional casecannot be predicted by the one-dimensional equations and the accuracy of thesimpler model is poor, even for channels with relatively small indentations whichshould satisfy the assumptions under which the one-dimensional model is de-rived. The agreement does however become closer again as the speed of the owincreases and these discontinuities become aligned with the channel.Two commonly used forms of boundary condition have been compared, andit has been shown that when the ow is transcritical they can give widely di�er-ing solutions for given geometries and initial ow parameters. In one dimensionspecifying discharge at inow and depth at outow seems appropriate, since boththeir values can be determined simply from experiment. In two dimensions how-ever, when the equations are homogeneous, specifying Riemann invariants proves17
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