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AbstractA number of peripheral aspects relating to the application of multidi-mensional upwind schemes in new areas are presented, expanding on theircurrent capabilities. In summary: 1) recently developed high order schemesfor the scalar advection equation are applied to nonlinear systems of equa-tions, 2) source term decompositions are presented which are appropriateto existing wave models, 3) the two-dimensional scalar uctuation distri-bution schemes are modi�ed for ow over curved surfaces, in particular onthe sphere, 4) a simple node movement algorithm (used previously in twodimensions) is applied to steady state solutions of the three-dimensionalscalar advection equation.
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1 IntroductionThis report has been written to summarise the current state of a number ofstrands of research associated with the application of multidimensional upwindschemes (see [6] for full details of these methods) to a wider range of problems.It is divided into four short sections:-2. Multidimensional upwinding has now matured to a stage where it is beingused in practical situations for the modelling of steady state aerodynamicproblems [9]. However, there is still much work to be done for the approx-imation of time-dependent ows. Advances have been made for the scalaradvection equation [4], combining high order schemes with genuinely mul-tidimensional limiting procedures, and here these techniques are applied tononlinear systems via existing decompositions. It is clear from the resultsthat although the accuracy is improved signi�cantly there is a necessity forthe construction of new and improved wave models.3. Source terms prove to be relatively straightforward to include as part ofthe uctuation distribution algorithm and, with the exception of the simplewave models, they can be extended simply to be incorporated within systemdecompositions. The general technique is described here and compared withthe commonly used pointwise approach to illustrate the improvement. Inthe case of simple wave models one possible method of decomposing anddiscretising the source terms is described, but it is complicated and unclearas to whether it gives any improvement over the much simpler pointwisediscretisation.4. In meteorological ows the shallow water equations are often modelled onthe sphere. The decomposition stage of the multidimensional upwind algo-rithm is not straightforward in this situation, but the scalar schemes can beapplied on spherical geometries with little di�culty (if conservation is notenforced) and the method is presented here.5. The grid movement algorithm applied successfully in two dimensions in [1]generalises easily to three dimensions and is applied here to simple scalar3



advection test cases to illustrate its e�ectiveness.2 Time Dependent Nonlinear SystemsThe extension of the time-dependent uctuation redistribution schemes of [4] tononlinear systems of equations is relatively straightforward and follows closelythat of the �nite element method [10]. Given that the ux balance can be splitup into scalar components, the process di�ers little from the scalar case:� compute the low and high order element contributions to the grid nodes us-ing the PSI and Lax-Wendro� schemes respectively, then use these to con-struct the antidi�usive element contributions (AEC's), storing not only theAEC's for each wave in the decomposition (in the form of distribution co-e�cients and uctuations) but also the accumulated element contributions(for speed in calculating the appropriate bounds on the updated solutionand hence the required limiting factors).� compute the complete low order update and use this to obtain bounds onthe solution at the new time level.� use these bounds to calculate limiting factors on the antidi�usive elementcontributions. These bounds are necessarily constructed from the origi-nal solution and the overall updates in terms of the conservative variables.This is because it is not possible to convert perturbations in the conserva-tive variables into perturbations of the `characteristic' variables associatedwith the individual waves in the decomposition (due either to the presenceof source terms in the decomposition or the linear dependence of the com-ponents, depending on the type of wave model used). As a consequence,each wave in the decomposition utilises the same limiting factor at a givencell vertex. This may be based solely on one variable (e.g. density for theEuler equations, depth for the shallow water equations) or taken to be aminimum of the limiting factors over a set of independent variables, suchas all of the conservative variables (which should minimise the oscillationsin the solution). 4



� apply the limiting factors to each wave in turn (it was noted in [10] that it isnot desirable to use separate limiting factors on each equation even thoughthis would be less di�usive), transforming the distribution coe�cients viathe uctuation redistribution approach of [4], for which only the low andhigh order distribution coe�cients and the limiting factors are required apriori.Note that ux-corrected transport can be applied without reference to thedecomposition. A single limiting factor is calculated for the cell whicheververtex is considered and this can be applied directly to the overall updates(a quicker but slightly less accurate method).� use the new distribution coe�cients to update the solution in the mannerof the standard uctuation distribution algorithm.2.1 ResultsResults are shown here for two one-dimensional test cases, both approximatedon the two-dimensional grid shown in Figure 2.1 before the solutions are aver-aged over the breadth of the computational domain, [�50; 50] � [0; 10], to allowcomparison to be made with exact one-dimensional solutions. For the Euler equa-tions, the well known Sod shock tube problem is used in which a gas is initiallyat rest and the ow evolves from two constant states on either side of a givenposition, taken here to be x = 0:0. The two states are related by a densityratio of 1:8 and a pressure ratio of 1:10 between the right and left solution val-ues. For the shallow water equations the analogous problem is presented: thedam break problem, here with a depth ratio of 1:10. Figures 2.2 and 2.3 showthe comparison between the low order results obtained using Roe's model D andRudgyard's Mach angle splitting as wave models and the results obtained whenthe uctuation redistribution is applied to each of the scalar components of thedecomposition. A small improvement in accuracy is apparent but oscillationsare not completely removed. Roe's model D did not prove to be very robust,particularly for transcritical cases. The Mach/Froude angle splitting had fewerdi�culties, which allowed much larger di�erences to be taken between the left5



Figure 2.1: The computational grid.
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Figure 2.2: Breadth-averaged two-dimensional solutions for Sod's shock tubeusing Model D (left) and the Mach angle splitting (right).
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and right states before the scheme produced unphysical solutions. Note thoughthat this problem could be alleviated to some extent by increasing the di�usivecomponent of the Lax-Wendro� scheme.The techniques were also applied to the approximate diagonalisation methods,with similar success but an even more signi�cant lack of robustness, mainly dueto the fact that the coupling terms inherent in these models destroy the conceptof positivity which is used in the construction of the distribution schemes. Un-fortunately, due to their singular nature at stagnation points it is not feasible toapply the preconditioned decompositions even in these simple cases.3 Source TermsIn two dimensions, source terms have been included in the systems of conservationlaws which have been modelled, so the equations becomeU t + F x +Gy = S ; (3:1)U being the vector of conservative variables, F and G the conservative uxesand S containing the source terms. The obvious way to include the source termwithin the approximation is to evaluate over the triangular cell, in place of theux balance, the quantity� = � Z Z (F x +Gy � S) dxdy : (3:2)In this way the sources simply augment the existing terms which appear eitherbecause of the linearisation or the decomposition [8, 2] and the form of the �nalscheme is unchanged, only the de�nitions of the uctuations �. The augmentedsources can then be dealt with in a manner which takes into account the type ofwave model used:� Simple wave models: the source term is split into x- and y-componentsso that the system can be writtenU t +A(U x �A�1Sx) +B(Uy �B�1Sy) = 0 (3:3)as long as A and B, the conservative ux Jacobians, are invertible, orequivalently U t + (A;B) � ~rU � = 0 (3:4)7



which contains a perturbed gradient of the conservative variables, given by~rU � = (Ux �A�1Sx; Uy �B�1Sy)T : (3:5)It is this quantity which can now be decomposed into components due togradients of plane wave solutions to the nonlinear system, i.e.~rU � = NwXk=1'k rk (~n�)T (3:6)and this equation is solved for the speci�ed wave strengths ' and propaga-tion directions � associated with the chosen wave model. (r are eigenvectorsof the matrix (A;B) � ~n� appropriate to the chosen waves and ~n� is a unitvector with orientation �.) Each component of (3.6) relates to a scalar uc-tuation which can be incorporated into a distribution scheme in the usualway.� Characteristic decompositions: the source term is decomposed usingthe same similarity transformation as is used on the rest of the system. In`characteristic' variables W the equations areW t +AWW x +BWW y = SW ; (3:7)in which SW = @U@W �1S. This leads to a number of scalar `advection' equa-tions of the form Wt + ~� � ~rW + q = SW ; (3:8)each of which has its own advection velocity ~� and coupling term q, andsubsequently a ux balance which includes the source term, i.e.� = �S4 NwXk=1(~�k � ~rW k + qk � SkW)rk ; (3:9)where r are the columns of the transformation matrix @U@W . The distributioncoe�cients are calculated as though for the homogeneous equations andthen applied to the above uctuations,�k = �S4(~�k � ~rW k + qk � SkW) ; (3:10)before calculating the conservative updates.8



� Preconditioned decompositions: the source term is decomposed in thesame way as in the characteristic decomposition above except that the pre-conditioner is introduced into the transformation, so the ux balance againhas the form � = �S4 NwXk=1(~�k � ~rW k + qk � SkW)rk : (3:11)but r are now the columns of the matrix @U@QP�1 @Q@W and SW = @W@QP@Q@U S.Once more, the solution procedure is no di�erent from the homogeneouscase with modi�ed uctuations.As an example, the shallow water equations with additional terms for mod-elling bed slope are solved combining the above technique with the hyperbol-ic/elliptic preconditioned decomposition adapted from that of Mesaros and Roe[12], and described in detail in [8]. The source terms considered here areS = 0BBBBB@ 0gdhxgdhy 1CCCCCA = 0BBBBB@ 0SXSY 1CCCCCA (3:12)where d is depth, h is depth below still water and g is the acceleration due togravity, and which, when the transformation to characteristic variables is applied,becomes SW = 1q2d 0BBBBB@ �"uSX � "vSY��vSX + �uSY"FuSX + "FvSY 1CCCCCA (3:13)in subcritical ow andSW = 1q2d 0BBBBB@ �(u+ �v)SX � (v � �u)SY�(u� �v)SX � (v + �u)SYFuSX + FvSY 1CCCCCA (3:14)when the ow is supercritical. As in [8], u and v are the two velocity components,q = pu2 + v2 is the ow speed, F = q=pgd is the local Froude number,� = qjF 2 � 1j ; � = max(F; 1) ; (3:15)9



and, in this case, " is taken to be"(F ) = 8><>: �F 3 + 32F 2 + 12 for 0 � F � 11 for F > 1 : (3:16)3.1 ResultsResults are shown, comparing the upwind distribution of the source terms de-scribed above with a simple pointwise evaluation at each node which is addedafter the uctuation distribution has been carried out. In the multidimensionalupwind notation this scheme looks likeUn+1i = Uni + �tSi Xj2[4i NwXk=1 (�ji )k�kj rkj +�t Si : (3:17)This is done for a one-dimensional problem of ow over a smoothly varying sym-metric bump in a channel using the grid shown in Figure 3.1 (which gives roughly75 cells in the streamwise direction). The computational domain is the region[0; 3]� [0; 1] and the bathymetry is de�ned byh(x) = 8><>: 1:0 � zmax cos2(�(x� 1:5)) for jx� 1:5j � 0:51:0 otherwise ; (3:18)in which zmax = 0:1 is the maximum height of the bed above the level at in-ow. This has been chosen as a simple channel geometry for which exact steadystate solutions to the one-dimensional shallow water equations are available forcomparison [7] with the breadth-averaged numerical results.Three ows are compared, de�ned by:� F1 = 0:5, d1 = 1:0, giving purely subcritical ow which is symmetricabout the peak of the bump (at x = 1:5),� F1 = 0:65, d1 = 1:0, giving transcritical ow with a stationary hydraulicjump downstream of the peak and a critical point at the peak,� F1 = 1:4, d1 = 1:0, giving purely supercritical ow which is symmetricabout the peak. 10



Figure 3.1: The grid for the channel ow with sloping bed.
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The subscript �1 represents the freestream ow values `at in�nity' which areused in the application of simple characteristic boundary conditions at inowand outow: appropriate Riemann invariants are speci�ed, cf. [7].Each of the sets of results in Figure 3.2 shows an improvement when theupwind discretisation of the source term is used. Discharge is supposed to remainconstant throughout the channel for steady state ows. The small discrepanciesseen in the supercritical case are there simply due to linearisation errors andcould be removed with a little extra e�ort in the linearisation of the source termto achieve an exact balance with the linearised ux gradients. In the transcriticalow case, the di�erence from the exact one-dimensional solution appears to comefrom the application of the boundary conditions in two dimensions, and is visiblein results obtained from other forms of numerical scheme.4 Multidimensional Upwinding on the SphereThe �rst question which needs to be addressed here is whether the schemes shouldbe applied in a three-dimensional Cartesian coordinate system or a sphericalpolar coordinate system. The former has been chosen here because it avoids thesingularity which appears at the poles in the latter. Since the schemes are appliedon unstructured triangular grids there is no problem with grid singularities, whichoccur in many existing structured codes. The big advantage of this approach isthat the advection is treated in the same way, regardless of position on the surfaceof the sphere and direction of travel.Ideally, the underlying scheme would be based on the two-dimensional mul-tidimensional upwind schemes, but applied on a curved surface. Unfortunately,since the divergence theorem can no longer be applied in the conservation ar-gument, the resulting scheme is not conservative because internal cancellationcan no longer be guaranteed. However, in the scalar case it should be simple toconstruct a conservative three-dimensional scheme on a prismatic grid over thesurface of the sphere in which the solution is constrained to be constant perpen-dicular to the curved surface. For the moment, it is noted that the uctuation ina triangle is independent of the orientation of that triangle in three-dimensional12



space so, given a two-dimensional set of orthogonal coordinates � and � in theplane of the triangle on the surface, the uctuation can be de�ned by� = Z Z4 ~r�� � (f �; g�) d� d� ; (4:1)where f and g are both functions of u. This can be approximated by~� = �S4~~��� � ~r��u � I@4(f �; g�) � d~n�� : (4:2)Alternatively, in keeping with the three-dimensional coordinate system, onecan take ~� = NeXk=1( ~f; ~g; ~h) � ~nk (4:3)in which ~nk is a three-dimensional `outward' normal to the edge of the trianglewhose direction is tangent to the surface at the midpoint of the edge and whosecomponent in the plane of the cell has the same length as the corresponding edge.Thus ~nk is not in the �-� coordinate plane and the approximation cannot beexact, even under the assumptions of linearly varying u and constant advection.However, both of the above approximations are consistent and the distributioncoe�cients can be calculated as for the two-dimensional scheme (since everythingis carried out locally on the triangle) and the same overall update used.4.1 ResultsFigure 4.1 shows the initial conditions (and the exact solution after one revolu-tion) for the advection of a cosine bell around a great circle of a sphere proposedin [13]. Figures 4.2 and 4.3 show the numerical solution on the coarse grid il-lustrated (1357 nodes, 2710 cells) after one revolution, respectively around theequator and across the poles. The scheme used is in fact the implicit consistent�nite element version of the PSI scheme [11] with ux-corrected transport ap-plied to ensure monotonicity and the solutions look reasonably good despite thelack of conservation. Importantly there is little di�erence between the solutionsobtained for the advection over the poles and around the equator, and no specialtreatment of the poles has been necessary.13



Figure 4.1: The initial conditions for advection on the sphere.
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Figure 4.2: The solution after one revolution around the equator for advectionon the sphere.
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Figure 4.3: The solution after one revolution across the poles for advection onthe sphere.
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5 Three-Dimensional Grid AdaptationThe simple grid movement algorithm of [1] has been applied to the three-dimensionalscalar advection equation, ut + fx + gy + hz = 0 ; (5:1)to improve the accuracy of the steady state solutions obtained using the PSIuctuation distribution scheme [5].The underlying idea is simple: between solution iterations the nodes are movedto a weighted average of the positions of the neighbouring cell centroids, i.e.~xnewi = Pj2[4i wj~xjPj2[4i wj ; (5:2)where the ~xj are the positions of the centroids, wj are the cell weights and jindicates the cells adjacent to node i. The weights here are chosen to depend onlocal approximations to the �rst and second derivatives of the solution u, sow = �1 + �1j~ruj2 + �2(~r2u)2�1=2 ; (5:3)where �1 and �2 are chosen to improve the �nal results. Mesh tangling is avoidedby arti�cially limiting the distance which a node can move. A simple but ratherrestrictive limit is (�xi)max = 32 minj2[Ci  Vjmaxk=1;4Ajk! ; (5:4)where Vj is the volume of cell j, Ajk is the area of face k of cell j, and the minimumis taken over all cells with a vertex at node i, denoted by [Ci. A displacementcan be found for all nodes, including boundary `face' and `edge' nodes whichmust then be projected back on to the nearest point on corresponding part of theboundary, and `corner' nodes, even though they are then forced to remain �xed.The overall solution strategy is expressed by the following three stages:1) run the time-stepping algorithm on an initial, �xed grid until the solutionappears steady (but long before convergence is achieved).2) run the time-stepping interspersed with the grid movement until the grid hasadapted to the steady solution. In this work, each time-step is alternatedwith a single node movement iteration.17



3) �x the grid and run the time-stepping algorithm to convergence using thesolution from step 2) as initial conditions.5.1 ResultsResults are shown for a simple test case of advection through a cube with di-mensions [�1; 0] � [0; 1] � [0; 1], as described in [5]. The boundary conditionsare zero everywhere at inow except on z = 0 where u = 1 for r < 1, wherer2 = 4(x+0:5)2+5(y�0:35)2 (giving an ellipse). The advection velocity is givenby ~� = (z; 0:25; �x)T : (5:5)The grid is constructed from a uniform 21 � 21 � 21 node Cartesian mesh, eachcell of which is divided into 5 tetrahedra, as shown in Figure 5.1.
Figure 5.1: The division of a cube into �ve tetrahedra.Preliminary results are shown in Figure 5.2, for parameters �1 = 1:0 and�2 = 0:0. The mesh movement obviously improves the quality of the solutionbut the algorithm needs to be �ne-tuned before it is of practical use. It shouldthough be noted that the grid used here is very coarse: a �ner mesh would bebetter able to pick out the features of the ow and supply enough nodes to provideconsiderably better resolution of the solution. A similar test case, but one whichrequires the use of the second derivative in the adaptation is given by de�ningthe same initial conditions, except that u = 1 � r for r < 1, where r is de�nedabove. The solution is similarly improved (the peak value of u on the outowplane is increased from 0.629 to 0.857), this time using �1 = 0:01 and �2 = 1.18



Figure 5.2: Grids and solutions for the advection of `cylindrical' pro�le for theboundary planes at z = 0 (top) and x = 0 (bottom).

Figure 5.3: Grids and solutions for the advection of `conical' pro�le for the bound-ary planes at z = 0 (top) and x = 0 (bottom).19



6 ConclusionsThe �rst steps towards four separate applications related to multidimensionalupwind schemes have been presented here. Recently developed scalar uctuationredistribution techniques for constructing high resolution monotone schemes areapplied with some success to nonlinear systems of equations, but it is clear thatmore accurate and robust wave models will be necessary before the full bene�t ofthese scalar techniques can be exploited. Source terms can be incorporated nat-urally into multidimensional upwind methods, and this `upwind' discretisation isshown to improve signi�cantly on the standard, pointwise approximations. Thescalar schemes are then adapted crudely for use on spherical geometries. Thescheme as it stands is consistent but not conservative: the latter property requir-ing a modi�ed three-dimensional algorithm on a prismatic grid and additionalconstraints. The decomposition stage necessary for approximating the shallowwater equations on the sphere represents an even bigger challenge, which mayinclude the construction of three-dimensional wave models. Finally, a simple gridadaptation algorithm, which has been successfully applied in two dimensions isextended to the three-dimensional case and shown to work well on a simple testcase.7 Epilogue: the Current SituationThe family of multidimensional upwind schemes which has developed over thelast �fteen years has now achieved a degree of success which has allowed themto be applied in practical situations where two-dimensional steady state owsare being approximated although up to now this has been predominantly in the�eld of aerodynamics. More recently, they have also been applied to problems inhydraulic engineering (the source terms which appear commonly in the modellingcan be incorporated simply, but only at the expense of positivity). Note thoughthat all of the applications presented here have been on triangular grids because,although the schemes can be extended to quadrilateral meshes, the linearisationprocedure is less natural.Furthermore, the methods have been shown to combine well with the standard20



techniques for improving accuracy and e�ciency, such as implicit time-steppingand grid adaptation through both re�nement and movement. Viscous ow modelshave also been approximated (the Navier-Stokes equations) using these methodsbut, although the scalar uctuation distribution technique can be extended tothe advection-di�usion equation (by treating the viscous terms as sources), aGalerkin �nite element discretisation of the viscous terms is often used.Even now, though, these schemes have their limitations, the most noticeablebeing that the most accurate of the existing two-dimensional wave models have asingularity at a stagnation point. This can be dealt with satisfactorily in steadystate calculations but remains a problem for time-dependent ows. Because ofthis, the recent advances in accurate uctuation distribution schemes for time-dependent problems cannot be taken full advantage of: there is still much workto be done to construct appropriate decompositions for unsteady ows, and thismay require an alternative approach to those used so far.The situation with three-dimensional calculations is less well developed. Thesystem decompositions have been applied with some success and the uctuationdistribution schemes readily generalise to the three-dimensional scalar advectionequation (on tetrahedral meshes). It is also fairly simple to construct wave modelsalong similar lines to those described here, but none has yet been proposed whichincorporates the additional features apparent in the underlying three-dimensionalmodels, e.g. bicharacteristics.AcknowledgementsThe author would like to thank Prof. M.J.Baines for his contributions to thiswork and the EPSRC for providing the funding for the author.References[1] M.J.Baines and M.E.Hubbard, `Multidimensional upwinding with gridadaptation', in Numerical Methods for Wave Propagation, E.F.Toro andJ.F.Clarke (Eds.), pp. 33{54, Kluwer Academic Publishers, 1998.21
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