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Abstract

The study of cardiac arrhythmias is a major focus of

computational biology, and undertaking biophysically de-

tailed simulations is computationally demanding. An ef-

ficient coupled electromechanical solver to model cardiac

tissue has been developed. This provides features to model

fibre direction, and utilises computationally efficient tech-

niques to reduce the simulation times. In this paper the

break up of human re-entrant arrhythmias has been simu-

lated. The results suggest that tissue deformation is a con-

tributory factor in the break up of stable re-entrant spiral

waves.

1. Introduction

The study of cardiac arrhythmias is a major topic in

computational biology, as a detailed quantitative descrip-

tion of the underlying electrophysiology has been devel-

oped that allows the simulation of both normal and patho-

logical excitation and the propagation of this excitation [1].

The results of such simulations can be analysed in time and

space, allowing a detailed study at the cell, tissue and or-

gan levels of the mechanisms underlying arrhythmias.

Recently, these electrophysiological models have been

coupled to mechanical models in deforming domains in

order to investigate the additional influence that mechan-

ics has on arrhythmogenesis [2]. However, these are often

either phenomenological models that, due to their simplic-

ity, limit the application of the model to a disease state, or

are biophysically detailed and therefore very demanding

computationally.

Here we present a biophysically detailed yet efficient

coupled electromechanical model of human cardiac tissue

than can be used to study re-entrant arrhythmias in both

healthy and diseased states.

2. Methods

To simulate cardiac electromechanical activity it is nec-

essary to model the propagation of the electrical waves

around the heart muscle, the muscle contraction instigated

by this electrical activity and the feedback that the electri-

cal activity and muscle deformation have upon each other.

2.1. Cardiac electrophysiology

A monodomain model was used to represent cardiac

electrophysiology, described by the following parabolic

partial differential equation [3]:

Cm

∂V

∂t
= −(Iion + Istim) + ∇ · D∇V, (1)

where D is the diffusion tensor, Cm is the membrane ca-

pacitance, V is the transmembrane potential, Iion is the

sum of all ionic currents, and Istim is the externally ap-

plied transmembrane current.

The ionic currents (Iion) used were given by the ten

Tusscher and Panfilov 2006 model [4], which provides a

detailed description of the individual ionic currents, volt-

age and intracellular ion concentrations. This model is

based on human electrophysiological data and provides the

potential to simulate conditions such as end-stage tissue

disease. The diffusion tensor is chosen to simulate fibre

direction where the electrical currents travel faster along

the fibres than across them [5].

Equation (1) is approximated using the Galerkin Finite

Element Method (FEM) with linear basis functions. The

simulations presented in this paper are undertaken in two

dimensions and the domain is divided into unstructured tri-

angles. The time derivative is discretised using a hybrid ap-

proach in which the Crank-Nicolson method is used for the

diffusion term (for which it is unconditionally stable [6])

and an explicit forward Euler method is applied to the re-

action term. The sparse system resulting from the implicit

FEM approximation is solved using an ILU preconditioned

GMRES solver [7].



2.2. Modelling cardiac mechanics

The cardiac tissue is modelled as a non-linearly elas-

tic material. The stress equilibrium equation as described

in [2], derived from the conservation of linear momentum

following Newton’s laws of motion [8], is solved to pro-

vide material deformation. In common with other authors

[9, 10] the tissue is incompressible and this is enforced as

described in [11]. The resulting equations are expressed

as:
∂

∂XM

(

TMNF
j
N

)

= 0, (2)

det(F ) = 1, (3)

where TMN is the second Piola-Kirchhoff stress tensor

and F is the deformation gradient tensor:

F i
M =

∂xi

∂XM

, (4)

where xi are the deformed coordinates and XM are the

reference coordinates.

In common with [11], the second Piola-Kirchhoff tensor

is split into an elastic component and a biochemical com-

ponent, and is given by:

TMN =
1

2

(

∂W

∂EMN

+
∂W

∂ENM

)

− pC−1

MN + TaC−1

MN ,

(5)

where W is the scalar strain energy function, E the La-

grangian Green strain tensor, p (referred to as the pressure)

is a Lagrange multiplier that is used to enforce the incom-

pressibility constraint, Ta is the active tension generated

by the electrical system, and C is Green’s strain tensor

(C = FT F ). The active tension is simplified as described

in [11] and this ensures the force acts along the fibre di-

rection [10, 12]. The strain energy function W from [2] is

used, which describes certain types of rubbers and silicone

gels, known as Mooney-Rivlin materials.

The governing equations are approximated with the

FEM, using unstructured triangular elements to discretise

the domain. The deformation unknowns are solved using

quadratic basis functions and the pressure unknowns with

linear basis functions [13]. The resulting system is highly

non-linear and is solved with a matrix-free Newton-Krylov

iterative method [14]. This uses a GMRES solver to solve

the inner system. The non-linear nature of the system im-

pacts on the performance of the solver and to improve this

an ILU preconditioner is applied.

2.3. Coupling cardiac electrophysiology and

mechanics

The electrical system generates an active tension for

each node in the mesh and the mechanical system uses a

subset of the nodes from the electrical system. In these

simulations after ten time steps of the electrical system the

active tension is passed from the electrical system to the

common nodes in the mechanical system. The mechanical

solve is then undertaken and a new tissue deformation is

produced. The coordinates of the deformed tissue are then

passed back to the common nodes in the electrical model

and the more refined nodes have their deformation interpo-

lated from these.

The biochemical component of the 2nd Piola-Kirchhoff

tensor contains the active tension variable (Ta) and this is

calculated using equations (22c) and (23) from [2]. (Note,

the corrected version from the www.cellml.org website is

used). The ODE described in equation (22c) of [2] is

solved using an explicit Euler method.

2.4. Simulation settings

The simulations are run on a square domain which oc-

cupies the region of 0 < X1,X2 < 12 cm. For the elec-

trical simulations the domain is divided into 634,368 un-

structured triangular elements using 318,065 nodes. This

gives an approximate element edge of 0.21 cm. For the

mechanical simulations a mesh of 2478 unstructured trian-

gular elements and 5067 nodes is used. These nodes are

common to the electrical mesh. To prevent spurious ro-

tation and translation, and hence preserve uniqueness of

the solution, the node closest to the centre of the domain

is fixed in both directions and a neighbouring node at the

same vertical height is fixed in the X2 direction.

At time t = 0ms the voltage of each node is set to

−86.2mV and a stimulus current (Istim) of 52 µA/µF is

provided to the edge X1 = 0 for t < 1ms. To instigate

a spiral wave, the upper half of the domain is clamped for

35ms after t = 165ms to−86.2mV. This enables a steady

state spiral wave to form, and in all simulations this is left

running until t = 5000ms to demonstrate spiral wave sta-

bility.

The electrical solve uses semi-implicit time discretisa-

tion which the time step (dt) to be set to 0.08ms. The

mechanical solver is not time dependent, but the iterative

solver can fail to converge to a solution if the initial guess

is too inaccurate. For these experiments the last two solves

are used to extrapolate the initial guess and this is stable

for dt = 0.08ms.

The parameters for the generation of Iion are defined in

[4]. The diffusion tensor was set to be (in units of cm/ms):

(

0.00154 0.0001711
0.0001711 0.00154

)

, (6)

which gives a wave speed of 0.68m/s.

The upper bound of the active tension (Ta) is governed

by the constant kTa
, which is set to 9.58 kPa. This gen-



erates deformations that are quantitatively similar to the

deformations in [11].

3. Results

3.1. Validating the electrical model

The electrical model was validated against [4]. This was

done by running three sets of tests that correspond to the

bottom three rows of the first column of Figure 7 of [4].

Figure 1 shows the results for dynamic restitution slopes

of 1.1, 1.4 and 1.8 (as defined in Table 2 of [4]). The sim-

Figure 1. Electrical model with three restitution slopes

ulations were run for 5000ms with the restitution slope set

to 1.1 and then the new restitution slope introduced for a

further 5000ms. The results in Figure 1 are similar to [4].

Specifically, for restitution slopes of 1.1 and 1.4 a stable

spiral wave is maintained over time. For a restitution slope

of 1.8 the spiral wave breaks up into alternans.

3.2. Validating the mechanical model

The mechanical component of the solver was validated

against [11]. The left edge (where X1 = 0) of the do-

main was fixed in space and stimulated to form a line wave.

The results from this are displayed in Figure 2. These re-

sults provide deformations quantitatively similar to Figure

Figure 2. Mechanical deformation caused by an electrical

wave

1 of [11] and with a similar deformation profile. It should

be noted that [11] uses a different strain energy function.

The tests also demonstrated a correlation between electri-

cal wave speed and mesh resolution. On coarse electrical

meshes the solution is not sufficiently resolved and this re-

sults in a wave speed dependent on the mesh.

3.3. Deforming tissue

Simulations were undertaken to compare spiral waves

with the tissue deformation enabled (coupled solver)

against the static domain (uncoupled solver). The results

can be seen in Figure 3. In these simulations the fast

sodium channel (INa) is set to the standard value as defined

in [4]. The simulations were run with restitution slopes of

1.1, 1.4 and 1.8. The spiral wave is stable when the resti-

tution slope is 1.1 for both the deforming and static sim-

ulations. The spiral wave is stable for a restitution slope

of 1.4 for the static simulation and is initially stable for a

restitution slope of 1.4 for the deforming simulation, how-

ever becomes unstable over time. The spiral wave for a

restitution slope of 1.8 breaks up in both the static and de-

forming simulations.

In the deforming simulations, the domain is compressed

along the fibre orientation. We can see that the deformed

domain causes the spiral wave to break more quickly than

in the static domain. For a restitution slope of 1.8 the wave

has totally dissipated by t = 10000ms and for a restitution

slope of 1.4 the wave has started to break up after t =
8000ms.



Figure 3. Deforming verses static domain

4. Discussion and conclusions

A model capable of simulating cardiac tissue in a de-

forming two-dimensional domain has been developed.

This provides the ability to model the affect of fibre di-

rection in both the electrical and mechanical systems. The

software includes a number of performance enhancement

features, including using a sparse matrix storage algorithm

and semi-implicit method in the electrical solver and using

ILU preconditioning with re-usable numerical Jacobian in

the mechanical system. We have validated this against pre-

viously published results.

In this paper the model has shown that by deforming

the domain the electrical wave is altered and that this can

affect the stability of a re-entrant spiral wave.

This model will now be used to simulate end-stage dis-

eased tissue and fibrosis, introducing both in-excitable fi-

brotic regions and electrophysiological changes.

To fully resolve the electrical wave in these scenarios it

will be necessary to add local adaptivity. This will enable

fully converged solutions to be obtained using fewer mesh

nodes and thus improve computational efficiency further.
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