
Moving mesh methods for solving parabolic partial

differential equations

R. Marlowa,∗, M. E. Hubbarda, P. K. Jimacka

aSchool of Computing, University of Leeds, UK

Abstract

A new adaptive method is described for solving non-linear parabolic par-

tial differential equations with moving boundaries, using a moving mesh with

continuous finite elements. The evolution of the mesh within the interior of

the spatial domain is based upon conserving the distribution of a chosen

monitor function across the domain throughout time, where the initial dis-

tribution is selected based upon the given initial data. The mesh movement

at the boundary is governed by a second monitor function, which may or

may not be the same as that used to drive the interior mesh movement. The

method is described in detail and a selection of computational examples are

presented using different monitor functions applied to the porous medium

equation (PME) in one and two space dimensions.

Keywords:

Moving meshes, finite elements, moving boundaries, parabolic PDEs,

porous medium equation

∗Corresponding author.
Email address: corm@leeds.ac.uk (R. Marlow)

Preprint submitted to Computers and Fluids November 26, 2010

1. Introduction

Moving mesh methods have been shown to have great potential in solving

problems with moving fronts and boundaries, problems involving phenomena

such as blow-up and problems in a wide range of applications for which

non-stationary features need to be tracked in time (see, for example, [1]

and references therein). They are, however, not as widely used as other

adaptive techniques in computational fluid dynamics (CFD), perhaps because

there remain many outstanding questions over accuracy and reliability. In

this context, we explore here a new method that uses the maintenance of

a distribution of a monitor function in order to define the velocities of the

nodes of the mesh in a Lagrangian co-ordinate system, and so drive the mesh

movement. This technique is a natural generalization of [2], which is based

on maintaining the distribution of a specific monitor function, namely the

mass monitor.

Consider a parabolic partial differential equation (PDE) of the form

ut = Lu, (1)

whose solution lies in a time-dependent domain Ω(t). Here L is a purely spa-

tial operator of second order. We focus upon the use of low order, continuous

finite elements, on a moving mesh (with support Ω̃(t) say) which approxi-

mates Ω(t). The mesh movement in the interior of Ω̃(t) is to be driven by a

monitor function m(u), and our first aim in this study is to maintain the ini-

tial distribution of this monitor function as the domain, the solution and the

mesh evolve. In the case where the initial distribution is an equidistribution

of m(u), the goal would therefore be to maintain an equidistribution for all

2

time. Starting with an initial condition, u(x, t0) = u0(x), for the solution of

(1) the initial monitor total may be evaluated:

θ0 =

∫

Ω̃(t0)

m(u0) dΩ , (2)

on an initial mesh with support Ω̃(t0). We may represent the relative monitor

distribution across this mesh via the set {ci}, defined by

ci =
1

θ0

∫

Ω̃(t0)

wim(u0) dΩ, i = 1, 2 . . .N, (3)

where wi are N piecewise linear finite element test functions, which form a

partition of unity [2]. Hence, our first aim translates to keeping the right-

hand side of (3) constant when evaluated at t > t0 as the solution and the

mesh, and so the spatial domain Ω̃(t), evolve with time. For the remainder

of this paper we will always work with the discrete domain Ω̃(t) but will drop

the tilde notation for convenience.

The desire for the ci to remain constant provides us with a mechanism

for determining the mesh velocities (i.e. the velocities of the N nodes of the

mesh) as the solution evolves. In order to achieve this, we first define,

θ(t) =

∫

Ω(t)

m(u) dΩ, (4)

and then, based upon (3), we seek to impose that, for all time,

ciθ(t) =

∫

Ω(t)

wim(u) dΩ, i = 1, 2 . . .N. (5)

If we assume each ci does indeed remain constant in time then

ciθ̇(t) =
d

dt

∫

Ω(t)

wim(u) dΩ , (6)

3

with the values of the ci given by (3). Developing this equation by bringing

the time derivative into the integral (using Reynolds’ Transport Theorem),

ciθ̇(t) =

∫

Ω(t)

[
∂

∂t
(wim(u)) + ∇ · (wim(u)ẋ)] dΩ , (7)

(where ẋ is the velocity of the mesh) and assuming that the piecewise linear

test functions evolve with the mesh, that is

∂wi

∂t
+ ẋ · ∇wi = 0 , (8)

one obtains the expression

ciθ̇(t) +

∫

Ω(t)

m(u)∇wi · ẋ dΩ = (9)

∫

Ω(t)

wim
′(u)Lu dΩ +

∫

∂Ω(t)

wim(u) ẋ · n̂ dS, i = 1, 2 . . .N.

Here n̂ is the outward pointing, unit-length normal at any point on the

surface of Ω. Equation (9) provides us with a means to evaluate the interior

mesh velocity ẋ, from current values of u and x, and the normal component

of ẋ on the boundary.

The value of the normal component of ẋ on the boundary, ∂Ω(t), may be

determined in one of a number of possible ways. For example it may be known

analytically for certain problems: either because the boundary is stationary

or its motion is prescribed by some external condition. Alternatively, this

boundary velocity may also be approximated numerically. For the sake of

generality it is this latter approach that we adopt in this work, where the

boundary motion is determined based upon the method of [2]. Assuming,

for the simplicity of this discussion, that u = 0 on the boundary and that u

is conserved, then selecting m(u) ≡ u in (9) leads to the system
∫

Ω(t)

u∇wi · ẋ dΩ =

∫

Ω(t)

wiLu dΩ , i = 1, 2 . . .N. (10)

4

A finite element discretization of (10) allows ẋ to be approximated at all N

nodes of the grid, including those on the boundary (see [2] for full details).

Let the approximation obtained using m(u) = u, be given by ξ̇. This can

now be used to fully prescribe the right-hand side of (9) by setting ẋ · n̂ = ξ̇

· n̂ on the boundary:

ciθ̇(t) +

∫

Ω(t)

m(u)∇wi · ẋ dΩ = (11)

∫

Ω(t)

wim
′(u)Lu dΩ +

∫

∂Ω(t)

wim(u) ξ̇ · n̂ dS, i = 1, 2 . . .N.

This is a necessary additional step for general monitors m(u) which, on their

own, do not correctly predict the boundary movement in problems which do

not have an explicit Stefan-type boundary condition. The monitor m(u) =

u is used to approximate the boundary movement in all of the examples

presented in this paper.

The system (11) may be used to obtain a piecewise linear approximation

to ẋ. In one space dimension this may be achieved by solving directly for

a finite element representation of ẋ. However, in higher dimensions an in-

termediate step is required, as explained in [2], in order to ensure a unique

solution. This intermediate step assumes that ẋ = ∇φ for some scalar po-

tential function φ. Hence a piecewise linear approximation to φ is sought

from

ciθ̇(t) +

∫

Ω(t)

m(u)∇wi · ∇φ dΩ = (12)

∫

Ω(t)

wim
′(u)Lu dΩ +

∫

∂Ω(t)

wim(u) ξ̇ · n̂ dS, i = 1, 2 . . .N.

This system is augmented by an additional equation, found by differentiating

(4) with respect to time and applying the Reynolds’ Transport Theorem to

5

obtain

θ̇(t) =

∫

Ω(t)

m′(u) Lu dΩ +

∫

∂Ω(t)

m(u) ξ̇ · n̂ dS . (13)

Finally, since (12) is an equation in ∇φ, φ = 0 is specified at a single, arbitrar-

ily chosen, node in order to allow a unique solution, and the corresponding

equation in (12) is ignored. Equations (12) and (13) can then be solved for

θ̇ and the remaining nodal values of φ. A piecewise linear approximation to

ẋ is then recovered in the interior of the domain by undertaking a standard

L2 projection of ∇φ into the space of piecewise linears.

Once ẋ is known at an instant, a time-step may be taken and the value

of the solution, u, on the new mesh at the end of the step may be recovered.

Again, there are multiple options for achieving this and we compare two such

options in this paper. The first of these (denoted “ALE”) is based upon a

standard arbitrary Lagrangian-Eulerian formulation, using the known mesh

velocity to update the discretization of the original PDE (1) through the

addition of a mesh advection term, i.e.

∫

Ω(t)

wi u̇ dΩ =

∫

Ω(t)

wi (Lu + ∇u · ẋ) dΩ, i = 1, 2 . . .N. (14)

This leads to nodal values for u̇ which can then be used to update u at the

same time as the nodal positions. Constant Dirichlet boundary conditions

are specified by fixing u̇ = 0 on the boundary and ignoring the corresponding

equations in (14). The second approach that we consider (denoted “Recov-

ery”) is a direct analogy of the method used in [2], where we take a time-step

to update the mesh positions and then solve the nonlinear system (5), which

is regarded as a set of algebraic equations for the nodal values of u (with the

ci constant). In this latter case we update θ and x (and so Ω(t)) from our cal-

6

culated θ̇(t) and ẋ, using a standard time-stepping algorithm (forward Euler

in this case), and solve (5) for u, with a Newton-Krylov method [3]. Dirichlet

boundary conditions are imposed strongly by fixing u on the boundary and

ignoring the corresponding equations in (5).

In summary, a single time-step for a general monitor function consists of

the following stages:

1. Given mesh node positions and the distribution of the monitor m(u) =

u over these nodes, solve equation (10) in the manner described in [2]

to find ξ̇.

2. Given the same mesh node positions and the distribution of the monitor

chosen to govern the internal mesh movement, as in equation (5), solve

equation (12) to find φ and θ̇.

3. Use a standard L2 projection of ∇φ to recover ẋ.

4. Do one of the following:

(a) Use equation (14) to find u̇, then update the mesh node positions

using ẋ and the nodal values of u using u̇.

(b) Update the mesh node positions using ẋ and the value of θ using

θ̇, then recover the nodal values of u directly from equation (5).

2. Numerical Results

For this short paper we present numerical results for a single test prob-

lem, namely the porous medium equation (PME). However we do present

results in both one and two space dimensions and consider different choices

for the monitor function m(u). The features of this equation which make

it suitable for the tests that we undertake here include a moving boundary,

7

whose evolution must be determined as part of the solution procedure, and

the existence of a family of known similarity solutions in the presence of

radial symmetry.

In d space dimensions the PME is written as

∂u

∂t
= ∇ · (un∇u) (x ∈ Ω(t), t > 0), n ∈ Z

+; u

t=0
= u0(x); u

∂Ω(t)
= 0 .

(15)

As indicated above, for suitable initial data this problem has a known solution

of the form [4]:

u(r, t) =

1
λd(t)

(1 − (r
r0λ(t)

)2)1/n if |r| ≤ r0λ(t)

0 if |r| > r0λ(t) ,
(16)

where d is the space dimension, r the usual radial co-ordinate and

λ(t) =
(t

t0

)
1

2+dn

with t0 =
r0

2n

2(2 + dn)
. (17)

Hence we are able to compare our computations against this known solution

in order to obtain an empirical assessment of its accuracy. Furthermore,

note that when n > 1 the similarity solution has an infinite gradient at the

boundary, which makes the problem particularly challenging numerically.

Indeed, since the above similarity solution is known to be a global attractor,

even if the initial data does not have this property, the gradient of the solution

grows unboundedly at the boundary when n > 1. In such situations it is

often beneficial to construct an initial mesh with higher resolution near to

the boundary. This is achieved in Section 2.2 by including a pre-processing

step which adjusts the initial mesh to equidistribute the chosen monitor, i.e.

arc-length.

8

2.1. An area monitor function

In [2] the monitor function m(u) = u is used throughout. We refer

to this as the “mass” monitor through the analogy of u with a physical

density. Consequently, if the mass is equidistributed for the representation

of the initial data on the initial mesh then the method will seek to maintain

this equidistribution for all time. A simple alternative is to begin with a

mesh in which each element has an approximately equal area, and then to

seek to evolve the mesh with the solution in such a manner as to maintain

approximately equal areas for all elements. As the total area of Ω(t) changes

the area of each element will change but the relative area of each pair of

elements should remain approximately constant. The relative areas may not

be maintained exactly because, even though the mesh velocity potentials

are derived under the assumption that the ci remain constant, neither the

subsequent recovery of the dependent variable values via an ALE approach,

nor any other part of the algorithm, imposes any such constraint. As a

result, although the mesh movement at a given instant in time is calculated

in a manner designed to retain the monitor distribution, the recovery of the

dependent variable on the moving mesh is governed by the behaviour of the

PDE in the resulting Lagrangian frame, which does not locally preserve the

monitor.

The natural monitor to use in equation (5), in order to preserve area,

is simply m(u) = k for some constant k. The fact that we have already

approximated the values of the boundary velocities ξ̇ means that equation

(12) can be used directly with this monitor, and the fact that the term

involving the influence of the PDE (via Lu) disappears does not matter.

9

We have tested this approach for various values of k, and for the monitor

m(u) = u + k for large values of k (104, 106) and the results are virtually

identical. The choice for the value of k has little effect on the condition

number of the system and hence the speed of the algorithm. All of the

results presented in this section use the ALE form of the method in order to

recover the solution values once the mesh velocity has been determined.

Figure 1 shows an initial mesh and solution using the similarity solution

for n = 3, and the meshes after t = t0 + T, T = 0.1 are shown in Figure 2

for both the mass monitor and the area monitor. In the special case of

the similarity solution the mass monitor also approximately preserves area.

Convergence rates based upon the area monitor, when comparing to the exact

solutions for n = 1 and n = 3, are shown in Figure 3. We can clearly see a

convergence rate that is close to order 2 for n = 1 and to order 1 for n = 3.

The reduced order in the latter case being due to the infinite normal slope

at the boundary. This is consistent with the behaviour of the mass monitor,

as seen in [2].

Finally in this subsection we consider non-similarity solutions for which

n = 3 but the initial solution has a finite normal component of the gradient at

the boundary (obtained using the same mesh as in Figure 1 but with u0 given

by (16) with n = 1 and t = t0). Figure 4 shows one quadrant of the solution

meshes at T = 25 for the mass and area monitors. The rest of the mesh shows

complete four-fold symmetry in both cases. With the mass monitor we can

see area compression near the boundary as the solution steepens there, whilst

for the area monitor we see the initial equal area distribution of the elements

being preserved, as directed by the choice of monitor function.

10

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Figure 1: ALE/PME/2D: initial mesh profile, 545 nodes, n = 3.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

Figure 2: ALE/PME/2D: mesh profiles at T = 0.1 for mass monitor (left) and area

monitor (right), both with n = 3.

Figure 5 shows the initial conditions for a test case which does not exhibit

radial symmetry. Instead two initial peaks merge as they evolve and the

solution tends towards a radially symmetric similarity solution. The solution

11

−2.5 −2.4 −2.3 −2.2 −2.1 −2 −1.9 −1.8 −1.7 −1.6 −1.5
−5

−4.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

Log(dx)

L
o

g
(L

2
 e

rr
o

r)

L
2
 error

2−slope

−2.5 −2.4 −2.3 −2.2 −2.1 −2 −1.9 −1.8 −1.7 −1.6 −1.5
−3

−2.9

−2.8

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

Log(dx)

L
o

g
(L

2
 e

rr
o

r)

L2 error
1−slope

Figure 3: ALE/PME/2D: Convergence rates for area monitor at T = 0.1, for n = 1 (left)

and n = 3 (right).

−1 −0.75 −0.5 −0.25 0
0

0.25

0.5

0.75

1

−1 −0.75 −0.5 −0.25 0
0

0.25

0.5

0.75

1

Figure 4: ALE/PME/2D: zoomed mesh planviews at T = 25.0 for mass monitor (left) and

area monitor (right).

Initial conditions derived using n = 1 but evolution governed by n = 3.

profile and the mesh for n = 2 at T = 1.0 are shown for the mass and

area monitors in Figures 6 and 7. In this case the area monitor clearly

12

preserves the shape of the initial mesh better than the mass monitor. This is

particularly obvious at the centre of the domain where the cells are twisted

by the mass monitor.

−0.5

0

0.5 −0.5

0

0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5: ALE/PME/2D: Non-radially-symmetric initial conditions with two peaks.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6: ALE/PME/mass monitor/2D: Snapshots of solution (left) and mesh (right) at

T = 1.0 for the evolution of twin-peak initial conditions with n = 2.

13

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7: ALE/PME/area monitor/2D: Snapshots of solution (left) and mesh (right) at

T = 1.0 for the evolution of twin-peak initial conditions with n = 2.

In addition to this, Figures 8 and 9 show the evolution of an initial profile

in which the circular boundary has been perturbed in a sinusoidal manner

to give concavities in the boundary. The results using the area monitor are

shown: when the mass monitor was used the mesh tangled before this time

was reached.

2.2. An arc-length monitor function

In this section we consider the monitor function m =
√

1 + u2
x to drive our

moving mesh method for the solution of the PME in one space dimension.

Note that this monitor is no longer a function of u but of ∂u
∂x

and so the

derivation of the moving mesh equations must be updated slightly. We begin

by presenting this update for the one-dimensional case, however it should

be noted that the generalization to multidimensions, where m = m(∇u), is

straightforward.

14

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8: ALE/PME/2D: Non-radially-symmetric initial conditions with concave bound-

ary.

−4

−2

0

2

4

−4

−2

0

2

4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 9: ALE/PME/area monitor/2D: Snapshots of solution (left) and mesh (right) at

T = 20.0 for the evolution of concave-boundary initial conditions with n = 1.

First observe that in one dimension the domain Ω(t) becomes a moving

interval [a(t), b(t)] and so the finite element system for the mesh velocity

15

potential, (12), becomes

ciθ̇(t) +

∫ b(t)

a(t)

m(u)
∂wi

∂x

∂φ

∂x
dx =

∫ b(t)

a(t)

wim
′(u)Lu dx +

[

wim(u)ξ̇
]b(t)

a(t)
,

(18)

for i = 1, 2 . . .N . Noting that when m(u) is replaced by m(∂u
∂x

) we obtain

∂m(∂u
∂x

)

∂t
= m′

(

∂u

∂x

)

∂

∂t

(

∂u

∂x

)

= m′

(

∂u

∂x

)

∂

∂x

(

∂u

∂t

)

= m′

(

∂u

∂x

)

∂

∂x
(Lu) ,

(19)

and writing v = ∂u
∂x

, equation (18) becomes

ciθ̇(t) +

∫ b(t)

a(t)

m(v)
∂wi

∂x

∂φ

∂x
dx =

∫ b(t)

a(t)

wim
′(v)

∂

∂x
Lu dx +

[

wim(v)ξ̇
]b(t)

a(t)
,

(20)

for i = 1, 2 . . .N .

Note that the first term on the right-hand side of (20) now involves a third

derivative of u. When u is represented by a C0 finite element approximation

this may be dealt with by approximating Lu by a recovered piecewise linear

function, q say. Let

q(x) =

N
∑

j=1

qjwj , (21)

then, following [5], a weak form of q = Lu is given by

∫ b(t)

a(t)

wiq dx =

∫ b(t)

a(t)

wi Lu dx, i = 1, 2 . . .N. (22)

For the PME this becomes
∫ b(t)

a(t)

wiq dx =

∫ b(t)

a(t)

wi
∂

∂x
(un∂u

∂x
) dx, i = 1, 2 . . .N, (23)

and integrating by parts gives:
∫ b(t)

a(t)

wiq dx = −

∫ b(t)

a(t)

∂wi

∂x
(un ∂u

∂x
) dx, i = 1, 2 . . .N, (24)

16

since u = 0 on the boundary. Hence a simple mass-matrix system must be

solved to recover q ≈ Lu in (20).

Figure 10 shows typical results obtained using the ALE formulation with

n = 1 and N = 21. The T = 0.0 profile illustrates the initial solution and the

mesh that has been used (for which the arc-length is equally distributed),

whilst the T = 1.0 profile shows the computed solution and mesh at t =

t0 + 1.0 along with the exact solution at this time. Figure 11 (left) shows

that the convergence rate for this method appears to be second order (as

we would hope for n = 1), whilst Figure 11 (right) shows how the values

of three of the ci “constants” vary with time (the one at the centre, one

at the boundary and one midway between). Recall that, as with the area

monitor, although the desire to keep each ci constant is used to drive the

mesh evolution this constraint is never actually enforced in the ALE form

of the method. Indeed, we see that the values of ci for the points at the

boundary (which are initially half that for each of the other points) are far

from constant in these runs. This is also evident from inspection of Figure

10.

An alternative method (to the ALE approach) for recovering the solution

values u, once the mesh velocity is known, is to update the mesh position

over a time-step and then to recover values of u at the nodes so as to force

the ci values to remain unchanged. This effectively forces the distribution of

the monitor function to remain static for all time and may be achieved by

solving (5) for u. This is a highly nonlinear algebraic system of equations

and is solved using a Newton-Krylov algorithm [3].

Figure 12 shows typical results obtained using this Recovery approach,

17

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

x

u

T=1.0

T=0.0
Exact
Approximate

Figure 10: ALE/PME/arc-length monitor/1D: Grid evolution for an initial mesh which

equidistributes arc-length, 21 nodes. Graphs compare the approximate solution at the

mesh nodes with the exact solution at T = 0.0 and T = 1.0 for n = 1.

−2 −1.9 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1 −1
−4

−3.5

−3

−2.5

−2

−1.5

−1

Log(dx)

L
o

g
(L

2
 e

rr
o

r)

L
2
 error

2−slope

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.025

0.03

0.035

0.04

0.045

0.05

0.055

time(s)

c
i
(d

is
tr

ib
u

ti
o

n
 r

a
ti
o

s
)

Boundary
Quarter−point
Origin

Figure 11: ALE/PME/arc-length monitor/1D: Convergence of the method at T = 1.0 for

n = 1 (left), and evolution of the monitor distribution on the 21 node mesh which initially

equidistributed arc-length (right).

again based upon n = 1 and N = 21. The T = 0.0 profile illustrates the same

initial mesh and solution as in Figure 10, whilst the T = 1.0 profile shows the

new computed mesh and solution at t = t0+1.0 along with the corresponding

18

exact solution. Similarly, Figure 13 (left) shows the convergence behaviour

for this version of the method whilst Figure 13 (right) demonstrates that the

constants ci do indeed remain unchanged for all time. Any small discrepan-

cies are due to the fact that the ci are node-based quantities, so retaining the

initial values of the ci doesn’t necessarily mean retaining the precise initial

distribution of arc-lengths across the cells.

Clearly, the strong imposition of the constraint that the distribution of

the arc-length monitor function can never change has had an adverse effect

on the accuracy of the solver, reducing it to just first order. This may be

due to the piecewise constant nature of the discrete arc-length monitor which

is now used directly in the recovery of the dependent variable. In contrast,

the ALE approach updates u using a discrete form for the PDE on the

moving mesh which is second order accurate whatever velocities are given to

the internal mesh nodes. The difference is clearly visible when comparing

Figures 10 and 12, and in Figure 14, which illustrates how the positions of

the mesh nodes evolve over time for both approaches. Note also that, since it

requires the inversion of a nonlinear system at each time-step, direct recovery

is substantially more expensive per time-step than the ALE approach. The

precise ratio depends on the number of mesh nodes, the tolerance used in the

nonlinear solver, and the initial guess (taken here to be the values predicted

by the ALE update).

3. Discussion

In this paper we have introduced a new moving mesh finite element

method which generalizes earlier work of [2] by allowing the interior of the

19

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

x

u

T=1.0

T=0.0
Exact
Approximate

Figure 12: Recovery/PME/arc-length monitor/1D: Grid evolution for an initial mesh

which equidistributes arc-length, 21 nodes. Graphs compare the approximate solution at

the mesh nodes with the exact solution at T = 0.0 and T = 1.0 for n = 1.

−2 −1.9 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1 −1
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

Log(dx)

L
o

g
(L

2
 e

rr
o

r)

L
2
 error

1−slope

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

time(s)

c
i
(d

is
tr

ib
u

ti
o

n
 r

a
ti
o

s
)

Boundary
Quarter−point
Origin

Figure 13: Recovery/PME/arc-length monitor/1D: Convergence of the method at T = 1.0

for n = 1 (left), and evolution of the monitor distribution on the 21 node mesh which

initially equidistributed arc-length (right).

mesh to evolve based upon maintaining the distribution of an arbitrary mon-

itor function m(u) or m(∇u). Note that whilst we may drive the interior

mesh velocity with whichever monitor that we may wish to preserve, the mo-

20

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Mesh node position

T
im

e

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Mesh node position

T
im

e

Figure 14: PME/arc-length monitor/1D: Evolution of the mesh node positions for n = 1

on the 21 node mesh using ALE (left) and direct recovery (right).

tion of the mesh points that lie on the domain boundary must be driven by

physical constraints, such as known boundary velocities, conservation laws,

etc.

Having derived the generalized version of the moving mesh algorithm it

has then been tested for two monitor functions which have not previously

been used with this approach: based upon the area of the finite elements and

the arc-length of the solution on each element respectively. In both cases the

ALE formulation of the method is shown to yield second order convergence

for the porous medium equation with n = 1. As expected, a lower rate of

convergence is observed for n > 1 due to the unbounded normal derivative of

the solution at the moving boundary. In the latter case, where the arc-length

monitor is used, the formulation of the method required a minor extension to

permit the recovery of a second derivative of the solution as an intermediate

step. In this case, a comparison of two different variants of the algorithm for

21

recovering the solution values u, once the mesh has been updated, showed

that the ALE approach is advantageous even though this does not strongly

enforce the preservation of the initial distribution of the monitor function.

Further work is required to improve the efficiency of these schemes, since

the current explicit approach requires the time-step to be proportional to

the square of the mesh size for stability, and to consider the application of

these, and other, monitor functions for a wider range of PDEs in both one

and two dimensions. In particular, we wish to consider blow-up problems for

which the solution is known to grow unboundedly at certain points in the

spatial domain in finite time, e.g. [6]. The underlying approach has already

been applied with the mass monitor to a range of other multidimensional

problems, including an oxygen absorption-diffusion problem (which includes

a sink term) and phase change problems (which include an explicit Stefan

condition on the moving boundary) [2].

Acknowledgements

This work was funded by EPSRC: grant number EP/P502578/1. We

would like to thank Professor Mike Baines for his valuable suggestions

throughout the course of this work.

References

[1] Budd, C. J. and Huang, W. and Russell, R. D., Adaptivity with moving

grids, Acta Numerica (2009) 1–131.

[2] Baines, M. J., Hubbard, M. E. and Jimack, P. K., A moving mesh finite

element algorithm for the adaptive solution of time-dependent partial

22

differential equations with moving boundaries, Applied Numerical Math-

ematics 54 (2005) 450–469.

[3] Brown, P. N., A local convergence theory for combined inexact-

Newton/finite-difference projection methods, SIAM Journal on Numeri-

cal Analysis 24 (1987) 407–434.

[4] Murray, J. D., Mathematical Biology, Springer Verlag, 2003.

[5] Baines, M. J., Hubbard, M. E., Jimack, P. K. and Jones, A. C., Scale-

invariant moving finite elements for nonlinear partial differential equa-

tions in two dimensions, Applied Numerical Mathematics 56 (2006) 230–

252.

[6] Budd, C. J. and Williams, J. F., Parabolic Monge-Ampère methods for

blow-up problems in several spatial dimensions, Journal of Physics A

(2006) 5425–5444.

23

