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eAbstra
tThis arti
le des
ribes a dis
ontinuous implementation of residual distribution for shallow-water �ows. The emphasis is put on the spa
e-time implementation of residual distri-bution for the time-dependent system of equations with dis
ontinuity in time only. Thislifts the time-step restri
tion that even impli
it 
ontinuous residual distribution s
hemesinvariably su�er from, and thus leads to an un
onditionally stable dis
retisation. Thedistributions are the spa
e-time variants of the upwind distributions for the steady-statesystem of equations and are designed to satisfy the most important properties of theoriginal mathemati
al equations: positivity, linearity preservation, 
onservation and hy-drostati
 balan
e. The purpose of the several numeri
al examples presented in this arti
leis twofold. First, to show that the dis
ontinuous numeri
al dis
retisation does indeedexhibit all the desired properties when applied to the shallow-water equations. Se
ond,to investigate how mu
h the time step 
an be in
reased without adversely a�e
ting thea

ura
y of the s
heme and whether this translates into gains in 
omputational e�
ien
y.Comparison to other existing residual distribution s
hemes is also provided to demonstratethe improved performan
e of the s
heme.Keywords: hyperboli
 
onservation laws, shallow-water equations, spa
e-timedis
ontinuous representation, residual distribution1. Introdu
tionThe framework of residual distribution (RD) has a nearly thirty-year-old history, hav-ing �rst been introdu
ed in [1℄ as an alternative to �nite volume s
hemes for the numer-i
al dis
retisation of hyperboli
 
onservation laws. They 
an more naturally representthe most important underlying physi
al properties of steady-�ow problems � espe
iallyavoiding spurious os
illations around dis
ontinuities � while still providing se
ond-ordera

urate approximations. For time-dependent problems, however, it initially proved to berather more di�
ult to 
onstru
t an e�
ient, se
ond-order a

urate, RD s
heme that isalso free of spurious os
illations. Mu
h of the re
ent resear
h in the �eld, therefore, hasbeen aimed at devising truly time-dependent dis
retisations that retain all the desired
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properties of the underlying physi
al equations. Re
ent reviews of the �eld 
an be foundin [2, 3, 4℄.Almost all of these s
hemes, however, use 
ontinuous dis
retisations of the physi
alvariables. This leads to numeri
al methods that are both impli
it, be
ause of the presen
eof a global mass matrix, and require a time-step restri
tion to obtain stability, positivity orboth. For many pra
ti
al appli
ations in physi
s or engineering, these methods 
an proveto be 
omputationally ine�
ient and un
ompetitive with more established dis
retisationmethods, su
h as �nite volumes [5, 6℄, �nite elements [7℄ or �nite di�eren
es [8℄. Toremedy this short
oming, two di�erent approa
hes have been proposed in the literaturefor RD s
hemes that improve the e�
ien
y of the time-step algorithm as well as keep thedis
rete representation 
ontinuous. One is to make the dis
retisation genuinely expli
itand thus remove the need to solve an algebrai
 system at ea
h time step [9℄. The other isto introdu
e double layers in a spa
e-time impli
it s
heme, whi
h removes the restri
tionson the time step in the se
ond layer [10℄.In 
ontrast, it is also possible to allow the dis
rete representation to be dis
ontinuousa
ross 
ell/prism interfa
es. It is only relatively re
ently that this 
on
ept has beenintrodu
ed � at �rst for steady-state equations only [11, 12℄. The potential bene�ts ofthe dis
ontinuous RD (DRD) framework in spa
e in
lude: a) the possibility to implement
h-adaptivity more easily; b) a mass-matrix stru
ture that may render the inversion of themass matrix 
omputationally less expensive. As a further development, the work in [13℄took the �rst steps towards un
onditionally stable spa
e-time RD s
hemes by introdu
ingdis
ontinuous representation in time. One 
an also view this 
onstru
tion as a spe
ial,and slightly simpler, 
ase of the spa
e-time double-layer s
heme [10, 14℄, where the �rstlayer is of zero height, while there is still no formal 
ondition on the height of the se
ondlayer.In this arti
le, we extend the 
on
ept of spa
e-time DRD to the shallow-water equa-tions with possibly non-�at bottom topography. Mathemati
ally, the non-�at bottomtopography manifests itself as a sour
e term in the governing equations. This meansthat apart from the usual requirements � positivity, linearity preservation, 
onservationand upwinding � a su

essful numeri
al s
heme should also preserve the hydrostati
 bal-an
e. Various RD s
hemes have been developed for shallow-water �ows in the past oneand a half de
ades. Both wave de
omposition s
hemes [15, 16℄ and matrix distributions
hemes [17, 18℄ proved to be su

essful in representing the underlying physi
al properties.However, they are often 
omputationally rather expensive owing partly to a time-step re-stri
tion mentioned above, and partly to poor iterative 
onvergen
e. As a result and morere
ently, the expli
it RD approa
h has been applied to the shallow-water system [19℄.We take a di�erent approa
h in this work and instead of repla
ing an intrinsi
allyimpli
it s
heme with an expli
it one, we aim to eliminate the time-step restri
tion and
onstru
t an un
onditionally stable spa
e-time RD s
heme. The fo
us of this arti
le istherefore on dis
ontinuous representation in time, whi
h in this way promises to improvethe e�
ien
y of the impli
it spa
e-time dis
retisation. Our spa
e-time DRD dis
retisationis also designed to be upwind, 
onservative and hydrostati
ally well-balan
ed. Througha number of numeri
al experiments, we investigate whether these properties are satis�ed,as well as positivity and linearity preservation � two other properties that are formallylost but experimentally often observed. Cru
ially, we also address the question of how2



far the time step 
an be in
reased before the dis
retisation adversely a�e
ts a

ura
yand positivity. Comparison with other impli
it RD s
hemes is used to demonstrate theimproved performan
e of this approa
h.The remaining part of the arti
le is organised as follows. In Se
tion 2, we des
ribe theframework of the spa
e-time DRD for general hyperboli
 
onservation laws in the 
aseof both s
alar and system variables. Se
tion 3 applies the s
heme to the shallow-waterequations, while Se
tion 4 outlines details about the numeri
al implementation of thedis
retisation. An extensive study of the s
heme via numerous 
omputational examplesis 
arried out in Se
tion 5. Se
tion 6 
ompares the spa
e-time DRD s
heme developedin this work with other existing RD s
hemes. Finally, we draw 
on
lusions and provideoutlook in Se
tion 7.2. Spa
e-time dis
ontinuous residual distributionIn this se
tion, we give a general des
ription for spa
e-time DRD s
hemes for hyper-boli
 
onservation laws with homogeneous right-hand side. Assume a two-dimensionalspatial domain Ω ⊂ R
2, its triangular tessellation Ωh, and the 
orresponding pris-mati
 spa
e-time mesh Ωt
h. Let, furthermore, E denote a given triangle, Et denote thespa
e-time prism de�ned over this triangle, Di = ∪i∈EE, dΩh = dx dy, dΩt

h = dx dy dt,
d(∂Ω) = ds(x, y) and d(∂Ωt) = dst(x, y, t). In the last two de�nitions, s and st denotethe mappings s : Ω → ∂Ω and Ωt → ∂Ωt, respe
tively.2.1. S
alar equationsConsider the s
alar 
onservation law

∂tu+ ∇ · f = 0 or ∂tu+ a(u) · ∇u = 0 (1)with appropriate initial 
onditions and Diri
hlet boundary 
onditions at the in�ow partof the domain. Here f represents the 
onservative �ux ve
tor and a(u) = ∂f/∂u is thewave speed. The asso
iated residual over ea
h spa
e-time prism Et is given by
φEt

=

tn+1∫

tn

∫

E

(∂tu+ ∇ · f ) dx dy dt. (2)For the original (non-dis
retised) equation (1), it therefore holds that
φ =

tn+1∫

tn

∫

Ωh

(∂tu+ ∇ · f) dx dy dt =
∑

E∈Ωh

φEt
,provided that the solution u is bounded and pie
ewise di�erentiable.We 
arry out the RD numeri
al dis
retisation in the spirit of [4℄ and it 
onsists of thefollowing general steps.1. In every spa
e-time prism, repla
e the unknown u with an approximation uh thatis linear in spa
e and linear in time. 3



2. Transform the prism residual into a spa
e-time boundary integral
φEt

=

tn+1∫

tn

∫

E

(∂tuh + ∇ · f) dx dy dt =

∫

Et

∇t · f t dΩt =

∫

∂Et

f t · nt d(∂Ωt), (3)where ∇t = (∂t, ∂x, ∂y), f t = (u,f), and nt is the outward-pointing unit ve
tornormal to the spa
e-time prism.3. Let L denote the spa
e of linear one-dimensional Lagrangian basis fun
tions on theinterval [tn, tn+1] and W denote the spa
e of linear two-dimensional basis fun
tionsasso
iated with a triangle. Assume furthermore that uh ∈ L ×W . Then the mid-point rule in time results in
φEt

=

∫

∂Et

f t · nt d(∂Ωt)

≈
∫

E

(
un+1

h − un
h

)
dΩ +

∆t

2




∫

∂E

f (un) · n d(∂Ω) +

∫

∂E

f(un+1) · nd(∂Ω)





=

∫

E

(
un+1

h − un
h

)
dΩ +

∆t

2
(φn

E + φn+1
E ), (4)where ∆t = [tn, tn+1] is the `height' of the prism. This is a se
ond-order a

urateapproximation of the prism residual, as long as the spatial residuals, φn

E and φn+1
E ,are 
omputed to be at least one order more a

urate than the dis
retisation itself.4. Distribute the prism �u
tuation φEt

(4) to the six verti
es of the prism in a 
onser-vative manner. That is, the fra
tions of the residual sent to vertex i at time levels
n and n+ 1 are de�ned as

φE
i,n = βE

i,nφEt
and φE

i,n+1 = βE
i,n+1φEt

, (5)with ∑i∈E β
E
i,n +

∑
i∈E β

E
i,n+1 = 1.5. Solve the algebrai
 system ∑

E∈Di

φE
i,n = 0,

∑

E∈Di

φE
i,n+1 = 0,

(6)
∀i ∈ Ωh at ea
h time step.How to pre
isely distribute the residual does greatly depend on the dire
tion of the�ow, whi
h is typi
ally indi
ated by `in�ow' parameters. For the spa
e-time s
heme, theseare de�ned as
ki,n = −∆t

4
a · ni −

|E|
3
, k+

i,n = max(0, ki,n), k−i,n = min(0, ki,n),

ki,n+1 = −∆t

4
a · ni +

|E|
3
, k+

i,n+1 = max(0, ki,n+1), k−i,n+1 = min(0, ki,n+1),

Nt =
1∑

i∈E k
+
i,n +

∑
i∈E k

+
i,n+1

,

(7)
4



where ni is the outward pointing normal ve
tor opposite node i with length that of theedge opposite node i. The quantity a is a prism-averaged state of the values of a at theverti
es of the prism.If the dis
rete representation of the solution uh is 
ontinuous over the whole spa
e-timedomain, the s
heme is only 
onsistent if there is no residual sent ba
k to the previous timelevel tn. This 
ondition results in a CFL-type restri
tion on the height of the spa
e-timeprism ∆t,
ki,n = −∆t

4
a · ni −

|E|
3

≤ 0. (8)Although this time step is generally larger than a more traditional CFL 
ondition in anupwind �nite-volume method � as we show it in the Appendix � it is an undesirable
ondition for a numeri
al dis
retisation that is inherently impli
it.The properties of a given distribution depend to a great degree on the pre
ise de�nitionof the 
oe�
ients. The typi
al requirements for a broadly su

essful RD s
heme in
lude[3℄
• positivity, whi
h warrants that the numeri
al approximations are free of spuriousos
illations;
• linearity preservation, whi
h ensures that a (k − 1)th-order polynomial representa-tion leads to a kth-order a

urate s
heme;
• 
onservation, whi
h guarantees that dis
ontinuities are 
aptured 
orre
tly;
• 
ompa
tness, whi
h is primarily for 
omputational e�
ien
y and requires that the
ell/prism residual be distributed to its own verti
es only;
• 
ontinuous dependen
e of the 
oe�
ients, whi
h enhan
es the iterative 
onvergen
eof the algebrai
 solver; and
• upwinding, whi
h di
tates that the dis
retised model propagates information in thesame dire
tion and at the same velo
ity as its non-dis
retised 
ounterpart.By Godunov's theorem [20, 21℄, only nonlinear s
hemes 
an satisfy the 
onditions forboth positivity and linearity preservation. Very often, though, linear s
hemes are used asthe basis for 
onstru
ting these nonlinear s
hemes. If a is a 
onservative linearisation of

a(u) = ∂f/∂u over the spa
e-time prism, then we 
an 
ompute the dis
rete residual as
φEt

=
∑

i∈E

ki,nu
n
i +

∑

i∈E

ki,n+1u
n+1
i , (9)and the resulting s
heme will be 
onservative as long as the 
onstraint following (5)is satis�ed [22℄. Otherwise, the prism residual needs to be 
omputed by a su�
ientlya

urate quadrature rule in order to obtain 
onservation, even when (5) holds. Thislatter version is also known as the 
onservative RD (CRD) formulation [23, 17℄.There are a large number of numeri
al s
hemes that 
an be (re)
ast in the RD frame-work. We now des
ribe only the spa
e-time upwind s
hemes that are the fo
us of ourinvestigation in this arti
le. For this, the parameters de�ned in (7) are used.

• The spa
e-time N (STN) s
heme [24℄ is here de�ned so that it is suitable for the
CRD formulation [14℄,

uin
t = Nt

(
∑

j∈E

k+
j,nu

n
j +

∑

j∈E

k+
j,n+1u

n+1
j − φEt

)
,

(
φE

i,n

)N
= k+

i,n

(
un

i − uin
t

)
,

(
φE

i,n+1

)N
= k+

i,n+1

(
un+1

i − uin
t

)
.

(10)5



This is a linear s
heme that has all the desired properties ex
ept linearity preser-vation. We note, however, that positivity is only formally guaranteed if we use (9)for the 
omputation of φEt
; see [13℄ for spa
e-time DRD s
hemes. Nevertheless,os
illation-free behaviour is also often observed in 
omputational experiments [4℄for the CRD s
heme, when a quadrature rule is used to evaluate φEt

.
• The spa
e-time LDA (STLDA) [24, 14℄ s
heme is de�ned as

(
φE

i,n

)LDA
= k+

i,nNtφEt
,

(
φE

i,n+1

)LDA
= k+

i,n+1NtφEt
, (11)whi
h is also a linear s
heme and has all the desired properties ex
ept positivity.

• The spa
e-time blended (STB) s
heme 
ombines two linear s
hemes, typi
ally theSTN and STLDA s
hemes, through a nonlinear blending 
oe�
ient,
(
φE

i,n

)B
= θ

(
φE

i,n

)N
+ (1 − θ)

(
φE

i,n

)LDA
,

(
φE

i,n+1

)B
= θ

(
φE

i,n+1

)N
+ (1 − θ)

(
φE

i,n+1

)LDA
.

(12)The blending 
oe�
ient determines how `well' the required properties, espe
iallypositivity, are satis�ed. The de�nition adopted in this arti
le [25℄ is
θ =

|φEt
|

∑
i∈E

∣∣∣
(
φE

i,n

)N ∣∣∣+
∑

i∈E

∣∣∣
(
φE

i,n+1

)N ∣∣∣
. (13)2.2. Dis
ontinuity in time for the s
alar equationWhen the representation of the dis
rete solution is allowed to be dis
ontinuous in time,one needs to introdu
e additional residuals. These 
an be viewed as prism residuals with

∆t→ 0, see [11, 13℄, and thus read
ψE = lim

∆t→0
φEt

= lim
∆t→0

∫

∂Et

f t · nt d(∂Ωt) =

∫

∂E

[un
h] dΩ =

|E|
3

∑

i∈E

[un
i ] , (14)where [·] represents the jump through the fa
e. The simple vertex-
entred distribution,

ψE
i,n =

|E|
3

[un
i ] , (15)was shown in [11, 13℄ to be positive and linearity preserving, and this is the formulationwe use throughout this arti
le. As a result, in the 
ase when only dis
ontinuities in timeare introdu
ed, the algebrai
 system takes the form

∑

E∈Di

(
φE

i,n + ψE
i,n

)
= 0,

∑

E∈Di

φE
i,n+1 = 0,

(16)
∀i ∈ Ωh. 6



2.3. Systems of equationsMu
h of the RD framework des
ribed for the s
alar equation 
an be applied to thenonlinear hyperboli
 system of 
onservation laws,
∂tU + ∇ · F = 0 or ∂tU + A(U) · ∇U = 0, (17)where A(U) = [Ax,Ay] = [∂Fx/∂U, ∂Fy/∂U ] = ∂F /∂U is the wave-speed tensor. Thetwo key elements where the extension is not so straightforward are positivity and upwind-ing. Positivity of the general system (17) is not 
learly de�ned; instead, an algorithmi
property that preserves the nonnegativity of 
ertain physi
al quantities � water height,density, pressure, 
on
entration, et
. � are required.The de�nitions of the upwind dire
tions for (17) are not immediately apparent, either.Di�erent approa
hes have been proposed, the most popular of whi
h is matrix distribu-tion [26℄, whi
h we also adopt in the 
urrent work. For spa
e-time prisms, the in�owparameters used for the prism distribution are then de�ned as

Ki,n = −∆t

4
A · ni −

|E|
3

I,

Ki,n+1 = −∆t

4
A · ni +

|E|
3

I,
(18)where I is the identity matrix and A represents a prism-averaged state of the �ux Ja
obian

A.2.4. Conservative linearisation for systems of equationsAs in the s
alar 
ase, A is preferably derived from a 
onservative linearisation. Forsystems of equations, however, the exa
t form of the 
onservative linearisation is rarelystraightforward. It often assumes linear variation in quantities other than the 
onservativevariables U . The set of linearly varying quantities is traditionally 
alled the Roe-parameterve
tor. The (ve
tor-valued) dis
rete residuals of the system (17) 
an then be 
omputedas
ΦEt

=
∑

i∈E

Ki,nŨ
n
i +

∑

i∈E

Ki,n+1Ũ
n+1
i with Ũn

i =
∂U

∂Z
Zn

i , Ũn+1
i =

∂U

∂Z
Zn+1

i , (19)where Z is the ve
tor of the Roe-parameter variables [27, 1℄ and the derivative matrix
∂U
∂Z

is evaluated at the arithmeti
 mean states of the parameter-ve
tor variables over thespa
e-time prism.If the 
onservative linearisation is not known or its implementation is not pra
ti
al, itis also possible to a
hieve 
onservation by using a su�
iently a

urate quadrature rule to
ompute the prism residual [23, 17℄.2.5. Upwind RD s
hemes for systems of equationsAssuming that the in�ow matri
es de�ned in (18) are diagonalisable, as is the 
ase inalmost all physi
al appli
ations, we have Ki,n = RDR−1, where D is the diagonal matrixof eigenvalues, R−1 is the matrix of the left and R of the right eigenve
tors. De�ning7



D± = 1
2
(D ± |D|) with |D| denoting the absolute values of the entries, we 
an introdu
ethe other in�ow matrix parameters (
f. (7)),

K+
i,n =

(
RD+R−1

)
i,n
, K+

i,n+1 =
(
RD+R−1

)
i,n+1

,

K−
i,n =

(
RD−R−1

)
i,n
, K−

i,n+1 =
(
RD−R−1

)
i,n+1

,

Nt =

(
∑

i∈E

K+
i,n +

∑

i∈E

K+
i,n+1

)−1

.

(20)These, in turn, are used to de�ne the upwind RD s
hemes along the lines of the s
alar
ase (10)�(12).
• The spa
e-time N (STN) s
heme for systems is now de�ned as

Ũ in
t = Nt

(
∑

j∈E

K+
j,nŨ

n
j +

∑

j∈E

K+
j,n+1Ũ

n+1
j − ΦEt

)
,

(
ΦE

i,n

)N
= K+

i,n

(
Ũn

i − Ũ in
t

)
,

(
ΦE

i,n+1

)N
= K+

i,n+1

(
Ũn+1

i − Ũ in
t

)
,

(21)where Ũ is de�ned as in (19) if a 
onservative linearisation exists and thus ΦEt
is
omputed as in (19). On the other hand, Ũ = U if the CRD formulation is used and

ΦEt
is 
omputed by means of a quadrature rule. In the system 
ase, positivity shouldstill be understood as positivity of the underlying linear adve
tion. For nonlinearsystems, positivity in the stri
t sense is not and should not be satis�ed. Instead, themore generally property that the solution is free of spurious os
illations is required.

• The spa
e-time LDA (STLDA) s
heme for systems is de�ned as
(
ΦE

i,n

)LDA
= K+

i,nNtΦEt
,

(
ΦE

i,n+1

)LDA
= K+

i,n+1NtΦEt
. (22)

• The spa
e-time blended (STB) s
heme for systems is still de�ned as a 
ombinationof STN and the STLDA s
hemes,
(
ΦE

i,n

)B
= Θ

(
ΦE

i,n

)N
+ (I − Θ)

(
ΦE

i,n

)LDA
,

(
ΦE

i,n+1

)B
= Θ

(
ΦE

i,n+1

)N
+ (I − Θ)

(
ΦE

i,n+1

)LDA
.

(23)The matrix blending parameter Θ 
an now be 
omputed in a number of di�erentways [28, 29℄. The dire
t analogue of (13) is
Θ1 = diag


 |ΦEt

|
∑

i∈E

∣∣∣
(
ΦE

i,n

)N ∣∣∣+
∑

i∈E

∣∣∣
(
ΦE

i,n+1

)N ∣∣∣


 , (24)where the division should be understood as an elementwise operation. Anotherpossibility, proposed in [28℄, is to 
hoose a parti
ular dire
tion ξ = (ξx, ξy) and
ompute the de
omposition A · ξ = RξDξR−1

ξ . The blending (23) is then 
arriedout on the `
hara
teristi
' residuals
ΦN

i,n = R−1
ξ ΦN

i,n, ΦN
i,n+1 = R−1

ξ ΦN
i,n+1, ΦLDA

i,n = R−1
ξ ΦLDA

i,n , ΦLDA
i,n+1 = R−1

ξ ΦLDA
i,n+1,8



with the blending parameter 
omputed as
Θ2 = diag

( ∣∣∑
i∈E Φ

N
i,n +

∑
i∈E Φ

N
i,n+1

∣∣
∑

i∈E

∣∣ΦN
i,n

∣∣+
∑

i∈E

∣∣ΦN
i,n+1

∣∣

)
, (25)where we drop the supers
ript `E' to avoid 
lutter. Finally, we 
al
ulate the blendedresiduals based on the original variables by ΦB

i,n = RξΦ
B
i,n and ΦB

i,n+1 = RξΦ
B
i,n+1.2.6. Dis
ontinuity in time for systems of equationsThe treatment of the dis
ontinuity in time is dire
tly analogous to (15), and is de�nedas [13℄

ΨE
i =

|E|
3

[Un
i ] , (26)whi
h leads to the algebrai
 equations

∑

E∈Di

(
ΦE

i,n + ΨE
i,n

)
= 0,

∑

E∈Di

ΦE
i,n+1 = 0,

(27)
∀i ∈ Ωh, whi
h needs to be solved at ea
h time step.3. Appli
ation to the shallow-water systemIn this arti
le, we apply the spa
e-time RD framework for systems of equations to thefri
tionless shallow-water equations with non-�at bottom topography, i.e. we seek solutionto the system

∂tU + ∇ · F (U) + S(U) = 0 on Ωt, (28)where
U =




d
du
dv



 , F =
[
Fx Fy

]
=




du dv

du2 + gd2

2
duv

duv dv2 + gd2

2



 , S = −




0

gd∂b(x,y)
∂x

gd∂b(x,y)
∂y


 . (29)Here d is the water height, u = (u, v) is the �ow velo
ity and b is the height of the bottomtopography. The level of the free surfa
e is de�ned as η = d+ b. In the 
ase of b ≡ 0, thenonlinear system (28), with the variables (29), expresses the 
onservation of water height

d and dis
harge du � it 
an, therefore, admit dis
ontinuous solutions (hydrauli
 jumps).In order to 
apture these dis
ontinuities 
orre
tly, the dis
retisation of (28) should alsobe done in a 
onservative manner.3.1. Conservative s
hemesThere are essentially two di�erent ways to a
hieve a 
onservative RD s
heme for (28).One is to derive a 
onservative linearisation for the �ux Ja
obian by assuming linearvariation of the Roe-parameter ve
tor [27, 1℄. The other is to use the CRD formulation[23, 17℄, where a non
onservative linearisation of the 
onservative variables is used and
onservation is a
hieved by 
omputing the prism residuals via quadrature rules.9



3.1.1. A 
onservative linearisationIn the steady state, 
onservative linearisation of (28) 
an be obtained by assuming thelinear variation of the Roe-parameter ve
tor Z = 1√
d
U . Then

∂U

∂Z
=




2
√
d 0 0√
du

√
d 0√

dv 0
√
d


so that the evaluation of A at the following 
ell-averaged states [30℄, together with (19),result in a 
onservative dis
retisation,

ũ =

√
du

√
d
, ṽ =

√
dv

√
d
, d̃ = 0.9d+ 0.1

√
d1d2d3√
d

. (30)Here · signi�es the arithmeti
 mean of the values at the verti
es (represented by thesubs
ripts 1, 2, 3) of the triangle.For the spa
e-time prism, one 
an use the linearisation (30) at the bottom and top ofthe prism, and apply the trapezium rule in time to a
hieve 
onservation.3.1.2. The CRD approa
hAs an alternative to 
onservative linearisation, one 
an instead use the arithmeti
means d, u, v (over either triangles or prisms), and apply the CRD formulation. In this
ase, however, the positivity of the N and STN s
hemes is formally lost, even though itis often observed in numeri
al experiments.3.2. Hydrostati
 balan
e: the C-propertyThe shallow-water system (28)�(29) is, by 
onstru
tion, in hydrostati
 balan
e as thisis one of the main assumptions in its derivation from the Navier-Stokes equation [31℄.Almost all numeri
al dis
retisations preserve this property exa
tly over a �at bed. Overa general (even smooth) non-�at bed, however, the exa
t preservation of the hydrostati
balan
e (also 
alled the C-property) is not always straightforward.3.2.1. The CRD approa
hAs it was proved in [17℄, as long as the water-height d is assumed to be linearly varyingand so is the bottom topography b, linearity preserving CRD s
hemes also satisfy the C-property [17, 18℄. This simply means that the sour
e term's 
ontribution to the prismresidual needs to be 
omputed as
Φb

Et
= ∆t

gd

2

∑

i∈E

[
0
bini

]
. (31)The 
onventional de�nition of the STN s
heme (21), however, does not satisfy thehydrostati
 balan
e, whi
h means that the 
orresponding B and STB s
hemes will alsola
k this property. So instead of (21) we need to apply a slightly modi�ed version of10



the s
heme. For the CRD formulation, it means that U = [d, du, dv]T is repla
ed by
V = [η, du, dv]T so that we have

V in
t = Nt

(
∑

j∈E

K+
j,nV

n
j +

∑

j∈E

K+
j,n+1V

n+1
j − ΦEt

)
,

(
ΦE

i,n

)N
= K+

i,n

(
V n

i − V in
t

)
,

(
ΦE

i,n+1

)N
= K+

i,n+1

(
V n+1

i − V in
t

)
.

(32)Proposition. The STN s
heme (32) exa
tly satis�es the hydrostati
 balan
e (C-property).As a result, the STB s
heme de�ned in (12) also exa
tly satis�es the same property.Proof. In ea
h spa
e-time prism, with dropping the supers
ript Es, the STN s
heme (32)
an be rewritten as [14℄
ΦN

i,n = ΦLDA
i,n + K+

i,nNt

∑

j∈E

K+
j,n

(
V n

i − V n
j

)
+ K+

i,nNt

∑

j∈E

K+
j,n+1

(
V n+1

i − V n+1
j

)
,

ΦN
i,n+1 = ΦLDA

i,n+1 + K+
i,n+1Nt

∑

j∈E

K+
j,n

(
V n

i − V n
j

)
+ K+

i,n+1Nt

∑

j∈E

K+
j,n+1

(
V n+1

i − V n+1
j

)
.The �u
tuations ΦLDA

i,n and ΦLDA
i,n+1 are exa
tly zero for V = [η, du, dv]T = [const, 0, 0]Tas long as (31) is used to 
ompute the sour
e term's 
ontribution to the prism residual.Ea
h of the other terms is exa
tly zero be
ause the assumed linear variation of U =

[d, du, dv]T and b implies the linear variation of V = [η, du, dv]T , i.e. V = [η, du, dv]T =
[const, 0, 0]T .3.2.2. Conservative linearisationWe are not aware of a 
onservative linearisation for the shallow-water equations thatpreserves the hydrostati
 balan
e exa
tly as well as 
onserves water height and dis
harge.Sin
e the linear variation of √d is assumed in the 
onservative linearisation proposedin this work, it is natural to assume the linear variation of √b, too, and 
ompute thesour
e term's 
ontribution in the prism residual as

Φb
Et

= ∆tgd̃
∑

i∈E

[
0√

b
√
bi ni

]
. (33)This formulation introdu
es a small error in the hydrostati
 balan
e be
ause in general

ηi = di + bi = const ;
√
d
√
di +

√
b
√
bi = const.Conversely, it is possible to a
hieve exa
t hydrostati
 balan
e by assuming the linearvariation of √d and √

η (instead of √d and √
b) and 
ompute the sour
e term's 
ontribu-tion in the prism residual as

Φb
Et

= ∆t
gd̃

2

∑

i∈E

[
0(√

η
(√

ηn
i +

√
ηn+1

i

)
−

√
d
(√

dn
i +

√
dn+1

i

))
ni

]
. (34)This formulation preserves the lake at rest, V = [η, du, dv]T = [const, 0, 0]T , exa
tly butin general introdu
es an error in the 
onservation of water height and dis
harge be
ausethe term

∑

i∈E

[
0(√

η
(√

ηn
i +

√
ηn+1

i

)
−

√
d
(√

dn
i +

√
dn+1

i

))
ni

]11



does not stay 
onstant in time even when b does.We emphasise, however, that in both 
ases the errors are rather small and in most
omputational experiments they do not a�e
t the results substantially.4. Implementation detailsIn the numeri
al examples presented in this arti
le, we assume the dis
rete representa-tion to be dis
ontinuous in time only. In this 
ase, we need to solve the algebrai
 system(27), whi
h is the spa
e-time DRD dis
retisation of (28), at ea
h time step. For this asimple pseudo-time-stepping algorithm is used
(
Un

i

Un+1
i

)

m+1

=

(
Un

i

Un+1
i

)

m

− τ

st
i

∑

E∈Di

(
ΦE

i,n + ΨE
i,n

ΦE
i,n+1

)

m

, (35)where st
i = ∆tsi is the volume of the dual spa
e-time 
ell (with si being the volume ofthe spatial dual 
ell). The pseudo-time step τ is given by

τ = 0.9 min
i

st
i∑

E∈Di
ρ(K+

i )
, ρ(K+

i ) = max diagD+
i , (36)with Ki = −1

2
A · ni and ρ(M) denoting the spe
tral radius of a given matrix M. In allthe 
omputations, we use the stopping 
riterion

rel_tol =
‖ (Ψn, Ψn+1)

T

m ‖1

‖ (Ψn, Ψn+1)T

0 ‖1

< 10−3.Often, though, we also apply an intermediate 
riterion to freeze the blending parameter,i.e. to stop its re
omputation and 
ontinue the iteration with a 
onstant value. In ournumeri
al experiments, this happens on
e rel_tol = 10−1.5 is rea
hed.Only results with the CRD formulation are reported. We note, however, that for �atbottom topography, the s
heme with the 
onservative linearisation provides identi
al re-sults. Even when the bottom topography is not �at, we only observe signi�
ant di�eren
ebetween the results provided by the two di�erent formulations when the exa
t satisfa
tionof the hydrostati
 balan
e is investigated (
f. Se
tion 5.3).5. Numeri
al resultsIn this se
tion, we present a number of time-dependent test 
ases � most of whi
hare nonlinear � to validate the dis
ontinuous s
hemes presented in the previous se
tions.Throughout the se
tion, the representation is dis
ontinuous in time, whi
h results in anun
onditionally stable and globally positive s
heme.5.1. Cir
ular dam break over wet bedDam-break examples are used to experimentally assess whether the numeri
al solutionis free of spurious os
illations. The �rst dam-break example we 
onsider is that of a 
ir
ulardam with radius r =
√
x2 + y2 = 60 separating water levels d = 10 and d = 0.5 in asquare basin. The 
omputational domain is the top right quarter, Ω = [0, 100]2, of the12



entire basin with solid-wall boundary 
onditions. The blending parameter Θ2 is used inthis example.The velo
ity �eld tends to be more sensitive to spurious os
illations than the waterheight so we plot Froude-number 
ontours for the STB s
heme.Figure 1 shows that the STB s
heme 
aptures the dis
ontinuity well without intro-du
ing spurious os
illations for CFL = 1, CFL = 2 and CFL = 4. Interestingly, however,the s
hemes with CFL = 2 and CFL = 4 seem to be less di�usive than the s
heme with
CFL = 1. Three-dimensional plots of the water height are given in Figure 2 and theyreveal no dis
ernible os
illations for CFL = 1, 2, 4, either.
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Figure 1: Cir
ular dam break. 30 Froude-number 
ontour plots of the dis
ontinuous STBs
heme for CFL = 1 (top left), CFL = 2 (top right), CFL = 4 (bottom left) and CFL = 8(bottom right).5.2. Improving the iterative 
onvergen
eAny in
rease in the time step for any impli
it spa
e-time s
heme will only translate intogains in 
omputational work if the s
hemes with di�erent CFL numbers perform similarlyin terms of iterative 
onvergen
e at ea
h time step. We use this test to investigate thisproperty when the STB s
heme is applied. At ea
h time step, we integrate until a relativetoleran
e rel_tol = 10−3 is rea
hed. This is typi
ally more than enough to a
hieve thea

ura
y required by a spa
e-time RD dis
retisation be
ause we 
an use the result fromthe previous time step as an initial guess. We plot the 
onvergen
e histories in Figure 3for di�erent CFL numbers for two slightly di�erent blending strategies. In both 
ases the13
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Figure 2: Cir
ular dam break. 3D water-height plots of the dis
ontinuous STB s
heme for
CFL = 1 (top left), CFL = 2 (top right), CFL = 4 (bottom left) and CFL = 8 (bottomright).blending parameter Θ2 is applied, but in the se
ond instan
e we freeze the value afterrea
hing the relative toleran
e rel_tol = 10−1.5 and 
arry on with the iteration usingthis 
onstant value.It is 
lear from the results that the step from CFL = 4 to CFL = 8 does not overall leadto any redu
tion in 
omputational work. Doubling the time step is obviously bene�
ial,and moving to CFL = 4 
an still provide e�
ien
y gains as long as we freeze the blendingparameter (at rel_tol = 10−1.5 in this example).5.3. Lake at rest: the preservation of the hydrostati
 balan
eThis time-dependent example is to experimentally verify that the modi�ed STNs
heme (32) does indeed preserve the C-property, i.e. it is hydrostati
ally well-balan
ed[32, 33, 17, 18℄. The blended s
heme should inherit this property sin
e it is a linear inter-polation between the STN and the STLDA s
hemes. Also, the a
tual form of the blendingparameter does not in�uen
e the lake-at-rest property so for the sake of brevity we onlyshow results for the STB s
heme with Θ1, whi
h we freeze after rel_tol = 10−1.5. In14
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Figure 3: Cir
ular dam break. Convergen
e of pseudo-time iteration for the spa
e-time
DRD s
heme with CFL = 1, 2, 4, 8 when the blending parameter is 
omputed at everypseudo-time step (left) and when it is frozen on
e rel_tol = 10−1.5 is rea
hed (right).the numeri
al tests we assume a smooth bathymetri
 fun
tion,

b(x, y) = 0.8e−5(x−0.9)2−50(y−0.5)2 , (37)and `still-water' initial 
onditions, [η0, u0, v0] = [1, 0, 0], over the domain Ω = [0, 2]× [0, 1],using a mesh with a typi
al edge resolution of h = 0.01. Table 1 shows the errors afterintegrating until t = 0.5. The errors remain around ma
hine pre
ision until the end of thetime mar
hing, whi
h indi
ates a well-balan
ed s
heme. The numbers are for test runswith solid-wall boundary 
onditions but weak 
hara
teristi
 boundary 
onditions providenear identi
al results.As a se
ond variant of this test 
ase, we put a perturbation on the initial, `still-water'
ondition,
η0 =

{
1.01 if 0.05 < x < 0.15

1 otherwise . (38)For this example, the boundary 
onditions are weakly enfor
ed everywhere: symmetri
(i.e. solid wall) for the bottom and top boundaries, and 
hara
teristi
 freestream for theleft and right boundaries in
luding all 
orners.Figures 4�7 plot 50 
ontours of the free surfa
e η for CFL = 1, 2, 4, 8, respe
tively,at times t = 0.24 and t = 0.48, while Figure 8 shows the same along the line y = 0.5.They reveal that qualitatively the s
heme with CFL = 1 and CFL = 2 appear to be themost a

urate while in
reasing the CFL number further results in the solution being moredi�usive. This phenomenon is partly be
ause of the loss of a

ura
y asso
iated with alarge time step relative to the mesh size, and partly be
ause of the la
k of lo
al positivityof spa
e-time impli
it s
hemes.Nevertheless, some of the most important qualitative properties are satis�ed for all
CFL numbers: a) they preserve the C-property in front of the perturbation; and b) they
apture the intera
tion between the gravitational wave and the non-�at bottom; 
) theysettle ba
k to lake at rest after the wave has passed.15



Table 1: Lake at rest. Errors at time t = 0.5 for the dis
ontinuous STB s
heme withdi�erent CFL numbers.
CFL = 1.0 ‖η − 1‖ ‖u‖ ‖v‖
L1 5.405934e− 19 1.255336e− 16 5.870068e− 17
L2 8.000922e− 18 5.165644e− 16 2.647004e− 16
L∞ 2.220446e− 16 1.034175e− 14 6.178231e− 15

CFL = 2.0

L1 1.534435e− 18 9.505484e− 17 4.305477e− 17
L2 1.309467e− 17 4.054003e− 16 1.890289e− 16
L∞ 2.220446e− 16 8.781880e− 15 4.230023e− 15

CFL = 4.0

L1 3.744022e− 18 1.078974e− 16 5.057157e− 17
L2 2.054486e− 17 4.354319e− 16 2.091099e− 16
L∞ 2.220446e− 16 8.131857e− 15 4.450119e− 15

CFL = 8.0

L1 6.180234e− 18 1.177755e− 16 5.675335e− 17
L2 2.657800e− 17 4.540011e− 16 2.285096e− 16
L∞ 2.220446e− 16 7.692615e− 15 5.239349e− 15
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Figure 4: Perturbation to the lake at rest when solved with the dis
ontinuous STB s
hemewith CFL = 1. 50 water-height 
ontours between values 0.992 and 1.012 at t = 0.24 (left)and t = 0.48 (right) are plotted.5.4. Travelling vortexTo evaluate the a

ura
y and (grid) 
onvergen
e properties of the STLDA and STBs
hemes, we in
lude the example of a travelling vortex with known exa
t solution [34, 18℄.
16
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Figure 5: Perturbation to the lake at rest when solved with the dis
ontinuous STB s
hemewith CFL = 2. 50 water-height 
ontours between values 0.992 and 1.012 at t = 0.24 (left)and t = 0.48 (right) are plotted.
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Figure 6: Perturbation to the lake at rest when solved with the dis
ontinuous STB s
hemewith CFL = 4. 50 water-height 
ontours between values 0.992 and 1.012 at t = 0.24 (left)and t = 0.48 (right) are plotted.Given a �at bottom topography, the exa
t velo
ity �eld is expressed as u∞ + u ′, with
u ′ =

{
Γ (1 + cos(ωrc)) (yc − y, x− xc) if ωrc < π

(0, 0) otherwise ,and u∞ being 
onstant. The 
onstant Γ is the vortex intensity parameter, (xc, yc) are the
oordinates of the 
entre of the vortex, rc is the distan
e from the 
entre of the vortex,and ω is the angular wave frequen
y asso
iated with the diameter of the vortex. Thewater height is then given as
d(rc) = d∞ +

{
1
g

(
Γ
ω

)2
(κ(ωrc) − κ(π)) if ωrc < π

0 otherwise ,17
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Figure 7: Perturbation to the lake at rest when solved with the dis
ontinuous STB s
hemewith CFL = 8. 50 water-height 
ontours between values 0.992 and 1.012 at t = 0.24 (left)and t = 0.48 (right) are plotted.with
κ(x) = 2 cos(x) + 2x sin(x) +

1

8
cos(2x) +

x

4
sin(2x) +

3

4
x2and d∞ = 1.For the grid-
onvergen
e study, we set u∞ = (6, 0), Γ = 15, ω = 4π, g = 9.80665 anduse a sequen
e of �ve unstru
tured triangulations of the domain Ω = [0, 2] × [0, 1] with
hara
teristi
 mesh sizes h = 1/10, 1/20, 1/40, 1/80, 1/160, respe
tively. At the initialstate the 
entre of the vortex is at (xc, yc) = (0.5, 0.5) and the time mar
hing stops at

t = 1/6, when (xc, yc) = (1.5, 0.5). Freestream 
hara
teristi
 boundary 
onditions areused everywhere.Figure 9 shows grid 
onvergen
e of the STLDA and STB s
hemes with CFL = 1, 2, 4, 8.Se
ond-order a

ura
y is observed for the STLDA s
heme, although in the 
ase of CFL = 8this is only rea
hed at the �nest mesh. Also, it is 
learly between CFL = 4 and CFL = 8that the larger time step has a signi�
ant e�e
t on the a

ura
y of the s
heme.The 
onvergen
e rate for the STB s
heme is slightly suboptimal � at around 1.8 �but still better than existing results of nonlinear spa
e-time RD s
hemes [17, 13℄. Theblending in this example is applied to the residuals of the 
hara
teristi
 variables Θ2.5.5. Partial dam breakThis example is similar to the one in Se
tion 5.1 but has a more 
omplex geometry.We 
onsider the domain [0, 200]2 with a dam that separates water levels d = 10 and d = 5.The dam is situated in the region [95, 105] × [0, 200] and it breaks between y = 95 and
y = 170 at initial time t = 0. The 
omputational domain is thus Ω = [0, 200] \ Ωdam,where Ωdam = ((95, 105)× (0, 95)) ∪ ((95, 105) × (170, 200)). An unstru
tured mesh with
hara
teristi
 mesh size of h ≈ 2 is used and solid-wall boundary 
onditions are imposedeverywhere. The blending parameter is de�ned on the 
hara
teristi
 values, Θ2, and wealso freeze the parameter on
e rel_tol = 10−1.5 is rea
hed. Figure 10 shows water-height 
ontours at the end of the time integration t = 7.2, while Figure 11 shows sli
eplots along the line y = 135. The s
hemes 
apture both the rarefa
tion wave (left of the18
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Figure 8: Perturbation to the lake at rest when solved with the dis
ontinuous STB s
hemewith CFL = 1, CFL = 2, CFL = 4 and CFL = 8. Sli
e plots are shown along the line
y = 0.5 at t = 0.24 and t = 0.48. 19
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slope 1.8Figure 9: Travelling vortex. Grid 
onvergen
e for the dis
ontinuous STLDA (left) andthe dis
ontinuous STB (right) s
hemes is plotted.break) and the sho
k wave (right of the break) with a

eptable a

ura
y and 
omparefavourably to published results in the literature [32, 17℄. As in the previous examples,however, the s
heme with CFL = 8 is markedly less a

urate than the s
hemes with lower
CFL numbers.5.6. Cir
ular dam break over nonsmooth bedThis test 
ase 
onsiders a two-dimensional variant of the Riemann problem over dis-
ontinuous bottom topography, proposed in [35℄. The 
omputational domain is now
Ω = [0, 30]2 with bathymetri
 fun
tion,

b(x, y) =

{
0 if x+ y < 30

0.2 otherwise ,and initial 
ondition,
η(x, y) =

{
1.461837 if r < 15

0.308732 otherwise ,where r =
√

(x2 + y2) is the radius of the dam. Solid-wall boundary 
onditions are usedat the left and bottom boundaries while homogeneous Neumann at the right and topones. The 
hara
teristi
 mesh size is h ≈ 0.3 and the time integration stops at time
t = 10. The largest value of the blending parameter, θmax

2 = max Θ2, is applied to allvariables of the residual in order to a
hieve an additional stabilising e�e
t. The simulationfollows the wave hitting the underwater wall, then partially re�e
ting from it and partiallymoving forward and exiting the domain. There is also a stationary sho
k wave along thedis
ontinuity of the bed.30 
ontours of the free surfa
e η are depi
ted in Figure 12 for CFL = 4. The �gureshows four snapshots of the solution at intervals of exa
tly 2.5 in time. All three waves� the outgoing, the re�e
ted and the stationary � are well 
aptured. The 
ontour plotsfor the STB s
hemes with other CFL numbers are omitted for this example be
ause theyshow very similar behaviour to what we observe in the previous dam-break problems: the20
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Figure 10: Partial dam break. 30 water-height 
ontours between 4 and 9.95 for thedis
ontinuous STB s
heme with CFL = 1, 2, 4 and 8.s
hemes with CFL = 2 and CFL = 4 provide the best qualitative results while the onewith CFL = 1 is more di�usive and the one with CFL = 8 is both more di�usive andmore os
illatory. This general pattern is also apparent from Figure 13, whi
h shows sli
eplots for all CFL numbers along the diagonal, x = y, of the domain.6. Comparison with existing s
hemesThis se
tion 
ompares the spa
e-time s
heme developed in this work with two otherRD dis
retisations that exist in the literature. Both of these s
hemes are impli
it butalso require a time-step restri
tion be
ause the representation in 
ontinuous in time aswell as in spa
e. The development of the expli
it RKRD s
heme [9℄ for the shallow-water equations is ongoing work [19℄. That s
heme and its 
omparison to some impli
itformulations will be reported elsewhere. The two other s
hemes we 
onsider from theliterature are the following.1. The blended LDA-N s
heme where the LDA s
heme is de�ned as in [36℄. This is asimilar upwind blended s
heme to what is developed in this arti
le but it is not aspa
e-time formulation. 21
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Figure 11: Partial dam break. Sli
e plots of water height at �nal time t = 7.2 along theline y = 135 for the dis
ontinuous STB s
heme with CFL = 1, 2, 4 and 8.2. The stabilised LLF s
heme in [18℄. This is 
urrently one of the most robust RDs
hemes for time-dependent shallow-water simulations. It is essentially a 
entrals
heme and it is 
omputationally 
heaper than an upwind s
hemes that is 
ontinuousin both spa
e and time.We 
hoose three test 
ases to 
ompare the spa
e-time s
heme investigated here withthe two other s
hemes. The �rst is the travelling vortex in Se
tion 5.4 to 
ompare the
omputational work against a

ura
y. The se
ond is the partial dam break in Se
tion 5.5and the third is the 
ir
ular dam break over non-smooth bed topography in Se
tion 5.6.We measure 
omputational work in the total number of pseudo-time iterations over theentire time integration. This, however, does not re�e
t the fa
t that the upwind blendeds
hemes are 
omputationally more expensive per spa
e-time prism than the LLFs s
heme.The blended s
heme requires about four times as mu
h 
omputational work per prismas the LLFs s
hemes, while the dis
ontinuous STB s
hemes requires about eight timesas mu
h. To re�e
t this, we de�ne one work unit as being the amount of 
omputationalwork the LLFs s
heme needs per spa
e-time prism.6.1. Travelling vortexThis test 
ase is used to 
ompare di�erent RD s
hemes based on the 
omputationalwork needed to a
hieve a given a

ura
y. The set-up of the test 
ase is the same asin Se
tion 5.4. Tables 2, 3 and 4 show the 
omputational performan
e of the blendeds
heme, the LLFs s
heme and the dis
ontinuous STB s
heme with CFL = 4. The 
om-22
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Figure 12: Cir
ular dam break over dis
ontinuous bed. 30 free-surfa
e 
ontours for thedis
ontinuous STB s
heme with CFL = 4.putational work is measured both in the total number of pseudo-time iterations and inwork units de�ned above. Figure 14 plots a

ura
y a
hieved for 
omputational work. Theresults indi
ate the dis
ontinuous STB s
heme (with CFL = 4 in this 
ase) is the most
omputationally e�
ient overall.6.2. Partial dam breakWe use this example, whi
h is the same as the one in Se
tion 5.5, to 
ompare the
omputational performan
e of the spa
e-time s
heme with the two other s
hemes whendis
ontinuities in the solution have to be 
aptured. Figure 15 shows the same water-height 
ontours for these two s
hemes as Figure 10 for the spa
e-time blended s
heme.The blended LDA-N s
heme of Ferrante appears to give the better result of the two. TheSTB s
heme with CFL = 1, 2, 4 are of 
omparable quality to these but the one with
CFL = 8 is 
learly inferior. Figure 16 shows sli
e plots to dire
tly 
ompare two of thedis
ontinuous STB s
hemes with these methods.The 
omputational performan
e of the two s
hemes and that of the STB s
heme with
CFL = 1, 2, 4, 8 is listed in Table 5. The 
omputational work is measured in three waysuntil the �nal time of the simulation, t = 7.2, is rea
hed: as the number of physi
al-timesteps; as the number of total pseudo-time iterations; and as the number of work units23
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Figure 13: Plots of the free surfa
e along the line x = y. The sli
es are taken at t = 2.5,
t = 5.0, t = 7.5 and t = 10.0. In ea
h �gure the results for CFL = 1, CFL = 2, CFL = 4and CFL = 8 are shown.de�ned at the beginning of this se
tion. By the �rst two measures, the dis
ontinuousspa
e-time s
heme outperforms all other s
hemes even with CFL = 1. This is in partbe
ause the past-shield 
ondition is often (but not always) larger than the CFL-typerestri
tions used in other s
hemes. But it is also be
ause the iterative 
onvergen
e ofthe STB s
heme is relatively good. In terms of work units, the LLFs s
heme is still lessexpensive but it is also less a

urate, though a

ura
y 
an only be assessed qualitativelyfor this example.In parti
ular, moving from CFL = 1 to CFL = 2 provides the most gains by morethan halving the total 
omputational 
ost. The bene�ts of in
reasing the time step from
CFL = 2 to CFL = 4 are less obvious if the mild deterioration in the quality of thenumeri
al simulation is also taken into a

ount. The performan
e of the STB s
hemewith CFL = 8 is 
learly poor. In this test 
ase, it seems to generate spurious modes thatspoil both the iterative performan
e of the s
heme and quality of the results.6.3. Cir
ular dam break over nonsmooth bedWe use this relatively di�
ult dam break problem to 
ompare the performan
es of thedi�erent s
hemes on both a quasi-uniform and a lo
ally re�ned mesh. First, we 
ompare24



Table 2: Travelling vortex. Error and 
omputational work for the blended LDAN s
hemewith Ferrante's LDA.Mesh size ‖dex − dh‖L2 No. time steps Total no. iterations Work units1/10 3.9667e-01 41 1061 2.01e+061/20 2.7576e-01 77 1857 1.38e+071/40 9.2256e-02 163 3973 1.18e+081/80 2.2355e-02 330 3957 4.69e+081/160 5.7876e-03 649 6485 3.07e+09Table 3: Travelling vortex. Error and 
omputational work for the LLFs s
heme.Mesh size ‖dex − dh‖L2 No. time steps Total no. iterations Work units1/10 4.1190e-01 40 1223 5.80e+051/20 3.1413e-01 77 2297 4.26e+061/40 1.0290e-01 163 3797 2.82e+071/80 2.6203e-02 330 4340 1.29e+081/160 6.6451e-03 649 7788 9.23e+08
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Figure 14: Travelling vortex. Computational work needed to a
hieve a given a

ura
y forthe LLFs s
heme, for the blended non-spa
e-time s
heme and for the dis
ontinuous STBs
heme with CFL = 4.
25



Table 4: Travelling vortex. Error and 
omputational work for the dis
ontinuous STBwith CFL = 4.Mesh size ‖dex − dh‖L2 No. time steps Total no. iterations Work units1/10 4.2018e-02 10 376 1.43e+061/20 3.5085e-02 18 781 1.16e+071/40 1.2608e-02 38 1784 1.06e+081/80 3.3537e-03 73 3578 8.49e+081/160 8.6824e-04 155 7414 7.03e+09
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Figure 15: Partial dam break. 30 water-height 
ontours between 4 and 9.95 for theblended s
heme and the LLFs s
heme at the end of the integration t = 7.2. This �gure isdire
tly 
omparable to Figure 10 for the spa
e-time DRD s
heme.the s
hemes on the same quasi-uniform mesh as used in Se
tion 5.6. Table 6 lists the 
om-putational work asso
iated with the 
ontinuous-in-time blended s
heme, the LLFs s
heme,and the spa
e-time s
hemes with CFL = 1, 2, 4, 8. It shows that the 
omputational 
ost,measured as the total number of pseudo-time iterations, is redu
ed to about a third ofthe LLFs s
heme and to about half of blended s
heme with the LDA part de�ned as in[36℄.Se
ond, sin
e there is a stationary sho
k wave over the dis
ontinuous bed topography,it is natural to use lo
al re�nement there. The typi
al edge length in the region where there�nement takes pla
e is 0.1, whi
h is one-third of the typi
al edge length elsewhere inthe domain. We show results for the same test 
ase but with a mesh that is lo
ally re�nedwhere the stationary sho
k o

urs. The spa
e-time s
heme is now run with CFL = 9,whi
h would approximately 
orrespond to CFL = 3 in the region where the mesh isnot re�ned. Figures 17�19 show 30 free-surfa
e 
ontour plots for the blended s
hemeof Ferrante [36℄, for the LLFs s
heme [18℄, and for the dis
ontinuous spa
e-time s
hemedeveloped here with CFL = 9, respe
tively. Sli
e plots of the free surfa
e along the line
x = y are shown in Figure 21, while 3D free-surfa
e plots at t = 7.5 are shown in Figure 20.The spa
e-time s
heme seems to be less os
illatory than the two other s
hemes studiedin this test 
ase. In parti
ular, the LLFs s
heme develops rather large spurious spikes along26
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Figure 16: Partial dam break. Sli
e plots of water height at �nal time t = 7.2 along theline y = 135 for the blended non-spa
e-time s
heme, for the LLFs s
heme and for thedis
ontinuous STB s
heme with CFL = 2, 4.the stationary sho
k in the se
ond half of the integration time interval (see the bottomtwo sub�gures in Figure 18 and also the 3D plots in Figure 20). By 
ontrast, the spa
e-time DRD s
hemes do not su�er from these artifa
ts, albeit at the pri
e of a somewhatlarger numeri
al di�usion. Overall, the spa
e-time DRD s
hemes appear to represent thephysi
al pro
esses most a

urately.Table 7 lists the 
omputational work for �ve s
hemes, in
luding three spa
e-time DRDs
hemes. The spa
e-time s
hemes need a relatively large number of iterations to 
onvergein ea
h physi
al-time step so the bene�ts to 
omputational 
ost are less pronoun
ed inthis example. They are still about twi
e as 
omputationally e�
ient as the other s
hemeswhen measured in total number of pseudo-time iterations. When measured in number ofphysi
al-time steps, the gain is about 7-10 times. This opens up the possibility of furthere�
ien
y gains if the performan
e of the pseudo-iterative algorithm is improved. Also,this example shows a bigger di�eren
e in a

ura
y between the spa
e-time s
heme and thetwo other s
hemes (in favour of the spa
e-time s
hemes) than other dam break problems.7. Con
luding remarks and outlookThis arti
le applies the framework of dis
ontinuous residual distribution (DRD) to theshallow-water equations with non-�at bottom topography. The fo
us is on the spa
e-timerepresentation that is dis
ontinuous in time only. This 
hoi
e is motivated by the fa
t27



Table 5: Partial dam break on a quasi-uniform mesh. Computational work is shown fortwo existing impli
it RD s
hemes and the spa
e-time s
heme with CFL = 1, 2, 4, 8.S
heme No. time steps Average no. iterations Total no. iterations Work unitsB�Ferrante 134 29.44 3945 3.59e+08LLFs 127 66.39 8432 1.92e+08STDRD1 105 34.39 3611 6.57e+08STDRD2 54 30.80 1663 3.02e+08STDRD4 28 52.32 1465 2.66e+08STDRD8 14 132.64 1857 3.38e+08
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Figure 17: Cir
ular dam break over dis
ontinuous bed using a lo
ally re�ned mesh. 30free-surfa
e 
ontours for the blended s
heme where the LDA part is 
omputed as in [36℄.that dis
ontinuity in time lifts the time-step restri
tion on the size of the spa
e-time prismand thus results in an un
onditionally stable dis
retisation.As the numeri
al experiments demonstrate, we 
an indeed in
rease the time step ofdis
ontinuous spa
e-time s
hemes and still retain the most important properties of theshallow-water system: 
onservation, linearity preservation, upwinding, hydrostati
 bal-an
e and lo
al positivity. In parti
ular, we emphasise that our interest here is restri
ted28
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Figure 18: Cir
ular dam break over dis
ontinuous bed using a lo
ally re�ned mesh. 30free-surfa
e 
ontours for the LLFs s
heme taken from [18℄.to `pure' upwinding and therefore no stabilisation term [37℄ is in
luded in these dis
reti-sations.Comparison to two other impli
it RD s
hemes show that the spa
e-time DRD algo-rithm developed in this work provides more a

urate results (measured either quantita-tively or qualitatively) than the 
urrently available RD s
hemes for the shallow-waterequations. The 
omparisons were 
arried out on both quasi-uniform and lo
ally re�nedmeshes. Depending on the parti
ular test 
ase and implementation, the best-performingspa
e-time DRD s
hemes require around 7-10 times fewer physi
al-time steps than theother s
hemes. This, on 
urrent implementation, translates into 2-4 times fewer pseudo-time iterations over the entire integration. In terms of estimated total 
omputationalwork, the dis
ontinuous spa
e-time s
hemes are still less expensive for a given level ofa

ura
y.Although more a

urate than other 
urrently available RD s
hemes, it has alsoemerged from the study that the bene�ts from in
reasing the time step in the spa
e-time
DRD s
heme has pra
ti
al limitations. One of these is the loss of a

ura
y asso
iatedwith larger time steps. Another is the relatively large number of pseudo-time iterationsneeded per physi
al-time step. It is possible to mitigate these drawba
ks by fo
using onimproving the iterative 
onvergen
e of the s
hemes with medium-sized time steps, say29
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Figure 19: Cir
ular dam break over dis
ontinuous bed using a lo
ally re�ned mesh. 30free-surfa
e 
ontours for the spa
e-time blended s
heme with CFL = 9.between CFL = 3 and CFL = 5 (or higher in 
ase of lo
al mesh re�nement) for thesegenuinely time-varying 
ases. Improving the iterative 
onvergen
e by applying a moreadvan
ed pseudo-time-stepping algorithm [38℄ is among the most attra
tive options. Inparti
ular, a further study should 
ompare the 
omputational performan
e of the spa
e-time DRD s
heme with that of the expli
it RKRD s
heme [9, 19℄ when applied to thesame or similar test 
ases presented in this work.Overall, the likeliest areas of appli
ation where the proposed s
heme 
ould prove ad-vantageous will probably in
lude a relatively large degree of sti�ness that 
omes from thephysi
al equations when the vis
ous term is in
luded.A
knowledgementWe thank Philip Roe for his 
ontribution to the 
onservative linearisation of theshallow-water equations.AppendixBased on Figure 22, in this Appendix we give an estimate for the CFL-
ondition of thevertex-
entred upwind FV s
heme with expli
it Euler time dis
retisation on stru
tured30



Table 6: Cir
ular dam break over non-smooth bed using a quasi-uniform mesh. Compu-tational work is shown for two existing impli
it RD s
hemes and the spa
e-time s
hemewith CFL = 1, 2, 4, 8.S
heme No. time steps Average no. iterations Total no. iterations Work unitsB�Ferrante 438 20.80 9112 8.48e+08LLFs 436 36.14 15757 3.67e+08STDRD1 343 26.78 9185 1.71e+09STDRD2 173 29.41 5088 9.47e+08STDRD4 88 55.48 4882 9.08e+08STDRD8 45 135.38 6092 1.13e+09Table 7: Cir
ular dam break over non-smooth bed using a lo
ally re�ned mesh. Compu-tational work is shown for two existing impli
it RD s
hemes and the spa
e-time s
hemewith CFL = 3, 6, 9.S
heme No. time steps Average no. iterations Total no. iterations Work unitsB�Ferrante 1260 17.34 21849 2.41e+09LLFs 1202 17.52 21064 5.82e+08STDRD3 332 52.77 17518 3.87e+09STDRD6 169 66.30 11205 2.48e+09STDRD9 114 86.15 9821 2.17e+09triangulation. This is to be 
ompared with the past-shield 
ondition (8) of the spa
e-times
heme.Case 1: adve
tion along the axisThe upwind FV s
heme gets 
ontributions from edges 1, 2, and 3 (red, blue, and yellowin Figure 22). For a verti
al speed, the angles between the speed and normals are
θ1 =

π

4
, θ2 =

π

8
, θ3 =

π

2
− π

8
.One 
an similarly show that the edge lengths are

l1 = l4 =
2

3

∆x

cos(π
4
)
, l2 = l3 = l5 = l6 =

2

3

∆x

cos(π
8
)
.As a 
onsequen
e, the limiting expli
it Euler time step from positivity analysis reads

∆t(al1 cos(θ1) + al2 cos(θ2) + al3 cos(θ3)) = |C| = 6

(
1

3

∆x2

2

)
,

a∆t∆x

(
2

3
+

2

3
+

2

3
tan(

π

8
)

)
= ∆x2,

a∆t

∆x
=

3

2(2 + tan(π
8
))

≈ 0.62132.31



In the same 
ase, one easily shows that the past-shield 
ondition gives
a∆x

2
∆t = 2

|T |
3

=
1

3
∆x2 ⇒ a∆t

∆x
=

2

3
≈ 0.66667.Case 2: adve
tion along the diagonalThe upwind FV s
heme gets 
ontributions from edges 1, 2, and 6 (red, blue, and greenin Figure 22). In this 
ase, the angles between the speed and normals are

θ1 = 0, θ2 =
π

8
, θ6 =

π

2
− π

8As a 
onsequen
e, the limiting expli
it Euler time step from positivity analysis reads
∆t(al1 cos(θ1) + al2 cos(θ2) + al6 cos(θ6)) = |C| = 6

(
1

3

∆x2

2

)

a∆t∆x

(
2

3 cos(π
4
)

+
2

3
+

2

3
tan(

π

8
)

)
= ∆x2

a∆t

∆x
=

3

2( 1
cos(π

4
)
+ 1 + tan(π

8
))

≈ 0.53033In the same 
ase, one again shows that the past-shield 
ondition still gives
a∆x

2
∆t = 2

|T |
3

=
1

3
∆x2 ⇒ a∆t

∆x
=

2

3
≈ 0.66667.Referen
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Figure 20: Cir
ular dam break over dis
ontinuous bed using a lo
ally re�ned mesh. 3Dfree-surfa
e plots at t = 7.5 for the blended LDAN s
heme, the LLFs s
heme and thedis
ontinuous STB s
heme (CFL = 9). 36
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Figure 21: Cir
ular dam break over dis
ontinuous bed using a lo
ally re�ned mesh. Plotsof the free surfa
e along the line x = y. The sli
es are taken at t = 2.5, t = 5.0, t = 7.5and t = 10.0. In ea
h �gure the results for the blended LDAN s
heme, the LLFs s
hemeand the dis
ontinuous STB s
heme (CFL = 9) are shown.
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Figure 22: Sket
h of the vertex-
entred �nite volume s
heme
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