
Unonditionally stable spae-time disontinuous residualdistribution for shallow-water �owsD. Sármánya,∗, M.E. Hubbarda, M. RihiutobaShool of Computing, University of Leeds, LS2 9JT, Leeds, United KingdombINRIA Bordeaux Sud-Ouest, 351 Cours de la Libération, 33405 Talene Cedex, FraneAbstratThis artile desribes a disontinuous implementation of residual distribution for shallow-water �ows. The emphasis is put on the spae-time implementation of residual distri-bution for the time-dependent system of equations with disontinuity in time only. Thislifts the time-step restrition that even impliit ontinuous residual distribution shemesinvariably su�er from, and thus leads to an unonditionally stable disretisation. Thedistributions are the spae-time variants of the upwind distributions for the steady-statesystem of equations and are designed to satisfy the most important properties of theoriginal mathematial equations: positivity, linearity preservation, onservation and hy-drostati balane. The purpose of the several numerial examples presented in this artileis twofold. First, to show that the disontinuous numerial disretisation does indeedexhibit all the desired properties when applied to the shallow-water equations. Seond,to investigate how muh the time step an be inreased without adversely a�eting theauray of the sheme and whether this translates into gains in omputational e�ieny.Comparison to other existing residual distribution shemes is also provided to demonstratethe improved performane of the sheme.Keywords: hyperboli onservation laws, shallow-water equations, spae-timedisontinuous representation, residual distribution1. IntrodutionThe framework of residual distribution (RD) has a nearly thirty-year-old history, hav-ing �rst been introdued in [1℄ as an alternative to �nite volume shemes for the numer-ial disretisation of hyperboli onservation laws. They an more naturally representthe most important underlying physial properties of steady-�ow problems � espeiallyavoiding spurious osillations around disontinuities � while still providing seond-orderaurate approximations. For time-dependent problems, however, it initially proved to berather more di�ult to onstrut an e�ient, seond-order aurate, RD sheme that isalso free of spurious osillations. Muh of the reent researh in the �eld, therefore, hasbeen aimed at devising truly time-dependent disretisations that retain all the desired
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properties of the underlying physial equations. Reent reviews of the �eld an be foundin [2, 3, 4℄.Almost all of these shemes, however, use ontinuous disretisations of the physialvariables. This leads to numerial methods that are both impliit, beause of the preseneof a global mass matrix, and require a time-step restrition to obtain stability, positivity orboth. For many pratial appliations in physis or engineering, these methods an proveto be omputationally ine�ient and unompetitive with more established disretisationmethods, suh as �nite volumes [5, 6℄, �nite elements [7℄ or �nite di�erenes [8℄. Toremedy this shortoming, two di�erent approahes have been proposed in the literaturefor RD shemes that improve the e�ieny of the time-step algorithm as well as keep thedisrete representation ontinuous. One is to make the disretisation genuinely expliitand thus remove the need to solve an algebrai system at eah time step [9℄. The other isto introdue double layers in a spae-time impliit sheme, whih removes the restritionson the time step in the seond layer [10℄.In ontrast, it is also possible to allow the disrete representation to be disontinuousaross ell/prism interfaes. It is only relatively reently that this onept has beenintrodued � at �rst for steady-state equations only [11, 12℄. The potential bene�ts ofthe disontinuous RD (DRD) framework in spae inlude: a) the possibility to implement
h-adaptivity more easily; b) a mass-matrix struture that may render the inversion of themass matrix omputationally less expensive. As a further development, the work in [13℄took the �rst steps towards unonditionally stable spae-time RD shemes by introduingdisontinuous representation in time. One an also view this onstrution as a speial,and slightly simpler, ase of the spae-time double-layer sheme [10, 14℄, where the �rstlayer is of zero height, while there is still no formal ondition on the height of the seondlayer.In this artile, we extend the onept of spae-time DRD to the shallow-water equa-tions with possibly non-�at bottom topography. Mathematially, the non-�at bottomtopography manifests itself as a soure term in the governing equations. This meansthat apart from the usual requirements � positivity, linearity preservation, onservationand upwinding � a suessful numerial sheme should also preserve the hydrostati bal-ane. Various RD shemes have been developed for shallow-water �ows in the past oneand a half deades. Both wave deomposition shemes [15, 16℄ and matrix distributionshemes [17, 18℄ proved to be suessful in representing the underlying physial properties.However, they are often omputationally rather expensive owing partly to a time-step re-strition mentioned above, and partly to poor iterative onvergene. As a result and morereently, the expliit RD approah has been applied to the shallow-water system [19℄.We take a di�erent approah in this work and instead of replaing an intrinsiallyimpliit sheme with an expliit one, we aim to eliminate the time-step restrition andonstrut an unonditionally stable spae-time RD sheme. The fous of this artile istherefore on disontinuous representation in time, whih in this way promises to improvethe e�ieny of the impliit spae-time disretisation. Our spae-time DRD disretisationis also designed to be upwind, onservative and hydrostatially well-balaned. Througha number of numerial experiments, we investigate whether these properties are satis�ed,as well as positivity and linearity preservation � two other properties that are formallylost but experimentally often observed. Cruially, we also address the question of how2



far the time step an be inreased before the disretisation adversely a�ets aurayand positivity. Comparison with other impliit RD shemes is used to demonstrate theimproved performane of this approah.The remaining part of the artile is organised as follows. In Setion 2, we desribe theframework of the spae-time DRD for general hyperboli onservation laws in the aseof both salar and system variables. Setion 3 applies the sheme to the shallow-waterequations, while Setion 4 outlines details about the numerial implementation of thedisretisation. An extensive study of the sheme via numerous omputational examplesis arried out in Setion 5. Setion 6 ompares the spae-time DRD sheme developedin this work with other existing RD shemes. Finally, we draw onlusions and provideoutlook in Setion 7.2. Spae-time disontinuous residual distributionIn this setion, we give a general desription for spae-time DRD shemes for hyper-boli onservation laws with homogeneous right-hand side. Assume a two-dimensionalspatial domain Ω ⊂ R
2, its triangular tessellation Ωh, and the orresponding pris-mati spae-time mesh Ωt
h. Let, furthermore, E denote a given triangle, Et denote thespae-time prism de�ned over this triangle, Di = ∪i∈EE, dΩh = dx dy, dΩt

h = dx dy dt,
d(∂Ω) = ds(x, y) and d(∂Ωt) = dst(x, y, t). In the last two de�nitions, s and st denotethe mappings s : Ω → ∂Ω and Ωt → ∂Ωt, respetively.2.1. Salar equationsConsider the salar onservation law

∂tu+ ∇ · f = 0 or ∂tu+ a(u) · ∇u = 0 (1)with appropriate initial onditions and Dirihlet boundary onditions at the in�ow partof the domain. Here f represents the onservative �ux vetor and a(u) = ∂f/∂u is thewave speed. The assoiated residual over eah spae-time prism Et is given by
φEt

=

tn+1∫

tn

∫

E

(∂tu+ ∇ · f ) dx dy dt. (2)For the original (non-disretised) equation (1), it therefore holds that
φ =

tn+1∫

tn

∫

Ωh

(∂tu+ ∇ · f) dx dy dt =
∑

E∈Ωh

φEt
,provided that the solution u is bounded and pieewise di�erentiable.We arry out the RD numerial disretisation in the spirit of [4℄ and it onsists of thefollowing general steps.1. In every spae-time prism, replae the unknown u with an approximation uh thatis linear in spae and linear in time. 3



2. Transform the prism residual into a spae-time boundary integral
φEt

=

tn+1∫

tn

∫

E

(∂tuh + ∇ · f) dx dy dt =

∫

Et

∇t · f t dΩt =

∫

∂Et

f t · nt d(∂Ωt), (3)where ∇t = (∂t, ∂x, ∂y), f t = (u,f), and nt is the outward-pointing unit vetornormal to the spae-time prism.3. Let L denote the spae of linear one-dimensional Lagrangian basis funtions on theinterval [tn, tn+1] and W denote the spae of linear two-dimensional basis funtionsassoiated with a triangle. Assume furthermore that uh ∈ L ×W . Then the mid-point rule in time results in
φEt

=

∫

∂Et

f t · nt d(∂Ωt)

≈
∫

E

(
un+1

h − un
h

)
dΩ +

∆t

2




∫

∂E

f (un) · n d(∂Ω) +

∫

∂E

f(un+1) · nd(∂Ω)





=

∫

E

(
un+1

h − un
h

)
dΩ +

∆t

2
(φn

E + φn+1
E ), (4)where ∆t = [tn, tn+1] is the `height' of the prism. This is a seond-order aurateapproximation of the prism residual, as long as the spatial residuals, φn

E and φn+1
E ,are omputed to be at least one order more aurate than the disretisation itself.4. Distribute the prism �utuation φEt

(4) to the six verties of the prism in a onser-vative manner. That is, the frations of the residual sent to vertex i at time levels
n and n+ 1 are de�ned as

φE
i,n = βE

i,nφEt
and φE

i,n+1 = βE
i,n+1φEt

, (5)with ∑i∈E β
E
i,n +

∑
i∈E β

E
i,n+1 = 1.5. Solve the algebrai system ∑

E∈Di

φE
i,n = 0,

∑

E∈Di

φE
i,n+1 = 0,

(6)
∀i ∈ Ωh at eah time step.How to preisely distribute the residual does greatly depend on the diretion of the�ow, whih is typially indiated by `in�ow' parameters. For the spae-time sheme, theseare de�ned as
ki,n = −∆t

4
a · ni −

|E|
3
, k+

i,n = max(0, ki,n), k−i,n = min(0, ki,n),

ki,n+1 = −∆t

4
a · ni +

|E|
3
, k+

i,n+1 = max(0, ki,n+1), k−i,n+1 = min(0, ki,n+1),

Nt =
1∑

i∈E k
+
i,n +

∑
i∈E k

+
i,n+1

,

(7)
4



where ni is the outward pointing normal vetor opposite node i with length that of theedge opposite node i. The quantity a is a prism-averaged state of the values of a at theverties of the prism.If the disrete representation of the solution uh is ontinuous over the whole spae-timedomain, the sheme is only onsistent if there is no residual sent bak to the previous timelevel tn. This ondition results in a CFL-type restrition on the height of the spae-timeprism ∆t,
ki,n = −∆t

4
a · ni −

|E|
3

≤ 0. (8)Although this time step is generally larger than a more traditional CFL ondition in anupwind �nite-volume method � as we show it in the Appendix � it is an undesirableondition for a numerial disretisation that is inherently impliit.The properties of a given distribution depend to a great degree on the preise de�nitionof the oe�ients. The typial requirements for a broadly suessful RD sheme inlude[3℄
• positivity, whih warrants that the numerial approximations are free of spuriousosillations;
• linearity preservation, whih ensures that a (k − 1)th-order polynomial representa-tion leads to a kth-order aurate sheme;
• onservation, whih guarantees that disontinuities are aptured orretly;
• ompatness, whih is primarily for omputational e�ieny and requires that theell/prism residual be distributed to its own verties only;
• ontinuous dependene of the oe�ients, whih enhanes the iterative onvergeneof the algebrai solver; and
• upwinding, whih ditates that the disretised model propagates information in thesame diretion and at the same veloity as its non-disretised ounterpart.By Godunov's theorem [20, 21℄, only nonlinear shemes an satisfy the onditions forboth positivity and linearity preservation. Very often, though, linear shemes are used asthe basis for onstruting these nonlinear shemes. If a is a onservative linearisation of

a(u) = ∂f/∂u over the spae-time prism, then we an ompute the disrete residual as
φEt

=
∑

i∈E

ki,nu
n
i +

∑

i∈E

ki,n+1u
n+1
i , (9)and the resulting sheme will be onservative as long as the onstraint following (5)is satis�ed [22℄. Otherwise, the prism residual needs to be omputed by a su�ientlyaurate quadrature rule in order to obtain onservation, even when (5) holds. Thislatter version is also known as the onservative RD (CRD) formulation [23, 17℄.There are a large number of numerial shemes that an be (re)ast in the RD frame-work. We now desribe only the spae-time upwind shemes that are the fous of ourinvestigation in this artile. For this, the parameters de�ned in (7) are used.

• The spae-time N (STN) sheme [24℄ is here de�ned so that it is suitable for the
CRD formulation [14℄,

uin
t = Nt

(
∑

j∈E

k+
j,nu

n
j +

∑

j∈E

k+
j,n+1u

n+1
j − φEt

)
,

(
φE

i,n

)N
= k+

i,n

(
un

i − uin
t

)
,

(
φE

i,n+1

)N
= k+

i,n+1

(
un+1

i − uin
t

)
.

(10)5



This is a linear sheme that has all the desired properties exept linearity preser-vation. We note, however, that positivity is only formally guaranteed if we use (9)for the omputation of φEt
; see [13℄ for spae-time DRD shemes. Nevertheless,osillation-free behaviour is also often observed in omputational experiments [4℄for the CRD sheme, when a quadrature rule is used to evaluate φEt

.
• The spae-time LDA (STLDA) [24, 14℄ sheme is de�ned as

(
φE

i,n

)LDA
= k+

i,nNtφEt
,

(
φE

i,n+1

)LDA
= k+

i,n+1NtφEt
, (11)whih is also a linear sheme and has all the desired properties exept positivity.

• The spae-time blended (STB) sheme ombines two linear shemes, typially theSTN and STLDA shemes, through a nonlinear blending oe�ient,
(
φE

i,n

)B
= θ

(
φE

i,n

)N
+ (1 − θ)

(
φE

i,n

)LDA
,

(
φE

i,n+1

)B
= θ

(
φE

i,n+1

)N
+ (1 − θ)

(
φE

i,n+1

)LDA
.

(12)The blending oe�ient determines how `well' the required properties, espeiallypositivity, are satis�ed. The de�nition adopted in this artile [25℄ is
θ =

|φEt
|

∑
i∈E

∣∣∣
(
φE

i,n

)N ∣∣∣+
∑

i∈E

∣∣∣
(
φE

i,n+1

)N ∣∣∣
. (13)2.2. Disontinuity in time for the salar equationWhen the representation of the disrete solution is allowed to be disontinuous in time,one needs to introdue additional residuals. These an be viewed as prism residuals with

∆t→ 0, see [11, 13℄, and thus read
ψE = lim

∆t→0
φEt

= lim
∆t→0

∫

∂Et

f t · nt d(∂Ωt) =

∫

∂E

[un
h] dΩ =

|E|
3

∑

i∈E

[un
i ] , (14)where [·] represents the jump through the fae. The simple vertex-entred distribution,

ψE
i,n =

|E|
3

[un
i ] , (15)was shown in [11, 13℄ to be positive and linearity preserving, and this is the formulationwe use throughout this artile. As a result, in the ase when only disontinuities in timeare introdued, the algebrai system takes the form

∑

E∈Di

(
φE

i,n + ψE
i,n

)
= 0,

∑

E∈Di

φE
i,n+1 = 0,

(16)
∀i ∈ Ωh. 6



2.3. Systems of equationsMuh of the RD framework desribed for the salar equation an be applied to thenonlinear hyperboli system of onservation laws,
∂tU + ∇ · F = 0 or ∂tU + A(U) · ∇U = 0, (17)where A(U) = [Ax,Ay] = [∂Fx/∂U, ∂Fy/∂U ] = ∂F /∂U is the wave-speed tensor. Thetwo key elements where the extension is not so straightforward are positivity and upwind-ing. Positivity of the general system (17) is not learly de�ned; instead, an algorithmiproperty that preserves the nonnegativity of ertain physial quantities � water height,density, pressure, onentration, et. � are required.The de�nitions of the upwind diretions for (17) are not immediately apparent, either.Di�erent approahes have been proposed, the most popular of whih is matrix distribu-tion [26℄, whih we also adopt in the urrent work. For spae-time prisms, the in�owparameters used for the prism distribution are then de�ned as

Ki,n = −∆t

4
A · ni −

|E|
3

I,

Ki,n+1 = −∆t

4
A · ni +

|E|
3

I,
(18)where I is the identity matrix and A represents a prism-averaged state of the �ux Jaobian

A.2.4. Conservative linearisation for systems of equationsAs in the salar ase, A is preferably derived from a onservative linearisation. Forsystems of equations, however, the exat form of the onservative linearisation is rarelystraightforward. It often assumes linear variation in quantities other than the onservativevariables U . The set of linearly varying quantities is traditionally alled the Roe-parametervetor. The (vetor-valued) disrete residuals of the system (17) an then be omputedas
ΦEt

=
∑

i∈E

Ki,nŨ
n
i +

∑

i∈E

Ki,n+1Ũ
n+1
i with Ũn

i =
∂U

∂Z
Zn

i , Ũn+1
i =

∂U

∂Z
Zn+1

i , (19)where Z is the vetor of the Roe-parameter variables [27, 1℄ and the derivative matrix
∂U
∂Z

is evaluated at the arithmeti mean states of the parameter-vetor variables over thespae-time prism.If the onservative linearisation is not known or its implementation is not pratial, itis also possible to ahieve onservation by using a su�iently aurate quadrature rule toompute the prism residual [23, 17℄.2.5. Upwind RD shemes for systems of equationsAssuming that the in�ow matries de�ned in (18) are diagonalisable, as is the ase inalmost all physial appliations, we have Ki,n = RDR−1, where D is the diagonal matrixof eigenvalues, R−1 is the matrix of the left and R of the right eigenvetors. De�ning7



D± = 1
2
(D ± |D|) with |D| denoting the absolute values of the entries, we an introduethe other in�ow matrix parameters (f. (7)),

K+
i,n =

(
RD+R−1

)
i,n
, K+

i,n+1 =
(
RD+R−1

)
i,n+1

,

K−
i,n =

(
RD−R−1

)
i,n
, K−

i,n+1 =
(
RD−R−1

)
i,n+1

,

Nt =

(
∑

i∈E

K+
i,n +

∑

i∈E

K+
i,n+1

)−1

.

(20)These, in turn, are used to de�ne the upwind RD shemes along the lines of the salarase (10)�(12).
• The spae-time N (STN) sheme for systems is now de�ned as

Ũ in
t = Nt

(
∑

j∈E

K+
j,nŨ

n
j +

∑

j∈E

K+
j,n+1Ũ

n+1
j − ΦEt

)
,

(
ΦE

i,n

)N
= K+

i,n

(
Ũn

i − Ũ in
t

)
,

(
ΦE

i,n+1

)N
= K+

i,n+1

(
Ũn+1

i − Ũ in
t

)
,

(21)where Ũ is de�ned as in (19) if a onservative linearisation exists and thus ΦEt
isomputed as in (19). On the other hand, Ũ = U if the CRD formulation is used and

ΦEt
is omputed by means of a quadrature rule. In the system ase, positivity shouldstill be understood as positivity of the underlying linear advetion. For nonlinearsystems, positivity in the strit sense is not and should not be satis�ed. Instead, themore generally property that the solution is free of spurious osillations is required.

• The spae-time LDA (STLDA) sheme for systems is de�ned as
(
ΦE

i,n

)LDA
= K+

i,nNtΦEt
,

(
ΦE

i,n+1

)LDA
= K+

i,n+1NtΦEt
. (22)

• The spae-time blended (STB) sheme for systems is still de�ned as a ombinationof STN and the STLDA shemes,
(
ΦE

i,n

)B
= Θ

(
ΦE

i,n

)N
+ (I − Θ)

(
ΦE

i,n

)LDA
,

(
ΦE

i,n+1

)B
= Θ

(
ΦE

i,n+1

)N
+ (I − Θ)

(
ΦE

i,n+1

)LDA
.

(23)The matrix blending parameter Θ an now be omputed in a number of di�erentways [28, 29℄. The diret analogue of (13) is
Θ1 = diag


 |ΦEt

|
∑

i∈E

∣∣∣
(
ΦE

i,n

)N ∣∣∣+
∑

i∈E

∣∣∣
(
ΦE

i,n+1

)N ∣∣∣


 , (24)where the division should be understood as an elementwise operation. Anotherpossibility, proposed in [28℄, is to hoose a partiular diretion ξ = (ξx, ξy) andompute the deomposition A · ξ = RξDξR−1

ξ . The blending (23) is then arriedout on the `harateristi' residuals
ΦN

i,n = R−1
ξ ΦN

i,n, ΦN
i,n+1 = R−1

ξ ΦN
i,n+1, ΦLDA

i,n = R−1
ξ ΦLDA

i,n , ΦLDA
i,n+1 = R−1

ξ ΦLDA
i,n+1,8



with the blending parameter omputed as
Θ2 = diag

( ∣∣∑
i∈E Φ

N
i,n +

∑
i∈E Φ

N
i,n+1

∣∣
∑

i∈E

∣∣ΦN
i,n

∣∣+
∑

i∈E

∣∣ΦN
i,n+1

∣∣

)
, (25)where we drop the supersript `E' to avoid lutter. Finally, we alulate the blendedresiduals based on the original variables by ΦB

i,n = RξΦ
B
i,n and ΦB

i,n+1 = RξΦ
B
i,n+1.2.6. Disontinuity in time for systems of equationsThe treatment of the disontinuity in time is diretly analogous to (15), and is de�nedas [13℄

ΨE
i =

|E|
3

[Un
i ] , (26)whih leads to the algebrai equations

∑

E∈Di

(
ΦE

i,n + ΨE
i,n

)
= 0,

∑

E∈Di

ΦE
i,n+1 = 0,

(27)
∀i ∈ Ωh, whih needs to be solved at eah time step.3. Appliation to the shallow-water systemIn this artile, we apply the spae-time RD framework for systems of equations to thefritionless shallow-water equations with non-�at bottom topography, i.e. we seek solutionto the system

∂tU + ∇ · F (U) + S(U) = 0 on Ωt, (28)where
U =




d
du
dv



 , F =
[
Fx Fy

]
=




du dv

du2 + gd2

2
duv

duv dv2 + gd2

2



 , S = −




0

gd∂b(x,y)
∂x

gd∂b(x,y)
∂y


 . (29)Here d is the water height, u = (u, v) is the �ow veloity and b is the height of the bottomtopography. The level of the free surfae is de�ned as η = d+ b. In the ase of b ≡ 0, thenonlinear system (28), with the variables (29), expresses the onservation of water height

d and disharge du � it an, therefore, admit disontinuous solutions (hydrauli jumps).In order to apture these disontinuities orretly, the disretisation of (28) should alsobe done in a onservative manner.3.1. Conservative shemesThere are essentially two di�erent ways to ahieve a onservative RD sheme for (28).One is to derive a onservative linearisation for the �ux Jaobian by assuming linearvariation of the Roe-parameter vetor [27, 1℄. The other is to use the CRD formulation[23, 17℄, where a nononservative linearisation of the onservative variables is used andonservation is ahieved by omputing the prism residuals via quadrature rules.9



3.1.1. A onservative linearisationIn the steady state, onservative linearisation of (28) an be obtained by assuming thelinear variation of the Roe-parameter vetor Z = 1√
d
U . Then

∂U

∂Z
=




2
√
d 0 0√
du

√
d 0√

dv 0
√
d


so that the evaluation of A at the following ell-averaged states [30℄, together with (19),result in a onservative disretisation,

ũ =

√
du

√
d
, ṽ =

√
dv

√
d
, d̃ = 0.9d+ 0.1

√
d1d2d3√
d

. (30)Here · signi�es the arithmeti mean of the values at the verties (represented by thesubsripts 1, 2, 3) of the triangle.For the spae-time prism, one an use the linearisation (30) at the bottom and top ofthe prism, and apply the trapezium rule in time to ahieve onservation.3.1.2. The CRD approahAs an alternative to onservative linearisation, one an instead use the arithmetimeans d, u, v (over either triangles or prisms), and apply the CRD formulation. In thisase, however, the positivity of the N and STN shemes is formally lost, even though itis often observed in numerial experiments.3.2. Hydrostati balane: the C-propertyThe shallow-water system (28)�(29) is, by onstrution, in hydrostati balane as thisis one of the main assumptions in its derivation from the Navier-Stokes equation [31℄.Almost all numerial disretisations preserve this property exatly over a �at bed. Overa general (even smooth) non-�at bed, however, the exat preservation of the hydrostatibalane (also alled the C-property) is not always straightforward.3.2.1. The CRD approahAs it was proved in [17℄, as long as the water-height d is assumed to be linearly varyingand so is the bottom topography b, linearity preserving CRD shemes also satisfy the C-property [17, 18℄. This simply means that the soure term's ontribution to the prismresidual needs to be omputed as
Φb

Et
= ∆t

gd

2

∑

i∈E

[
0
bini

]
. (31)The onventional de�nition of the STN sheme (21), however, does not satisfy thehydrostati balane, whih means that the orresponding B and STB shemes will alsolak this property. So instead of (21) we need to apply a slightly modi�ed version of10



the sheme. For the CRD formulation, it means that U = [d, du, dv]T is replaed by
V = [η, du, dv]T so that we have

V in
t = Nt

(
∑

j∈E
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j,nV

n
j +

∑

j∈E
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n+1
j − ΦEt

)
,
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(
V n
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)
,

(
ΦE

i,n+1

)N
= K+

i,n+1

(
V n+1

i − V in
t

)
.

(32)Proposition. The STN sheme (32) exatly satis�es the hydrostati balane (C-property).As a result, the STB sheme de�ned in (12) also exatly satis�es the same property.Proof. In eah spae-time prism, with dropping the supersript Es, the STN sheme (32)an be rewritten as [14℄
ΦN
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)
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(
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j

)
.The �utuations ΦLDA

i,n and ΦLDA
i,n+1 are exatly zero for V = [η, du, dv]T = [const, 0, 0]Tas long as (31) is used to ompute the soure term's ontribution to the prism residual.Eah of the other terms is exatly zero beause the assumed linear variation of U =

[d, du, dv]T and b implies the linear variation of V = [η, du, dv]T , i.e. V = [η, du, dv]T =
[const, 0, 0]T .3.2.2. Conservative linearisationWe are not aware of a onservative linearisation for the shallow-water equations thatpreserves the hydrostati balane exatly as well as onserves water height and disharge.Sine the linear variation of √d is assumed in the onservative linearisation proposedin this work, it is natural to assume the linear variation of √b, too, and ompute thesoure term's ontribution in the prism residual as

Φb
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= ∆tgd̃
∑

i∈E

[
0√
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√
bi ni

]
. (33)This formulation introdues a small error in the hydrostati balane beause in general

ηi = di + bi = const ;
√
d
√
di +

√
b
√
bi = const.Conversely, it is possible to ahieve exat hydrostati balane by assuming the linearvariation of √d and √

η (instead of √d and √
b) and ompute the soure term's ontribu-tion in the prism residual as
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]
. (34)This formulation preserves the lake at rest, V = [η, du, dv]T = [const, 0, 0]T , exatly butin general introdues an error in the onservation of water height and disharge beausethe term
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does not stay onstant in time even when b does.We emphasise, however, that in both ases the errors are rather small and in mostomputational experiments they do not a�et the results substantially.4. Implementation detailsIn the numerial examples presented in this artile, we assume the disrete representa-tion to be disontinuous in time only. In this ase, we need to solve the algebrai system(27), whih is the spae-time DRD disretisation of (28), at eah time step. For this asimple pseudo-time-stepping algorithm is used
(
Un

i

Un+1
i

)

m+1

=

(
Un

i

Un+1
i

)

m

− τ

st
i

∑

E∈Di

(
ΦE

i,n + ΨE
i,n

ΦE
i,n+1

)

m

, (35)where st
i = ∆tsi is the volume of the dual spae-time ell (with si being the volume ofthe spatial dual ell). The pseudo-time step τ is given by

τ = 0.9 min
i

st
i∑

E∈Di
ρ(K+

i )
, ρ(K+

i ) = max diagD+
i , (36)with Ki = −1

2
A · ni and ρ(M) denoting the spetral radius of a given matrix M. In allthe omputations, we use the stopping riterion

rel_tol =
‖ (Ψn, Ψn+1)

T

m ‖1

‖ (Ψn, Ψn+1)T

0 ‖1

< 10−3.Often, though, we also apply an intermediate riterion to freeze the blending parameter,i.e. to stop its reomputation and ontinue the iteration with a onstant value. In ournumerial experiments, this happens one rel_tol = 10−1.5 is reahed.Only results with the CRD formulation are reported. We note, however, that for �atbottom topography, the sheme with the onservative linearisation provides idential re-sults. Even when the bottom topography is not �at, we only observe signi�ant di�erenebetween the results provided by the two di�erent formulations when the exat satisfationof the hydrostati balane is investigated (f. Setion 5.3).5. Numerial resultsIn this setion, we present a number of time-dependent test ases � most of whihare nonlinear � to validate the disontinuous shemes presented in the previous setions.Throughout the setion, the representation is disontinuous in time, whih results in anunonditionally stable and globally positive sheme.5.1. Cirular dam break over wet bedDam-break examples are used to experimentally assess whether the numerial solutionis free of spurious osillations. The �rst dam-break example we onsider is that of a irulardam with radius r =
√
x2 + y2 = 60 separating water levels d = 10 and d = 0.5 in asquare basin. The omputational domain is the top right quarter, Ω = [0, 100]2, of the12



entire basin with solid-wall boundary onditions. The blending parameter Θ2 is used inthis example.The veloity �eld tends to be more sensitive to spurious osillations than the waterheight so we plot Froude-number ontours for the STB sheme.Figure 1 shows that the STB sheme aptures the disontinuity well without intro-duing spurious osillations for CFL = 1, CFL = 2 and CFL = 4. Interestingly, however,the shemes with CFL = 2 and CFL = 4 seem to be less di�usive than the sheme with
CFL = 1. Three-dimensional plots of the water height are given in Figure 2 and theyreveal no disernible osillations for CFL = 1, 2, 4, either.
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Figure 1: Cirular dam break. 30 Froude-number ontour plots of the disontinuous STBsheme for CFL = 1 (top left), CFL = 2 (top right), CFL = 4 (bottom left) and CFL = 8(bottom right).5.2. Improving the iterative onvergeneAny inrease in the time step for any impliit spae-time sheme will only translate intogains in omputational work if the shemes with di�erent CFL numbers perform similarlyin terms of iterative onvergene at eah time step. We use this test to investigate thisproperty when the STB sheme is applied. At eah time step, we integrate until a relativetolerane rel_tol = 10−3 is reahed. This is typially more than enough to ahieve theauray required by a spae-time RD disretisation beause we an use the result fromthe previous time step as an initial guess. We plot the onvergene histories in Figure 3for di�erent CFL numbers for two slightly di�erent blending strategies. In both ases the13
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Figure 2: Cirular dam break. 3D water-height plots of the disontinuous STB sheme for
CFL = 1 (top left), CFL = 2 (top right), CFL = 4 (bottom left) and CFL = 8 (bottomright).blending parameter Θ2 is applied, but in the seond instane we freeze the value afterreahing the relative tolerane rel_tol = 10−1.5 and arry on with the iteration usingthis onstant value.It is lear from the results that the step from CFL = 4 to CFL = 8 does not overall leadto any redution in omputational work. Doubling the time step is obviously bene�ial,and moving to CFL = 4 an still provide e�ieny gains as long as we freeze the blendingparameter (at rel_tol = 10−1.5 in this example).5.3. Lake at rest: the preservation of the hydrostati balaneThis time-dependent example is to experimentally verify that the modi�ed STNsheme (32) does indeed preserve the C-property, i.e. it is hydrostatially well-balaned[32, 33, 17, 18℄. The blended sheme should inherit this property sine it is a linear inter-polation between the STN and the STLDA shemes. Also, the atual form of the blendingparameter does not in�uene the lake-at-rest property so for the sake of brevity we onlyshow results for the STB sheme with Θ1, whih we freeze after rel_tol = 10−1.5. In14
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Figure 3: Cirular dam break. Convergene of pseudo-time iteration for the spae-time
DRD sheme with CFL = 1, 2, 4, 8 when the blending parameter is omputed at everypseudo-time step (left) and when it is frozen one rel_tol = 10−1.5 is reahed (right).the numerial tests we assume a smooth bathymetri funtion,

b(x, y) = 0.8e−5(x−0.9)2−50(y−0.5)2 , (37)and `still-water' initial onditions, [η0, u0, v0] = [1, 0, 0], over the domain Ω = [0, 2]× [0, 1],using a mesh with a typial edge resolution of h = 0.01. Table 1 shows the errors afterintegrating until t = 0.5. The errors remain around mahine preision until the end of thetime marhing, whih indiates a well-balaned sheme. The numbers are for test runswith solid-wall boundary onditions but weak harateristi boundary onditions providenear idential results.As a seond variant of this test ase, we put a perturbation on the initial, `still-water'ondition,
η0 =

{
1.01 if 0.05 < x < 0.15

1 otherwise . (38)For this example, the boundary onditions are weakly enfored everywhere: symmetri(i.e. solid wall) for the bottom and top boundaries, and harateristi freestream for theleft and right boundaries inluding all orners.Figures 4�7 plot 50 ontours of the free surfae η for CFL = 1, 2, 4, 8, respetively,at times t = 0.24 and t = 0.48, while Figure 8 shows the same along the line y = 0.5.They reveal that qualitatively the sheme with CFL = 1 and CFL = 2 appear to be themost aurate while inreasing the CFL number further results in the solution being moredi�usive. This phenomenon is partly beause of the loss of auray assoiated with alarge time step relative to the mesh size, and partly beause of the lak of loal positivityof spae-time impliit shemes.Nevertheless, some of the most important qualitative properties are satis�ed for all
CFL numbers: a) they preserve the C-property in front of the perturbation; and b) theyapture the interation between the gravitational wave and the non-�at bottom; ) theysettle bak to lake at rest after the wave has passed.15



Table 1: Lake at rest. Errors at time t = 0.5 for the disontinuous STB sheme withdi�erent CFL numbers.
CFL = 1.0 ‖η − 1‖ ‖u‖ ‖v‖
L1 5.405934e− 19 1.255336e− 16 5.870068e− 17
L2 8.000922e− 18 5.165644e− 16 2.647004e− 16
L∞ 2.220446e− 16 1.034175e− 14 6.178231e− 15

CFL = 2.0

L1 1.534435e− 18 9.505484e− 17 4.305477e− 17
L2 1.309467e− 17 4.054003e− 16 1.890289e− 16
L∞ 2.220446e− 16 8.781880e− 15 4.230023e− 15

CFL = 4.0

L1 3.744022e− 18 1.078974e− 16 5.057157e− 17
L2 2.054486e− 17 4.354319e− 16 2.091099e− 16
L∞ 2.220446e− 16 8.131857e− 15 4.450119e− 15

CFL = 8.0

L1 6.180234e− 18 1.177755e− 16 5.675335e− 17
L2 2.657800e− 17 4.540011e− 16 2.285096e− 16
L∞ 2.220446e− 16 7.692615e− 15 5.239349e− 15
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Figure 4: Perturbation to the lake at rest when solved with the disontinuous STB shemewith CFL = 1. 50 water-height ontours between values 0.992 and 1.012 at t = 0.24 (left)and t = 0.48 (right) are plotted.5.4. Travelling vortexTo evaluate the auray and (grid) onvergene properties of the STLDA and STBshemes, we inlude the example of a travelling vortex with known exat solution [34, 18℄.
16
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Figure 5: Perturbation to the lake at rest when solved with the disontinuous STB shemewith CFL = 2. 50 water-height ontours between values 0.992 and 1.012 at t = 0.24 (left)and t = 0.48 (right) are plotted.
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Figure 6: Perturbation to the lake at rest when solved with the disontinuous STB shemewith CFL = 4. 50 water-height ontours between values 0.992 and 1.012 at t = 0.24 (left)and t = 0.48 (right) are plotted.Given a �at bottom topography, the exat veloity �eld is expressed as u∞ + u ′, with
u ′ =

{
Γ (1 + cos(ωrc)) (yc − y, x− xc) if ωrc < π

(0, 0) otherwise ,and u∞ being onstant. The onstant Γ is the vortex intensity parameter, (xc, yc) are theoordinates of the entre of the vortex, rc is the distane from the entre of the vortex,and ω is the angular wave frequeny assoiated with the diameter of the vortex. Thewater height is then given as
d(rc) = d∞ +

{
1
g

(
Γ
ω

)2
(κ(ωrc) − κ(π)) if ωrc < π

0 otherwise ,17
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Figure 7: Perturbation to the lake at rest when solved with the disontinuous STB shemewith CFL = 8. 50 water-height ontours between values 0.992 and 1.012 at t = 0.24 (left)and t = 0.48 (right) are plotted.with
κ(x) = 2 cos(x) + 2x sin(x) +

1

8
cos(2x) +

x

4
sin(2x) +

3

4
x2and d∞ = 1.For the grid-onvergene study, we set u∞ = (6, 0), Γ = 15, ω = 4π, g = 9.80665 anduse a sequene of �ve unstrutured triangulations of the domain Ω = [0, 2] × [0, 1] withharateristi mesh sizes h = 1/10, 1/20, 1/40, 1/80, 1/160, respetively. At the initialstate the entre of the vortex is at (xc, yc) = (0.5, 0.5) and the time marhing stops at

t = 1/6, when (xc, yc) = (1.5, 0.5). Freestream harateristi boundary onditions areused everywhere.Figure 9 shows grid onvergene of the STLDA and STB shemes with CFL = 1, 2, 4, 8.Seond-order auray is observed for the STLDA sheme, although in the ase of CFL = 8this is only reahed at the �nest mesh. Also, it is learly between CFL = 4 and CFL = 8that the larger time step has a signi�ant e�et on the auray of the sheme.The onvergene rate for the STB sheme is slightly suboptimal � at around 1.8 �but still better than existing results of nonlinear spae-time RD shemes [17, 13℄. Theblending in this example is applied to the residuals of the harateristi variables Θ2.5.5. Partial dam breakThis example is similar to the one in Setion 5.1 but has a more omplex geometry.We onsider the domain [0, 200]2 with a dam that separates water levels d = 10 and d = 5.The dam is situated in the region [95, 105] × [0, 200] and it breaks between y = 95 and
y = 170 at initial time t = 0. The omputational domain is thus Ω = [0, 200] \ Ωdam,where Ωdam = ((95, 105)× (0, 95)) ∪ ((95, 105) × (170, 200)). An unstrutured mesh withharateristi mesh size of h ≈ 2 is used and solid-wall boundary onditions are imposedeverywhere. The blending parameter is de�ned on the harateristi values, Θ2, and wealso freeze the parameter one rel_tol = 10−1.5 is reahed. Figure 10 shows water-height ontours at the end of the time integration t = 7.2, while Figure 11 shows slieplots along the line y = 135. The shemes apture both the rarefation wave (left of the18
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Figure 8: Perturbation to the lake at rest when solved with the disontinuous STB shemewith CFL = 1, CFL = 2, CFL = 4 and CFL = 8. Slie plots are shown along the line
y = 0.5 at t = 0.24 and t = 0.48. 19
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CFL numbers.5.6. Cirular dam break over nonsmooth bedThis test ase onsiders a two-dimensional variant of the Riemann problem over dis-ontinuous bottom topography, proposed in [35℄. The omputational domain is now
Ω = [0, 30]2 with bathymetri funtion,

b(x, y) =

{
0 if x+ y < 30

0.2 otherwise ,and initial ondition,
η(x, y) =

{
1.461837 if r < 15

0.308732 otherwise ,where r =
√

(x2 + y2) is the radius of the dam. Solid-wall boundary onditions are usedat the left and bottom boundaries while homogeneous Neumann at the right and topones. The harateristi mesh size is h ≈ 0.3 and the time integration stops at time
t = 10. The largest value of the blending parameter, θmax

2 = max Θ2, is applied to allvariables of the residual in order to ahieve an additional stabilising e�et. The simulationfollows the wave hitting the underwater wall, then partially re�eting from it and partiallymoving forward and exiting the domain. There is also a stationary shok wave along thedisontinuity of the bed.30 ontours of the free surfae η are depited in Figure 12 for CFL = 4. The �gureshows four snapshots of the solution at intervals of exatly 2.5 in time. All three waves� the outgoing, the re�eted and the stationary � are well aptured. The ontour plotsfor the STB shemes with other CFL numbers are omitted for this example beause theyshow very similar behaviour to what we observe in the previous dam-break problems: the20
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Figure 10: Partial dam break. 30 water-height ontours between 4 and 9.95 for thedisontinuous STB sheme with CFL = 1, 2, 4 and 8.shemes with CFL = 2 and CFL = 4 provide the best qualitative results while the onewith CFL = 1 is more di�usive and the one with CFL = 8 is both more di�usive andmore osillatory. This general pattern is also apparent from Figure 13, whih shows slieplots for all CFL numbers along the diagonal, x = y, of the domain.6. Comparison with existing shemesThis setion ompares the spae-time sheme developed in this work with two otherRD disretisations that exist in the literature. Both of these shemes are impliit butalso require a time-step restrition beause the representation in ontinuous in time aswell as in spae. The development of the expliit RKRD sheme [9℄ for the shallow-water equations is ongoing work [19℄. That sheme and its omparison to some impliitformulations will be reported elsewhere. The two other shemes we onsider from theliterature are the following.1. The blended LDA-N sheme where the LDA sheme is de�ned as in [36℄. This is asimilar upwind blended sheme to what is developed in this artile but it is not aspae-time formulation. 21
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Figure 11: Partial dam break. Slie plots of water height at �nal time t = 7.2 along theline y = 135 for the disontinuous STB sheme with CFL = 1, 2, 4 and 8.2. The stabilised LLF sheme in [18℄. This is urrently one of the most robust RDshemes for time-dependent shallow-water simulations. It is essentially a entralsheme and it is omputationally heaper than an upwind shemes that is ontinuousin both spae and time.We hoose three test ases to ompare the spae-time sheme investigated here withthe two other shemes. The �rst is the travelling vortex in Setion 5.4 to ompare theomputational work against auray. The seond is the partial dam break in Setion 5.5and the third is the irular dam break over non-smooth bed topography in Setion 5.6.We measure omputational work in the total number of pseudo-time iterations over theentire time integration. This, however, does not re�et the fat that the upwind blendedshemes are omputationally more expensive per spae-time prism than the LLFs sheme.The blended sheme requires about four times as muh omputational work per prismas the LLFs shemes, while the disontinuous STB shemes requires about eight timesas muh. To re�et this, we de�ne one work unit as being the amount of omputationalwork the LLFs sheme needs per spae-time prism.6.1. Travelling vortexThis test ase is used to ompare di�erent RD shemes based on the omputationalwork needed to ahieve a given auray. The set-up of the test ase is the same asin Setion 5.4. Tables 2, 3 and 4 show the omputational performane of the blendedsheme, the LLFs sheme and the disontinuous STB sheme with CFL = 4. The om-22
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Figure 12: Cirular dam break over disontinuous bed. 30 free-surfae ontours for thedisontinuous STB sheme with CFL = 4.putational work is measured both in the total number of pseudo-time iterations and inwork units de�ned above. Figure 14 plots auray ahieved for omputational work. Theresults indiate the disontinuous STB sheme (with CFL = 4 in this ase) is the mostomputationally e�ient overall.6.2. Partial dam breakWe use this example, whih is the same as the one in Setion 5.5, to ompare theomputational performane of the spae-time sheme with the two other shemes whendisontinuities in the solution have to be aptured. Figure 15 shows the same water-height ontours for these two shemes as Figure 10 for the spae-time blended sheme.The blended LDA-N sheme of Ferrante appears to give the better result of the two. TheSTB sheme with CFL = 1, 2, 4 are of omparable quality to these but the one with
CFL = 8 is learly inferior. Figure 16 shows slie plots to diretly ompare two of thedisontinuous STB shemes with these methods.The omputational performane of the two shemes and that of the STB sheme with
CFL = 1, 2, 4, 8 is listed in Table 5. The omputational work is measured in three waysuntil the �nal time of the simulation, t = 7.2, is reahed: as the number of physial-timesteps; as the number of total pseudo-time iterations; and as the number of work units23
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Figure 13: Plots of the free surfae along the line x = y. The slies are taken at t = 2.5,
t = 5.0, t = 7.5 and t = 10.0. In eah �gure the results for CFL = 1, CFL = 2, CFL = 4and CFL = 8 are shown.de�ned at the beginning of this setion. By the �rst two measures, the disontinuousspae-time sheme outperforms all other shemes even with CFL = 1. This is in partbeause the past-shield ondition is often (but not always) larger than the CFL-typerestritions used in other shemes. But it is also beause the iterative onvergene ofthe STB sheme is relatively good. In terms of work units, the LLFs sheme is still lessexpensive but it is also less aurate, though auray an only be assessed qualitativelyfor this example.In partiular, moving from CFL = 1 to CFL = 2 provides the most gains by morethan halving the total omputational ost. The bene�ts of inreasing the time step from
CFL = 2 to CFL = 4 are less obvious if the mild deterioration in the quality of thenumerial simulation is also taken into aount. The performane of the STB shemewith CFL = 8 is learly poor. In this test ase, it seems to generate spurious modes thatspoil both the iterative performane of the sheme and quality of the results.6.3. Cirular dam break over nonsmooth bedWe use this relatively di�ult dam break problem to ompare the performanes of thedi�erent shemes on both a quasi-uniform and a loally re�ned mesh. First, we ompare24



Table 2: Travelling vortex. Error and omputational work for the blended LDAN shemewith Ferrante's LDA.Mesh size ‖dex − dh‖L2 No. time steps Total no. iterations Work units1/10 3.9667e-01 41 1061 2.01e+061/20 2.7576e-01 77 1857 1.38e+071/40 9.2256e-02 163 3973 1.18e+081/80 2.2355e-02 330 3957 4.69e+081/160 5.7876e-03 649 6485 3.07e+09Table 3: Travelling vortex. Error and omputational work for the LLFs sheme.Mesh size ‖dex − dh‖L2 No. time steps Total no. iterations Work units1/10 4.1190e-01 40 1223 5.80e+051/20 3.1413e-01 77 2297 4.26e+061/40 1.0290e-01 163 3797 2.82e+071/80 2.6203e-02 330 4340 1.29e+081/160 6.6451e-03 649 7788 9.23e+08

10
6

10
7

10
8

10
9

10
10

10
−4

10
−3

10
−2

10
−1

10
0

Work units

|| 
d

 −
 d

ex
 ||

2

Error against computational work

 

 

STB, CFL = 4

B−LDAN

LLFs

Figure 14: Travelling vortex. Computational work needed to ahieve a given auray forthe LLFs sheme, for the blended non-spae-time sheme and for the disontinuous STBsheme with CFL = 4.
25



Table 4: Travelling vortex. Error and omputational work for the disontinuous STBwith CFL = 4.Mesh size ‖dex − dh‖L2 No. time steps Total no. iterations Work units1/10 4.2018e-02 10 376 1.43e+061/20 3.5085e-02 18 781 1.16e+071/40 1.2608e-02 38 1784 1.06e+081/80 3.3537e-03 73 3578 8.49e+081/160 8.6824e-04 155 7414 7.03e+09
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Figure 15: Partial dam break. 30 water-height ontours between 4 and 9.95 for theblended sheme and the LLFs sheme at the end of the integration t = 7.2. This �gure isdiretly omparable to Figure 10 for the spae-time DRD sheme.the shemes on the same quasi-uniform mesh as used in Setion 5.6. Table 6 lists the om-putational work assoiated with the ontinuous-in-time blended sheme, the LLFs sheme,and the spae-time shemes with CFL = 1, 2, 4, 8. It shows that the omputational ost,measured as the total number of pseudo-time iterations, is redued to about a third ofthe LLFs sheme and to about half of blended sheme with the LDA part de�ned as in[36℄.Seond, sine there is a stationary shok wave over the disontinuous bed topography,it is natural to use loal re�nement there. The typial edge length in the region where there�nement takes plae is 0.1, whih is one-third of the typial edge length elsewhere inthe domain. We show results for the same test ase but with a mesh that is loally re�nedwhere the stationary shok ours. The spae-time sheme is now run with CFL = 9,whih would approximately orrespond to CFL = 3 in the region where the mesh isnot re�ned. Figures 17�19 show 30 free-surfae ontour plots for the blended shemeof Ferrante [36℄, for the LLFs sheme [18℄, and for the disontinuous spae-time shemedeveloped here with CFL = 9, respetively. Slie plots of the free surfae along the line
x = y are shown in Figure 21, while 3D free-surfae plots at t = 7.5 are shown in Figure 20.The spae-time sheme seems to be less osillatory than the two other shemes studiedin this test ase. In partiular, the LLFs sheme develops rather large spurious spikes along26
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Figure 16: Partial dam break. Slie plots of water height at �nal time t = 7.2 along theline y = 135 for the blended non-spae-time sheme, for the LLFs sheme and for thedisontinuous STB sheme with CFL = 2, 4.the stationary shok in the seond half of the integration time interval (see the bottomtwo sub�gures in Figure 18 and also the 3D plots in Figure 20). By ontrast, the spae-time DRD shemes do not su�er from these artifats, albeit at the prie of a somewhatlarger numerial di�usion. Overall, the spae-time DRD shemes appear to represent thephysial proesses most aurately.Table 7 lists the omputational work for �ve shemes, inluding three spae-time DRDshemes. The spae-time shemes need a relatively large number of iterations to onvergein eah physial-time step so the bene�ts to omputational ost are less pronouned inthis example. They are still about twie as omputationally e�ient as the other shemeswhen measured in total number of pseudo-time iterations. When measured in number ofphysial-time steps, the gain is about 7-10 times. This opens up the possibility of furthere�ieny gains if the performane of the pseudo-iterative algorithm is improved. Also,this example shows a bigger di�erene in auray between the spae-time sheme and thetwo other shemes (in favour of the spae-time shemes) than other dam break problems.7. Conluding remarks and outlookThis artile applies the framework of disontinuous residual distribution (DRD) to theshallow-water equations with non-�at bottom topography. The fous is on the spae-timerepresentation that is disontinuous in time only. This hoie is motivated by the fat27



Table 5: Partial dam break on a quasi-uniform mesh. Computational work is shown fortwo existing impliit RD shemes and the spae-time sheme with CFL = 1, 2, 4, 8.Sheme No. time steps Average no. iterations Total no. iterations Work unitsB�Ferrante 134 29.44 3945 3.59e+08LLFs 127 66.39 8432 1.92e+08STDRD1 105 34.39 3611 6.57e+08STDRD2 54 30.80 1663 3.02e+08STDRD4 28 52.32 1465 2.66e+08STDRD8 14 132.64 1857 3.38e+08
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Figure 17: Cirular dam break over disontinuous bed using a loally re�ned mesh. 30free-surfae ontours for the blended sheme where the LDA part is omputed as in [36℄.that disontinuity in time lifts the time-step restrition on the size of the spae-time prismand thus results in an unonditionally stable disretisation.As the numerial experiments demonstrate, we an indeed inrease the time step ofdisontinuous spae-time shemes and still retain the most important properties of theshallow-water system: onservation, linearity preservation, upwinding, hydrostati bal-ane and loal positivity. In partiular, we emphasise that our interest here is restrited28
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Figure 18: Cirular dam break over disontinuous bed using a loally re�ned mesh. 30free-surfae ontours for the LLFs sheme taken from [18℄.to `pure' upwinding and therefore no stabilisation term [37℄ is inluded in these disreti-sations.Comparison to two other impliit RD shemes show that the spae-time DRD algo-rithm developed in this work provides more aurate results (measured either quantita-tively or qualitatively) than the urrently available RD shemes for the shallow-waterequations. The omparisons were arried out on both quasi-uniform and loally re�nedmeshes. Depending on the partiular test ase and implementation, the best-performingspae-time DRD shemes require around 7-10 times fewer physial-time steps than theother shemes. This, on urrent implementation, translates into 2-4 times fewer pseudo-time iterations over the entire integration. In terms of estimated total omputationalwork, the disontinuous spae-time shemes are still less expensive for a given level ofauray.Although more aurate than other urrently available RD shemes, it has alsoemerged from the study that the bene�ts from inreasing the time step in the spae-time
DRD sheme has pratial limitations. One of these is the loss of auray assoiatedwith larger time steps. Another is the relatively large number of pseudo-time iterationsneeded per physial-time step. It is possible to mitigate these drawbaks by fousing onimproving the iterative onvergene of the shemes with medium-sized time steps, say29
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Figure 19: Cirular dam break over disontinuous bed using a loally re�ned mesh. 30free-surfae ontours for the spae-time blended sheme with CFL = 9.between CFL = 3 and CFL = 5 (or higher in ase of loal mesh re�nement) for thesegenuinely time-varying ases. Improving the iterative onvergene by applying a moreadvaned pseudo-time-stepping algorithm [38℄ is among the most attrative options. Inpartiular, a further study should ompare the omputational performane of the spae-time DRD sheme with that of the expliit RKRD sheme [9, 19℄ when applied to thesame or similar test ases presented in this work.Overall, the likeliest areas of appliation where the proposed sheme ould prove ad-vantageous will probably inlude a relatively large degree of sti�ness that omes from thephysial equations when the visous term is inluded.AknowledgementWe thank Philip Roe for his ontribution to the onservative linearisation of theshallow-water equations.AppendixBased on Figure 22, in this Appendix we give an estimate for the CFL-ondition of thevertex-entred upwind FV sheme with expliit Euler time disretisation on strutured30



Table 6: Cirular dam break over non-smooth bed using a quasi-uniform mesh. Compu-tational work is shown for two existing impliit RD shemes and the spae-time shemewith CFL = 1, 2, 4, 8.Sheme No. time steps Average no. iterations Total no. iterations Work unitsB�Ferrante 438 20.80 9112 8.48e+08LLFs 436 36.14 15757 3.67e+08STDRD1 343 26.78 9185 1.71e+09STDRD2 173 29.41 5088 9.47e+08STDRD4 88 55.48 4882 9.08e+08STDRD8 45 135.38 6092 1.13e+09Table 7: Cirular dam break over non-smooth bed using a loally re�ned mesh. Compu-tational work is shown for two existing impliit RD shemes and the spae-time shemewith CFL = 3, 6, 9.Sheme No. time steps Average no. iterations Total no. iterations Work unitsB�Ferrante 1260 17.34 21849 2.41e+09LLFs 1202 17.52 21064 5.82e+08STDRD3 332 52.77 17518 3.87e+09STDRD6 169 66.30 11205 2.48e+09STDRD9 114 86.15 9821 2.17e+09triangulation. This is to be ompared with the past-shield ondition (8) of the spae-timesheme.Case 1: advetion along the axisThe upwind FV sheme gets ontributions from edges 1, 2, and 3 (red, blue, and yellowin Figure 22). For a vertial speed, the angles between the speed and normals are
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In the same ase, one easily shows that the past-shield ondition gives
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Figure 20: Cirular dam break over disontinuous bed using a loally re�ned mesh. 3Dfree-surfae plots at t = 7.5 for the blended LDAN sheme, the LLFs sheme and thedisontinuous STB sheme (CFL = 9). 36
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Figure 21: Cirular dam break over disontinuous bed using a loally re�ned mesh. Plotsof the free surfae along the line x = y. The slies are taken at t = 2.5, t = 5.0, t = 7.5and t = 10.0. In eah �gure the results for the blended LDAN sheme, the LLFs shemeand the disontinuous STB sheme (CFL = 9) are shown.
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Figure 22: Sketh of the vertex-entred �nite volume sheme
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