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Abstract

This article describes a discontinuous implementation of residual distribution for shallow-
water flows. The emphasis is put on the space-time implementation of residual distri-
bution for the time-dependent system of equations with discontinuity in time only. This
lifts the time-step restriction that even implicit continuous residual distribution schemes
invariably suffer from, and thus leads to an unconditionally stable discretisation. The
distributions are the space-time variants of the upwind distributions for the steady-state
system of equations and are designed to satisfy the most important properties of the
original mathematical equations: positivity, linearity preservation, conservation and hy-
drostatic balance. The purpose of the several numerical examples presented in this article
is twofold. First, to show that the discontinuous numerical discretisation does indeed
exhibit all the desired properties when applied to the shallow-water equations. Second,
to investigate how much the time step can be increased without adversely affecting the
accuracy of the scheme and whether this translates into gains in computational efficiency.
Comparison to other existing residual distribution schemes is also provided to demonstrate
the improved performance of the scheme.

Keywords: hyperbolic conservation laws, shallow-water equations, space-time
discontinuous representation, residual distribution

1. Introduction

The framework of residual distribution (RD) has a nearly thirty-year-old history, hav-
ing first been introduced in 1] as an alternative to finite volume schemes for the numer-
ical discretisation of hyperbolic conservation laws. They can more naturally represent
the most important underlying physical properties of steady-flow problems — especially
avoiding spurious oscillations around discontinuities — while still providing second-order
accurate approximations. For time-dependent problems, however, it initially proved to be
rather more difficult to construct an efficient, second-order accurate, RD scheme that is
also free of spurious oscillations. Much of the recent research in the field, therefore, has
been aimed at devising truly time-dependent discretisations that retain all the desired
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properties of the underlying physical equations. Recent reviews of the field can be found
in [2, 3, 4].

Almost all of these schemes, however, use continuous discretisations of the physical
variables. This leads to numerical methods that are both implicit, because of the presence
of a global mass matrix, and require a time-step restriction to obtain stability, positivity or
both. For many practical applications in physics or engineering, these methods can prove
to be computationally inefficient and uncompetitive with more established discretisation
methods, such as finite volumes [5, 6], finite elements [7] or finite differences [8]. To
remedy this shortcoming, two different approaches have been proposed in the literature
for RD schemes that improve the efficiency of the time-step algorithm as well as keep the
discrete representation continuous. One is to make the discretisation genuinely explicit
and thus remove the need to solve an algebraic system at each time step [9]. The other is
to introduce double layers in a space-time implicit scheme, which removes the restrictions
on the time step in the second layer [10].

In contrast, it is also possible to allow the discrete representation to be discontinuous
across cell/prism interfaces. It is only relatively recently that this concept has been
introduced — at first for steady-state equations only [11, 12]. The potential benefits of
the discontinuous RD (DRD) framework in space include: a) the possibility to implement
h-adaptivity more easily; b) a mass-matrix structure that may render the inversion of the
mass matrix computationally less expensive. As a further development, the work in [13|
took the first steps towards unconditionally stable space-time RD schemes by introducing
discontinuous representation in time. One can also view this construction as a special,
and slightly simpler, case of the space-time double-layer scheme [10, 14|, where the first
layer is of zero height, while there is still no formal condition on the height of the second
layer.

In this article, we extend the concept of space-time DRD to the shallow-water equa-
tions with possibly non-flat bottom topography. Mathematically, the non-flat bottom
topography manifests itself as a source term in the governing equations. This means
that apart from the usual requirements — positivity, linearity preservation, conservation
and upwinding — a successful numerical scheme should also preserve the hydrostatic bal-
ance. Various RD schemes have been developed for shallow-water flows in the past one
and a half decades. Both wave decomposition schemes |15, 16] and matrix distribution
schemes [17, 18| proved to be successful in representing the underlying physical properties.
However, they are often computationally rather expensive owing partly to a time-step re-
striction mentioned above, and partly to poor iterative convergence. As a result and more
recently, the explicit RD approach has been applied to the shallow-water system [19].

We take a different approach in this work and instead of replacing an intrinsically
implicit scheme with an explicit one, we aim to eliminate the time-step restriction and
construct an unconditionally stable space-time RD scheme. The focus of this article is
therefore on discontinuous representation in time, which in this way promises to improve
the efficiency of the implicit space-time discretisation. Our space-time DRD discretisation
is also designed to be upwind, conservative and hydrostatically well-balanced. Through
a number of numerical experiments, we investigate whether these properties are satisfied,
as well as positivity and linearity preservation — two other properties that are formally
lost but experimentally often observed. Crucially, we also address the question of how



far the time step can be increased before the discretisation adversely affects accuracy
and positivity. Comparison with other implicit RD schemes is used to demonstrate the
improved performance of this approach.

The remaining part of the article is organised as follows. In Section 2, we describe the
framework of the space-time DRD for general hyperbolic conservation laws in the case
of both scalar and system variables. Section 3 applies the scheme to the shallow-water
equations, while Section 4 outlines details about the numerical implementation of the
discretisation. An extensive study of the scheme via numerous computational examples
is carried out in Section 5. Section 6 compares the space-time DRD scheme developed
in this work with other existing RD schemes. Finally, we draw conclusions and provide
outlook in Section 7.

2. Space-time discontinuous residual distribution

In this section, we give a general description for space-time DRD schemes for hyper-
bolic conservation laws with homogeneous right-hand side. Assume a two-dimensional
spatial domain © C R2 its triangular tessellation €2, and the corresponding pris-
matic space-time mesh Q. Let, furthermore, E denote a given triangle, F; denote the
space-time prism defined over this triangle, D; = U;cpFE, dQ) = dzdy, dQ! = dz dy dt,
d(0Q) = ds(z,y) and d(99Q;) = dsi(z,y,t). In the last two definitions, s and s; denote
the mappings s : 2 — 90 and §; — 0€);, respectively.

2.1. Scalar equations

Counsider the scalar conservation law
Ou+V-f=0 or dwu+a(u) - Vu=0 (1)

with appropriate initial conditions and Dirichlet boundary conditions at the inflow part
of the domain. Here f represents the conservative flux vector and a(u) = 0f/0u is the
wave speed. The associated residual over each space-time prism F; is given by

gl
Op, = / /(@u—l—V-f)dxdydt. (2)
" E
For the original (non-discretised) equation (1), it therefore holds that
gl
o= / /(8tu+v - f)dedydt = Z R,
n Qh EEQh

provided that the solution u is bounded and piecewise differentiable.
We carry out the RD numerical discretisation in the spirit of [4] and it consists of the
following general steps.
1. In every space-time prism, replace the unknown u with an approximation wu; that
is linear in space and linear in time.



2. Transform the prism residual into a space-time boundary integral

tn+1

// (Ouun + Y - £) dwdy dt = /vt £,d0, /ft nd(0Q,),  (3)

OE;

where V, = (0t,0z,0y), f, = (u, f), and n, is the outward-pointing unit vector
normal to the space-time prism.

3. Let L denote the space of linear one-dimensional Lagrangian basis functions on the
interval [t",¢" ™| and TV denote the space of linear two-dimensional basis functions
associated with a triangle. Assume furthermore that u, € L x W. Then the mid-
point rule in time results in

E, — /ft ntd(aQt)

OE;

z/(uzﬂ )da+% /f(u”)-nd (99) +/f(u"+1)-nd(am

E

— [t - o Sep+ o, @
E

where At = [¢",t""!] is the ‘height’ of the prism. This is a second-order accurate
approximation of the prism residual, as long as the spatial residuals, ¢% and qb%“,
are computed to be at least one order more accurate than the discretisation itself.

4. Distribute the prism fluctuation ¢g, (4) to the six vertices of the prism in a conser-
vative manner. That is, the fractions of the residual sent to vertex ¢ at time levels
n and n 4+ 1 are defined as

E E E E
n o ind)Et and d)i,nJrl - ﬁi,n+1¢Et7 (5)

with ZZEE nt ZZEE ine1 = L.
5. Solve the algebralc system

> of =0

EeD;

Z ¢z n+l —

EeD;

(6)

Vi € €, at each time step.
How to precisely distribute the residual does greatly depend on the direction of the
flow, which is typically indicated by ‘inflow’” parameters. For the space-time scheme, these
are defined as

At E
ki,n = —Ia -n; — ’3—’, k:—n = maX(O, ki,n)a kz_,n = IIliIl(O, ki,n)a
At E )
kint1 = —IE -n,; + ’3—’, k:nﬂ = max(0, ki ni1), ki1 = min(0, ki nt1), (7)
1

Nt -
ZzGE i,n + ZzGE % n—|—17



where m; is the outward pointing normal vector opposite node ¢ with length that of the
edge opposite node 7. The quantity a is a prism-averaged state of the values of a at the
vertices of the prism.

If the discrete representation of the solution wuy, is continuous over the whole space-time
domain, the scheme is only consistent if there is no residual sent back to the previous time
level ™. This condition results in a CFL-type restriction on the height of the space-time
prism At,

Although this time step is generally larger than a more traditional CFL condition in an
upwind finite-volume method — as we show it in the Appendix — it is an undesirable
condition for a numerical discretisation that is inherently implicit.

The properties of a given distribution depend to a great degree on the precise definition
of the coefficients. The typical requirements for a broadly successful RD scheme include
3]

e positivity, which warrants that the numerical approximations are free of spurious
oscillations;

e linearity preservation, which ensures that a (k — 1)th-order polynomial representa-

tion leads to a kth-order accurate scheme;

e conservation, which guarantees that discontinuities are captured correctly;

e compactness, which is primarily for computational efficiency and requires that the

cell /prism residual be distributed to its own vertices only;

e continuous dependence of the coefficients, which enhances the iterative convergence

of the algebraic solver; and

e upwinding, which dictates that the discretised model propagates information in the

same direction and at the same velocity as its non-discretised counterpart.
By Godunov’s theorem [20, 21|, only nonlinear schemes can satisfy the conditions for
both positivity and linearity preservation. Very often, though, linear schemes are used as
the basis for constructing these nonlinear schemes. If @ is a conservative linearisation of
a(u) = 0f /Ou over the space-time prism, then we can compute the discrete residual as

bp, = Z kinui + Z Koy, (9)
i€E icE
and the resulting scheme will be conservative as long as the constraint following (5)
is satisfied [22]. Otherwise, the prism residual needs to be computed by a sufficiently
accurate quadrature rule in order to obtain conservation, even when (5) holds. This
latter version is also known as the conservative RD (CRD) formulation [23, 17].

There are a large number of numerical schemes that can be (re)cast in the RD frame-
work. We now describe only the space-time upwind schemes that are the focus of our
investigation in this article. For this, the parameters defined in (7) are used.

e The space-time N (STN) scheme [24] is here defined so that it is suitable for the

CRD formulation [14],

ul" = N, (Z kol + Z Rhutt - d)Et) 7

JEE JEE

(10)

(d)fn)N = k:rn (“? - u:tn) ) (¢fn+1)N = k’;,rn+1 (“?H - U:sn) .



This is a linear scheme that has all the desired properties except linearity preser-
vation. We note, however, that positivity is only formally guaranteed if we use (9)
for the computation of ¢pg,; see [13| for space-time DRD schemes. Nevertheless,
oscillation-free behaviour is also often observed in computational experiments [4]
for the CRD scheme, when a quadrature rule is used to evaluate ¢g,.

e The space-time LDA (STLDA) |24, 14] scheme is defined as

(62) " =kt N, (65,0)" =k

which is also a linear scheme and has all the desired properties except positivity.
e The space-time blended (STB) scheme combines two linear schemes, typically the
STN and STLDA schemes, through a nonlinear blending coefficient,

(ln) _9( ) +(1_9)(1En)LDA>
(68, 0) =0 (0F,)" + (1) (6F,,,)""

The blending coefficient determines how ‘well’ the required properties, especially
positivity, are satisfied. The definition adopted in this article [25] is

95, |
S [€E)]  Toen](0Ein)]

2.2. Discontinuity in time for the scalar equation

zn—i—thd)Et? (11)

(12)

6:

(13)

When the representation of the discrete solution is allowed to be discontinuous in time,
one needs to introduce additional residuals. These can be viewed as prism residuals with
At — 0, see [11, 13], and thus read

E
Vg = Al%r_r}o Op, = hm / fi-n.d(09) = /[u}:] dQY = % ; [ur'], (14)

OB, oF
where [-] represents the jump through the face. The simple vertex-centred distribution,

2

E _
wi,n - 3

[ui], (15)

was shown in [11, 13| to be positive and linearity preserving, and this is the formulation
we use throughout this article. As a result, in the case when only discontinuities in time
are introduced, the algebraic system takes the form

Z ( fn—i_wfn) =

EeD;

Z d)fnJrl =0,

EeD;

(16)

Vi € Q.



2.3. Systems of equations

Much of the RD framework described for the scalar equation can be applied to the
nonlinear hyperbolic system of conservation laws,

QU+V-F=0 or oU+.AU) VU =0, (17)

where A(U) = [A,, A)] = [0F,/0U,0F,/0U] = OF /OU is the wave-speed tensor. The
two key elements where the extension is not so straightforward are positivity and upwind-
ing. Positivity of the general system (17) is not clearly defined; instead, an algorithmic
property that preserves the nonnegativity of certain physical quantities — water height,
density, pressure, concentration, etc. — are required.

The definitions of the upwind directions for (17) are not immediately apparent, either.
Different approaches have been proposed, the most popular of which is matrix distribu-
tion [26], which we also adopt in the current work. For space-time prisms, the inflow
parameters used for the prism distribution are then defined as

At— E
Kin=—-—FA n;— uI,
At \g\ (18)
’Ci,n+1 = _ZZ n; + —3 7z,

where 7 is the identity matrix and A represents a prism-averaged state of the flux Jacobian

A

2.4. Conservative linearisation for systems of equations

As in the scalar case, A is preferably derived from a conservative linearisation. For
systems of equations, however, the exact form of the conservative linearisation is rarely
straightforward. It often assumes linear variation in quantities other than the conservative
variables U. The set of linearly varying quantities is traditionally called the Roe-parameter
vector. The (vector-valued) discrete residuals of the system (17) can then be computed
as

Op, = ieZE/Ci,nUin + iEZEICMHUinH with  Uj" = g—gzinv Uptt = g_ng“, (19)

where Z is the vector of the Roe-parameter variables |27, 1| and the derivative matrix
g—g is evaluated at the arithmetic mean states of the parameter-vector variables over the
space-time prism.

If the conservative linearisation is not known or its implementation is not practical, it
is also possible to achieve conservation by using a sufficiently accurate quadrature rule to

compute the prism residual [23, 17|.

2.5. Upwind RD schemes for systems of equations

Assuming that the inflow matrices defined in (18) are diagonalisable, as is the case in
almost all physical applications, we have K;,, = RDR ™!, where D is the diagonal matrix
of eigenvalues, R~! is the matrix of the left and R of the right eigenvectors. Defining



D* = £ (D £ |D|) with |D| denoting the absolute values of the entries, we can introduce
the other inflow matrix parameters (cf. (7)),

Kf,=(RD*R™)
Ki,=(RD R

in’ ICZ—'i,—nJrl = (RD+R_1)
, Kinp=(RDR)

i,n+1"’

i\n i,n+1"’

-1
N, = <Z ki, + Z/qn+1> :

S 1€l

(20)

These, in turn, are used to define the upwind RD schemes along the lines of the scalar
case (10)-(12).
e The space-time N (STN) scheme for systems is now defined as

U =N (Z K07 + 2 KU = %) ,
JEE JjEE

(21)

(@F)" =Kk5 (O =0r),  (@F0)" =K (01 - 00)
where U is defined as in (19) if a conservative linearisation exists and thus ®p, is
computed as in (19). On the other hand, U = U if the CRD formulation is used and
®p, is computed by means of a quadrature rule. In the system case, positivity should
still be understood as positivity of the underlying linear advection. For nonlinear
systems, positivity in the strict sense is not and should not be satisfied. Instead, the
more generally property that the solution is free of spurious oscillations is required.
e The space-time LDA (STLDA) scheme for systems is defined as

(@F) 7 = KE N, (D5,) 7 = K N, (22)

e The space-time blended (STB) scheme for systems is still defined as a combination
of STN and the STLDA schemes,

(q)fn)B =0 (q)fn)N + (I - @) (q)fn) wa )

(23)
(@EnH)B =0 (@fml)N +(Z-9) (@fnﬂ)LDA

The matrix blending parameter © can now be computed in a number of different
ways 28, 29]. The direct analogue of (13) is

‘(I)Et‘
Ve |(@F)"|+ Lien | (@F11) "

where the division should be understood as an elementwise operation. Another
possibility, proposed in [28], is to choose a particular direction & = (&,,&,) and
compute the decomposition A - & = RngRgl. The blending (23) is then carried
out on the ‘characteristic’ residuals

©; = diag

, (24)

N, =ROY,, DN

2,m) iwn+1l

15N LDA __ —15/LDA LDA __ —-15LDA
Rf q)i,n—i—l? @i,n _R§ q)i,n ) ¢i,n+l_R§ q)i,n—i—l?

8



with the blending parameter computed as

N N
@2 _ dlag < }ZZGE + ZZGE‘ ZnJrl’ ) (25)
zGE‘ ’45 } + ZZGE }sz n+1’

where we drop the superscript ‘E’ to avoid clutter. Finally, we calculate the blended
residuals based on the original variables by ®7 = R.0F and &7 | = RePP, ;.

2.6. Discontinuity in time for systems of equations
The treatment of the discontinuity in time is directly analogous to (15), and is defined
as |13]
o5 _ 1Bl
‘ 3
which leads to the algebraic equations

> (@F, + ) =0,
EeD;
Z CI)Z n+1 -

EeD;

U7, (26)

(27)

Vi € €, which needs to be solved at each time step.

3. Application to the shallow-water system

In this article, we apply the space-time RD framework for systems of equations to the
frictionless shallow-water equations with non-flat bottom topography, i.e. we seek solution
to the system

where
d du dv 0
U= |du|, F=[F, F]=|d?+%< duw |, 5=—|gdZ2 (29
dv duv dv? + % gd 8b(2’y)

Here d is the water height, u = (u, v) is the flow velocity and b is the height of the bottom
topography. The level of the free surface is defined as 7 = d 4 b. In the case of b = 0, the
nonlinear system (28), with the variables (29), expresses the conservation of water height
d and discharge du — it can, therefore, admit discontinuous solutions (hydraulic jumps).
In order to capture these discontinuities correctly, the discretisation of (28) should also
be done in a conservative manner.

3.1. Conservative schemes

There are essentially two different ways to achieve a conservative RD scheme for (28).
One is to derive a conservative linearisation for the flux Jacobian by assuming linear
variation of the Roe-parameter vector |27, 1|. The other is to use the CRD formulation
[23, 17|, where a nonconservative linearisation of the conservative variables is used and
conservation is achieved by computing the prism residuals via quadrature rules.



3.1.1. A conservative linearisation
In the steady state, conservative linearisation of (28) can be obtained by assuming the
linear variation of the Roe-parameter vector Z = ﬁU . Then

— [2va 0 o0

97 = |Ydu Vi O
Vdv 0 Vd

so that the evaluation of A at the following cell-averaged states [30], together with (19),

result in a conservative discretisation,

62@ 'ﬁ:@, d=0.9d+ 01 Ddzds

Vd Vd Vd

Here - signifies the arithmetic mean of the values at the vertices (represented by the
subscripts 1,2, 3) of the triangle.

For the space-time prism, one can use the linearisation (30) at the bottom and top of
the prism, and apply the trapezium rule in time to achieve conservation.

(30)

3.1.2. The CRD approach

As an alternative to conservative linearisation, one can instead use the arithmetic
means d, U, U (over either triangles or prisms), and apply the CRD formulation. In this
case, however, the positivity of the N and STN schemes is formally lost, even though it
is often observed in numerical experiments.

3.2. Hydrostatic balance: the C-property

The shallow-water system (28)—(29) is, by construction, in hydrostatic balance as this
is one of the main assumptions in its derivation from the Navier-Stokes equation [31].
Almost all numerical discretisations preserve this property exactly over a flat bed. Over
a general (even smooth) non-flat bed, however, the exact preservation of the hydrostatic
balance (also called the C-property) is not always straightforward.

3.2.1. The CRD approach

As it was proved in [17], as long as the water-height d is assumed to be linearly varying
and so is the bottom topography b, linearity preserving CRD schemes also satisfy the C-
property [17, 18]. This simply means that the source term’s contribution to the prism
residual needs to be computed as

b A, 9d 0
B, = At ; {b”} . (31)

The conventional definition of the STN scheme (21), however, does not satisfy the
hydrostatic balance, which means that the corresponding B and STB schemes will also
lack this property. So instead of (21) we need to apply a slightly modified version of

10



the scheme. For the CRD formulation, it means that U = [d, du, dv]’ is replaced by
V = [, du, dv]” so that we have

M (Z ’CJF Vn ZIC] n—HVnJrl cI)Et) )

JjEE jeE (32)
(@) = K&, (=), (@) = K (7 =)

Proposition. The STN scheme (32) exactly satisfies the hydrostatic balance (C-property).
As a result, the STB scheme defined in (12) also exactly satisfies the same property.

Proof. In each space-time prism, with dropping the superscript Es, the STN scheme (32)
can be rewritten as [14]

N LDA nt1 nt1
q)i,n:q)i,n +lcj,_n'/\/;zlcj,—n(‘/zn_ K+MZK]n+1 V+ ‘/j+)’
jer jerE
cbivn—l—l q)fffl 1 n+1M Z IC Vi ) T n+1M Z ]C] n+1 Vn+1 ‘/Y]'n—’—l) '
JjeE JEE
The fluctuations ®XP4 and ®FP4 are exactly zero for V = [n, du, dv]" = [const,0,0]"

as long as (31) is used to compute the source term’s contribution to the prism residual.
Each of the other terms is exactly zero because the assumed linear variation of U =
[d, du, dv]” and b implies the linear variation of V = [n, du, dv]”, i.e. V = [n, du, dv]" =
[const, 0, 0]7. O

3.2.2. Conservative linearisation
We are not aware of a conservative linearisation for the shallow-water equations that
preserves the hydrostatic balance exactly as well as conserves water height and discharge.
Since the linear variation of v/d is assumed in the conservative linearisation proposed
in this work, it is natural to assume the linear variation of v/b, too, and compute the
source term’s contribution in the prism residual as

oY, = Atgd Y [%;En] . (33)

i€E
This formulation introduces a small error in the hydrostatic balance because in general

1; = d; + b; = const # ﬁ\@ + %\/b_z = const.

Conversely, it is possible to achieve exact hydrostatic balance by assuming the linear
variation of v/d and /77 (instead of v/d and v/b) and compute the source term’s contribu-
tion in the prism residual as

0

o R @) Gl

This formulation preserves the lake at rest, V = [n, du, dv]T = [const, 0,0]", exactly but
in general introduces an error in the conservation of water height and discharge because

the term 0
()

5| v

i€ER

11



does not stay constant in time even when b does.
We emphasise, however, that in both cases the errors are rather small and in most
computational experiments they do not affect the results substantially.

4. Implementation details

In the numerical examples presented in this article, we assume the discrete representa-
tion to be discontinuous in time only. In this case, we need to solve the algebraic system
(27), which is the space-time DRD discretisation of (28), at each time step. For this a
simple pseudo-time-stepping algorithm is used

e U T OE | Y )
n- = n - 3 E n2 o ) 35
(UZ +1> m+1 (UZ +1> m Si ( cbfnJrl m ( )

i EeD;
where st = Ats; is the volume of the dual space-time cell (with s; being the volume of
the spatial dual cell). The pseudo-time step 7 is given by

t
7 =0.9min 5 p(K}) = max diag D}, (36)

P Ypep, PIK)

with K; = —3A - n; and p(M) denoting the spectral radius of a given matrix M. In all
the computations, we use the stopping criterion

yn WnJrl T
|| ( ) )m ||1 < 10—3'

rel tol = T
(@ vy

Often, though, we also apply an intermediate criterion to freeze the blending parameter,
i.e. to stop its recomputation and continue the iteration with a constant value. In our
numerical experiments, this happens once rel tol = 107 is reached.

Only results with the CRD formulation are reported. We note, however, that for flat
bottom topography, the scheme with the conservative linearisation provides identical re-
sults. Even when the bottom topography is not flat, we only observe significant difference
between the results provided by the two different formulations when the exact satisfaction
of the hydrostatic balance is investigated (cf. Section 5.3).

5. Numerical results

In this section, we present a number of time-dependent test cases — most of which
are nonlinear — to validate the discontinuous schemes presented in the previous sections.
Throughout the section, the representation is discontinuous in time, which results in an
unconditionally stable and globally positive scheme.

5.1. Cuircular dam break over wet bed

Dam-break examples are used to experimentally assess whether the numerical solution
is free of spurious oscillations. The first dam-break example we consider is that of a circular
dam with radius r = /2?2 + y? = 60 separating water levels d = 10 and d = 0.5 in a
square basin. The computational domain is the top right quarter, Q = [0, 100]%, of the

12



entire basin with solid-wall boundary conditions. The blending parameter ©, is used in
this example.

The velocity field tends to be more sensitive to spurious oscillations than the water
height so we plot Froude-number contours for the STB scheme.

Figure 1 shows that the STB scheme captures the discontinuity well without intro-
ducing spurious oscillations for CFL. = 1, CFL = 2 and CFL = 4. Interestingly, however,
the schemes with CFL = 2 and CFL = 4 seem to be less diffusive than the scheme with
CFL = 1. Three-dimensional plots of the water height are given in Figure 2 and they
reveal no discernible oscillations for CFL = 1,2, 4, either.

STB, CFL = 1 STB,CFL =2

0 20

STB,CFL =4 STB, CFL =8

\

A
0 20 40 60 80 100

Figure 1: Circular dam break. 30 Froude-number contour plots of the discontinuous STB
scheme for CFL = 1 (top left), CFL = 2 (top right), CFL = 4 (bottom left) and CFL = 8
(bottom right).

5.2. Improving the iterative convergence

Any increase in the time step for any implicit space-time scheme will only translate into
gains in computational work if the schemes with different CFL numbers perform similarly
in terms of iterative convergence at each time step. We use this test to investigate this
property when the STB scheme is applied. At each time step, we integrate until a relative
tolerance rel tol = 1072 is reached. This is typically more than enough to achieve the
accuracy required by a space-time RD discretisation because we can use the result from
the previous time step as an initial guess. We plot the convergence histories in Figure 3
for different CFL numbers for two slightly different blending strategies. In both cases the
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Figure 2: Circular dam break. 3D water-height plots of the discontinuous STB scheme for
CFL =1 (top left), CFL = 2 (top right), CFL = 4 (bottom left) and CFL = 8 (bottom
right).

blending parameter O, is applied, but in the second instance we freeze the value after
reaching the relative tolerance rel tol = 1071 and carry on with the iteration using
this constant value.

It is clear from the results that the step from CFL = 4 to CFL = 8 does not overall lead
to any reduction in computational work. Doubling the time step is obviously beneficial,
and moving to CFL = 4 can still provide efficiency gains as long as we freeze the blending
parameter (at rel tol = 107! in this example).

5.8. Lake at rest: the preservation of the hydrostatic balance

This time-dependent example is to experimentally verify that the modified STN
scheme (32) does indeed preserve the C-property, i.e. it is hydrostatically well-balanced
[32, 33, 17, 18|. The blended scheme should inherit this property since it is a linear inter-
polation between the STN and the STLDA schemes. Also, the actual form of the blending
parameter does not influence the lake-at-rest property so for the sake of brevity we only
show results for the STB scheme with ©,, which we freeze after rel tol = 107!, In
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Figure 3: Circular dam break. Convergence of pseudo-time iteration for the space-time
DRD scheme with CFL = 1,2,4,8 when the blending parameter is computed at every
pseudo-time step (left) and when it is frozen once rel tol = 107! is reached (right).

the numerical tests we assume a smooth bathymetric function,
b(x, y) _ O‘8e75(170.9)2750(y70.5)2’ (37)

and ‘still-water’ initial conditions, [°,u°, v°] = [1,0, 0], over the domain Q = [0, 2] x [0, 1],
using a mesh with a typical edge resolution of A = 0.01. Table 1 shows the errors after
integrating until ¢ = 0.5. The errors remain around machine precision until the end of the
time marching, which indicates a well-balanced scheme. The numbers are for test runs
with solid-wall boundary conditions but weak characteristic boundary conditions provide
near identical results.

As a second variant of this test case, we put a perturbation on the initial, ‘still-water’
condition,

(38)

o J1.01 if 0.05<2<0.15
K 1 otherwise '

For this example, the boundary conditions are weakly enforced everywhere: symmetric
(i.e. solid wall) for the bottom and top boundaries, and characteristic freestream for the
left and right boundaries including all corners.

Figures 4-7 plot 50 contours of the free surface n for CFL = 1,2,4, 8, respectively,
at times t = 0.24 and ¢t = 0.48, while Figure 8 shows the same along the line y = 0.5.
They reveal that qualitatively the scheme with CFL = 1 and CFL = 2 appear to be the
most accurate while increasing the CFL number further results in the solution being more
diffusive. This phenomenon is partly because of the loss of accuracy associated with a
large time step relative to the mesh size, and partly because of the lack of local positivity
of space-time implicit schemes.

Nevertheless, some of the most important qualitative properties are satisfied for all
CFL numbers: a) they preserve the C-property in front of the perturbation; and b) they
capture the interaction between the gravitational wave and the non-flat bottom; ¢) they
settle back to lake at rest after the wave has passed.
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Table 1: Lake at rest. Errors at time ¢ = 0.5 for the discontinuous STB scheme with
different CFL numbers.

CFL = 1.0 ln — 1] ] [v]]

L 5.405934e — 19 1.255336e — 16 5.870068e — 17
L? 8.000922e — 18 5.165644e — 16 2.647004e — 16
L 2.220446e — 16 1.034175e — 14 6.178231e — 15
CFL =2.0

L 1.534435e — 18 9.505484e — 17 4.305477e — 17
L? 1.309467e — 17 4.054003e — 16 1.890289%¢ — 16
L 2.220446e — 16 8.781880e — 15 4.230023e — 15
CFL =4.0

L 3.744022¢ — 18 1.078974e — 16 5.057157e — 17
L? 2.054486e — 17 4.354319e — 16 2.091099e — 16
L 2.220446e — 16 8.131857e — 15 4.450119e — 15
CFL =8.0

L 6.180234e — 18 1.177755e — 16 2.675335e — 17
L? 2.657800e — 17 4.540011e — 16 2.285096e — 16
L 2.220446e — 16 7.692615e — 15 2.239349e — 15

0.8

0.6 -

04+

02

CFL=1,t=0.24

0.8

0.6 -

04+

02

CFL=1,t=048

Figure 4: Perturbation to the lake at rest when solved with the discontinuous STB scheme
with CFL = 1. 50 water-height contours between values 0.992 and 1.012 at ¢ = 0.24 (left)
and ¢ = 0.48 (right) are plotted.

5.4. Travelling vortex

To evaluate the accuracy and (grid) convergence properties of the STLDA and STB
schemes, we include the example of a travelling vortex with known exact solution [34, 18|.
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Figure 5: Perturbation to the lake at rest when solved with the discontinuous STB scheme
with CFL = 2. 50 water-height contours between values 0.992 and 1.012 at ¢ = 0.24 (left)
and t = 0.48 (right) are plotted.
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Figure 6: Perturbation to the lake at rest when solved with the discontinuous STB scheme
with CFL = 4. 50 water-height contours between values 0.992 and 1.012 at ¢ = 0.24 (left)
and ¢t = 0.48 (right) are plotted.

Given a flat bottom topography, the exact velocity field is expressed as u., + u’, with

, )T (1+cos(wre)) (Ye — y, © — ) if wre<m
(0,0) otherwise

and u., being constant. The constant I" is the vortex intensity parameter, (x.,y.) are the
coordinates of the centre of the vortex, r. is the distance from the centre of the vortex,
and w is the angular wave frequency associated with the diameter of the vortex. The
water height is then given as

(2)2 (k(wre) — K(m)) if wro<m

w

O Q=

otherwise

d(re) = doo + {
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Figure 7: Perturbation to the lake at rest when solved with the discontinuous STB scheme
with CFL = 8. 50 water-height contours between values 0.992 and 1.012 at ¢ = 0.24 (left)
and t = 0.48 (right) are plotted.

with
1 3
k(x) = 2cos(x) + 2w sin(z) + S cos(2z) + %sin(Qx) + Zﬂ

and do, = 1.

For the grid-convergence study, we set u., = (6,0), I' = 15, w = 47, g = 9.80665 and
use a sequence of five unstructured triangulations of the domain ©Q = [0,2] x [0, 1] with
characteristic mesh sizes h = 1/10,1/20,1/40,1/80,1/160, respectively. At the initial
state the centre of the vortex is at (x.,y.) = (0.5,0.5) and the time marching stops at
t = 1/6, when (x.vy.) = (1.5,0.5). Freestream characteristic boundary conditions are
used everywhere.

Figure 9 shows grid convergence of the STLDA and STB schemes with CFL = 1,2, 4, 8.
Second-order accuracy is observed for the STLDA scheme, although in the case of CFL = 8
this is only reached at the finest mesh. Also, it is clearly between CFL = 4 and CFL =8
that the larger time step has a significant effect on the accuracy of the scheme.

The convergence rate for the STB scheme is slightly suboptimal — at around 1.8 —
but still better than existing results of nonlinear space-time RD schemes [17, 13]. The
blending in this example is applied to the residuals of the characteristic variables ©,.

5.5. Partial dam break

This example is similar to the one in Section 5.1 but has a more complex geometry.
We consider the domain [0, 200]* with a dam that separates water levels d = 10 and d = 5.
The dam is situated in the region [95,105] x [0,200] and it breaks between y = 95 and
y = 170 at initial time ¢ = 0. The computational domain is thus Q = [0,200] \ Qgum,
where Qgqm = ((95,105) x (0,95)) U ((95,105) x (170,200)). An unstructured mesh with
characteristic mesh size of h ~ 2 is used and solid-wall boundary conditions are imposed
everywhere. The blending parameter is defined on the characteristic values, ©s, and we
also freeze the parameter once rel tol = 107% is reached. Figure 10 shows water-
height contours at the end of the time integration ¢ = 7.2, while Figure 11 shows slice
plots along the line y = 135. The schemes capture both the rarefaction wave (left of the
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Figure 8: Perturbation to the lake at rest when solved with the discontinuous STB scheme
with CFL = 1, CFL = 2, CFL = 4 and CFL = 8. Slice plots are shown along the line
y=0.5att=0.24 and t = 0.48.
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Figure 9: Travelling vortex. Grid convergence for the discontinuous STLDA (left) and
the discontinuous STB (right) schemes is plotted.

break) and the shock wave (right of the break) with acceptable accuracy and compare
favourably to published results in the literature |32, 17|. As in the previous examples,

however, the scheme with CFL = 8 is markedly less accurate than the schemes with lower
CFL numbers.

5.6. Circular dam break over nonsmooth bed

This test case considers a two-dimensional variant of the Riemann problem over dis-
continuous bottom topography, proposed in [35]. The computational domain is now
Q2 = [0,30]* with bathymetric function,

bz, y) 0 if z+y <30
.CE, == )
Y 0.2 otherwise

and initial condition,
1.461837 if r<15
n(z,y) = .
0.308732 otherwise

where 7 = /(22 + y?) is the radius of the dam. Solid-wall boundary conditions are used
at the left and bottom boundaries while homogeneous Neumann at the right and top
ones. The characteristic mesh size is h ~ 0.3 and the time integration stops at time
t = 10. The largest value of the blending parameter, 5'** = max O, is applied to all
variables of the residual in order to achieve an additional stabilising effect. The simulation
follows the wave hitting the underwater wall, then partially reflecting from it and partially
moving forward and exiting the domain. There is also a stationary shock wave along the
discontinuity of the bed.

30 contours of the free surface n are depicted in Figure 12 for CFL = 4. The figure
shows four snapshots of the solution at intervals of exactly 2.5 in time. All three waves
— the outgoing, the reflected and the stationary — are well captured. The contour plots
for the STB schemes with other CFL numbers are omitted for this example because they
show very similar behaviour to what we observe in the previous dam-break problems: the
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Figure 10: Partial dam break. 30 water-height contours between 4 and 9.95 for the
discontinuous STB scheme with CFL = 1,2,4 and 8.

schemes with CFL = 2 and CFL = 4 provide the best qualitative results while the one
with CFL = 1 is more diffusive and the one with CFL = 8 is both more diffusive and
more oscillatory. This general pattern is also apparent from Figure 13, which shows slice
plots for all CFL numbers along the diagonal, x = y, of the domain.

6. Comparison with existing schemes

This section compares the space-time scheme developed in this work with two other
RD discretisations that exist in the literature. Both of these schemes are implicit but
also require a time-step restriction because the representation in continuous in time as
well as in space. The development of the explicit RKRD scheme [9] for the shallow-
water equations is ongoing work [19]. That scheme and its comparison to some implicit
formulations will be reported elsewhere. The two other schemes we consider from the
literature are the following.

1. The blended LDA-N scheme where the LDA scheme is defined as in [36]. This is a

similar upwind blended scheme to what is developed in this article but it is not a
space-time formulation.
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Figure 11: Partial dam break. Slice plots of water height at final time ¢ = 7.2 along the
line y = 135 for the discontinuous STB scheme with CFL = 1,2,4 and 8.

2. The stabilised LLF scheme in [18]. This is currently one of the most robust RD
schemes for time-dependent shallow-water simulations. It is essentially a central
scheme and it is computationally cheaper than an upwind schemes that is continuous
in both space and time.

We choose three test cases to compare the space-time scheme investigated here with
the two other schemes. The first is the travelling vortex in Section 5.4 to compare the
computational work against accuracy. The second is the partial dam break in Section 5.5
and the third is the circular dam break over non-smooth bed topography in Section 5.6.
We measure computational work in the total number of pseudo-time iterations over the
entire time integration. This, however, does not reflect the fact that the upwind blended
schemes are computationally more expensive per space-time prism than the LLFs scheme.
The blended scheme requires about four times as much computational work per prism
as the LLFs schemes, while the discontinuous STB schemes requires about eight times
as much. To reflect this, we define one work unit as being the amount of computational
work the LLFs scheme needs per space-time prism.

6.1. Travelling vortex

This test case is used to compare different RD schemes based on the computational
work needed to achieve a given accuracy. The set-up of the test case is the same as
in Section 5.4. Tables 2, 3 and 4 show the computational performance of the blended
scheme, the LLFs scheme and the discontinuous STB scheme with CFL = 4. The com-
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Figure 12: Circular dam break over discontinuous bed. 30 free-surface contours for the
discontinuous STB scheme with CFL = 4.

putational work is measured both in the total number of pseudo-time iterations and in
work units defined above. Figure 14 plots accuracy achieved for computational work. The
results indicate the discontinuous STB scheme (with CFL = 4 in this case) is the most
computationally efficient overall.

6.2. Partial dam break

We use this example, which is the same as the one in Section 5.5, to compare the
computational performance of the space-time scheme with the two other schemes when
discontinuities in the solution have to be captured. Figure 15 shows the same water-
height contours for these two schemes as Figure 10 for the space-time blended scheme.
The blended LDA-N scheme of Ferrante appears to give the better result of the two. The
STB scheme with CFL = 1,2,4 are of comparable quality to these but the one with
CFL = 8 is clearly inferior. Figure 16 shows slice plots to directly compare two of the
discontinuous STB schemes with these methods.

The computational performance of the two schemes and that of the STB scheme with
CFL = 1,2,4,8 is listed in Table 5. The computational work is measured in three ways
until the final time of the simulation, ¢ = 7.2, is reached: as the number of physical-time
steps; as the number of total pseudo-time iterations; and as the number of work units
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Figure 13: Plots of the free surface along the line x = y. The slices are taken at ¢t = 2.5,
t=05.0,t="7.5and t =10.0. In each figure the results for CFL =1, CFL = 2, CFL =4
and CFL = 8 are shown.

defined at the beginning of this section. By the first two measures, the discontinuous
space-time scheme outperforms all other schemes even with CFL = 1. This is in part
because the past-shield condition is often (but not always) larger than the CFL-type
restrictions used in other schemes. But it is also because the iterative convergence of
the STB scheme is relatively good. In terms of work units, the LLFs scheme is still less
expensive but it is also less accurate, though accuracy can only be assessed qualitatively
for this example.

In particular, moving from CFL = 1 to CFL = 2 provides the most gains by more
than halving the total computational cost. The benefits of increasing the time step from
CFL = 2 to CFL = 4 are less obvious if the mild deterioration in the quality of the
numerical simulation is also taken into account. The performance of the STB scheme
with CFL = 8 is clearly poor. In this test case, it seems to generate spurious modes that
spoil both the iterative performance of the scheme and quality of the results.

6.3. Circular dam break over nonsmooth bed

We use this relatively difficult dam break problem to compare the performances of the
different schemes on both a quasi-uniform and a locally refined mesh. First, we compare

24



Table 2: Travelling vortex. Error and computational work for the blended LDAN scheme
with Ferrante’s LDA.

Mesh size |dex — dp|| 12 No. time steps Total no. iterations Work units
1/10 3.9667e-01 41 1061 2.01e+06
1/20 2.7576e-01 7 1857 1.38e+07
1/40 9.2256e-02 163 3973 1.18e-+08
1/80 2.2355e-02 330 3957 4.69e-+08
1/160 2.7876e-03 649 6485 3.07e+09

Table 3: Travelling vortex. Error and computational work for the LLFs scheme.

Mesh size |dex — dpl| 12 No. time steps Total no. iterations Work units
1/10 4.1190e-01 40 1223 5.80e+05
1/20 3.1413e-01 7 2297 4.26e+-06
1/40 1.0290e-01 163 3797 2.82e+07
1/80 2.6203e-02 330 4340 1.29e+-08
1/160 6.6451e-03 649 7788 9.23e-+08

Error against computational work

10 T T T T
107"t ]
_('\l
=
< 10 g
I 4
=
107 .
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- - —B-LDAN ]
~ — LLFs
-4
10 MR | L L P | L L ol L L PSR | L L MR
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Work units

Figure 14: Travelling vortex. Computational work needed to achieve a given accuracy for
the LLFs scheme, for the blended non-space-time scheme and for the discontinuous STB
scheme with CFL = 4.
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Table 4: Travelling vortex. Error and computational work for the discontinuous STB
with CFL = 4.

Mesh size |dex — dp|| 12 No. time steps Total no. iterations Work units
1/10 4.2018e-02 10 376 1.43e+-06
1/20 3.5085e-02 18 781 1.16e+07
1/40 1.2608e-02 38 1784 1.06e-+08
1/80 3.3537e-03 73 3578 8.49e-+08
1/160 8.6824e-04 155 7414 7.03e+09

Blended LDA-N, Ferrante Stabilised LLF

200 200
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Figure 15: Partial dam break. 30 water-height contours between 4 and 9.95 for the
blended scheme and the LLFs scheme at the end of the integration ¢ = 7.2. This figure is
directly comparable to Figure 10 for the space-time DRD scheme.

the schemes on the same quasi-uniform mesh as used in Section 5.6. Table 6 lists the com-
putational work associated with the continuous-in-time blended scheme, the LLFs scheme,
and the space-time schemes with CFL = 1,2,4,8. It shows that the computational cost,
measured as the total number of pseudo-time iterations, is reduced to about a third of
the LLFs scheme and to about half of blended scheme with the LDA part defined as in
[36].

Second, since there is a stationary shock wave over the discontinuous bed topography,
it is natural to use local refinement there. The typical edge length in the region where the
refinement takes place is 0.1, which is one-third of the typical edge length elsewhere in
the domain. We show results for the same test case but with a mesh that is locally refined
where the stationary shock occurs. The space-time scheme is now run with CFL = 9,
which would approximately correspond to CFL = 3 in the region where the mesh is
not refined. Figures 17-19 show 30 free-surface contour plots for the blended scheme
of Ferrante [36], for the LLFs scheme [18], and for the discontinuous space-time scheme
developed here with CFL = 9, respectively. Slice plots of the free surface along the line
x = y are shown in Figure 21, while 3D free-surface plots at ¢ = 7.5 are shown in Figure 20.

The space-time scheme seems to be less oscillatory than the two other schemes studied
in this test case. In particular, the LLFs scheme develops rather large spurious spikes along
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Figure 16: Partial dam break. Slice plots of water height at final time ¢ = 7.2 along the
line y = 135 for the blended non-space-time scheme, for the LLFs scheme and for the
discontinuous STB scheme with CFL = 2, 4.

the stationary shock in the second half of the integration time interval (see the bottom
two subfigures in Figure 18 and also the 3D plots in Figure 20). By contrast, the space-
time DRD schemes do not suffer from these artifacts, albeit at the price of a somewhat
larger numerical diffusion. Overall, the space-time DRD schemes appear to represent the
physical processes most accurately.

Table 7 lists the computational work for five schemes, including three space-time DRD
schemes. The space-time schemes need a relatively large number of iterations to converge
in each physical-time step so the benefits to computational cost are less pronounced in
this example. They are still about twice as computationally efficient as the other schemes
when measured in total number of pseudo-time iterations. When measured in number of
physical-time steps, the gain is about 7-10 times. This opens up the possibility of further
efficiency gains if the performance of the pseudo-iterative algorithm is improved. Also,
this example shows a bigger difference in accuracy between the space-time scheme and the
two other schemes (in favour of the space-time schemes) than other dam break problems.

7. Concluding remarks and outlook

This article applies the framework of discontinuous residual distribution (DRD) to the
shallow-water equations with non-flat bottom topography. The focus is on the space-time
representation that is discontinuous in time only. This choice is motivated by the fact
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Table 5: Partial dam break on a quasi-uniform mesh. Computational work is shown for
two existing implicit RD schemes and the space-time scheme with CFL = 1,2 4, 8.

Scheme No. time steps Average no. iterations Total no. iterations Work units
B-Ferrante 134 29.44 3945 3.59e-+08
LLFs 127 66.39 8432 1.92e+4-08
STDRD1 105 34.39 3611 6.57e+08
STDRD?2 54 30.80 1663 3.02e+-08
STDRD4 28 52.32 1465 2.66e+08
STDRDS 14 132.64 1857 3.38e+08

Figure 17: Circular dam break over discontinuous bed using a locally refined mesh. 30
free-surface contours for the blended scheme where the LDA part is computed as in [36].

that discontinuity in time lifts the time-step restriction on the size of the space-time prism
and thus results in an unconditionally stable discretisation.

As the numerical experiments demonstrate, we can indeed increase the time step of
discontinuous space-time schemes and still retain the most important properties of the
shallow-water system: conservation, linearity preservation, upwinding, hydrostatic bal-
ance and local positivity. In particular, we emphasise that our interest here is restricted
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Figure 18: Circular dam break over discontinuous bed using a locally refined mesh. 30
free-surface contours for the LLFs scheme taken from [18].

to ‘pure’ upwinding and therefore no stabilisation term [37] is included in these discreti-
sations.

Comparison to two other implicit RD schemes show that the space-time DRD algo-
rithm developed in this work provides more accurate results (measured either quantita-
tively or qualitatively) than the currently available RD schemes for the shallow-water
equations. The comparisons were carried out on both quasi-uniform and locally refined
meshes. Depending on the particular test case and implementation, the best-performing
space-time DRD schemes require around 7-10 times fewer physical-time steps than the
other schemes. This, on current implementation, translates into 2-4 times fewer pseudo-
time iterations over the entire integration. In terms of estimated total computational
work, the discontinuous space-time schemes are still less expensive for a given level of
accuracy.

Although more accurate than other currently available RD schemes, it has also
emerged from the study that the benefits from increasing the time step in the space-time
DRD scheme has practical limitations. One of these is the loss of accuracy associated
with larger time steps. Another is the relatively large number of pseudo-time iterations
needed per physical-time step. It is possible to mitigate these drawbacks by focusing on
improving the iterative convergence of the schemes with medium-sized time steps, say
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Figure 19: Circular dam break over discontinuous bed using a locally refined mesh. 30
free-surface contours for the space-time blended scheme with CFL = 9.

between CFL = 3 and CFL = 5 (or higher in case of local mesh refinement) for these
genuinely time-varying cases. Improving the iterative convergence by applying a more
advanced pseudo-time-stepping algorithm [38] is among the most attractive options. In
particular, a further study should compare the computational performance of the space-
time DRD scheme with that of the explicit RKRD scheme [9, 19] when applied to the
same or similar test cases presented in this work.

Overall, the likeliest areas of application where the proposed scheme could prove ad-
vantageous will probably include a relatively large degree of stiffness that comes from the
physical equations when the viscous term is included.
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Appendix

Based on Figure 22, in this Appendix we give an estimate for the CFL-condition of the

vertex-centred upwind FV scheme with explicit Euler time discretisation on structured
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Table 6: Circular dam break over non-smooth bed using a quasi-uniform mesh. Compu-
tational work is shown for two existing implicit RD schemes and the space-time scheme
with CFL =1,2,4,8.

Scheme No. time steps Average no. iterations Total no. iterations Work units
B-Ferrante 438 20.80 9112 8.48e+-08
LLFs 436 36.14 15757 3.67e+08
STDRD1 343 26.78 9185 1.71e+09
STDRD2 173 29.41 5088 9.47e+08
STDRD4 88 55.48 4882 9.08e-+08
STDRDS 45 135.38 6092 1.13e+-09

Table 7: Circular dam break over non-smooth bed using a locally refined mesh. Compu-
tational work is shown for two existing implicit RD schemes and the space-time scheme
with CFL = 3,6, 9.

Scheme No. time steps Average no. iterations Total no. iterations Work units
B-Ferrante 1260 17.34 21849 2.41e+09
LLFs 1202 17.52 21064 5.82e+08
STDRD3 332 52.77 17518 3.87e+09
STDRD6 169 66.30 11205 2.48e+09
STDRD9 114 86.15 9821 2.17e+09

triangulation. This is to be compared with the past-shield condition (8) of the space-time
scheme.

Case 1: advection along the azis

The upwind FV scheme gets contributions from edges 1, 2, and 3 (red, blue, and yellow
in Figure 22). For a vertical speed, the angles between the speed and normals are

One can similarly show that the edge lengths are

2 A 2 A
—t—n h=lh=l=l=

L 5005(%)’ 3cos(§)

ll -
As a consequence, the limiting explicit Euler time step from positivity analysis reads
1 Ax?
At(aly cos(01) + aly cos(0s) + alzcos(s)) = |C| =6 -— |,

2 2 2 T 5
aAtAx (§ + 3 + 3 tan(g)) = Az?,
alAt 3

= ~ 0.62132.
Az 2(2 4 tan(3))
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In the same case, one easily shows that the past-shield condition gives

aAx VA ! alAt 2
ART ol a2 o OB 2 66667
2 3 377 T Az 3

Case 2: advection along the diagonal

The upwind FV scheme gets contributions from edges 1, 2, and 6 (red, blue, and green
in Figure 22). In this case, the angles between the speed and normals are

ool

m
2

As a consequence, the limiting explicit Euler time step from positivity analysis reads

1 Az?
At(aly cos(0y) + aly cos(0s) + alg cos(bs)) = |C| =6 3o

2 2 2 s
AtAz [ —=— + 24 Ztan(Z) ) = As?
¢ x<3cos(§) +3+3 an(8)) v
aAt 3

= ~ 0.53033
Az 2(—= + 1+ tan(Z))

cos(7)
In the same case, one again shows that the past-shield condition still gives

9B

A T 1 A
NN L B W

2
5 3 3 Ay 37 0.66667.
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Blended LDAN

STB,CFL =9

Figure 20: Circular dam break over discontinuous bed using a locally refined mesh. 3D
free-surface plots at ¢ = 7.5 for the blended LDAN scheme, the LLFs scheme and the
discontinuous STB scheme (CFL =9).
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Figure 21: Circular dam break over discontinuous bed using a locally refined mesh. Plots
of the free surface along the line x = y. The slices are taken at t = 2.5, ¢t =5.0,¢t = 7.5
and t = 10.0. In each figure the results for the blended LDAN scheme, the LLFs scheme
and the discontinuous STB scheme (CFL = 9) are shown.
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Figure 22: Sketch of the vertex-centred finite volume scheme
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