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Upwind residual distribution for shallow-water ocean modelling
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Abstract

This article describes residual distribution for the rotating shallow water equations arising
in oceanographic and meteorological modelling. The method is similar to (dis)continuous
finite elements in that it is well suited for unstructured, locally refined meshes — therefore
promising to be a viable alternative to more traditional methods for shallow-water ocean
modelling. It has, however, two main advantages over finite-element methods. First,
it creates a framework in which nonlinear dynamics can be represented very naturally.
Second, by combining the treatment of the flux and source terms, it makes the preservation
of certain balance properties — especially hydrostatic balance — easier to guarantee. The
methods considered in this article have been previously shown to preserve many of the
important physical properties of the original equations, such as conservation, oscillation-
free behaviour and the exact preservation of hydrostatic balance. This work is intended as
the first step into investigating the method’s suitability for modelling geophysical fluids.
This is done through a number of carefully-chosen test cases, which include both fy-plane
and (-plane approximations as well as non-flat bottom topography.

Keywords: upwind residual distribution, rotating shallow-water equations,
discontinuous representation in time, balance properties for hyperbolic equations

1. Introduction

There has been considerable research interest in the past two decades in numerical
methods for ocean modelling that are suitable for unstructured triangular meshes. It
is primarily because these meshes can both resolve complex geometric features (such
as coastal regions) and use dynamical local mesh adaptation to reduce computational
costs. The most established of these are finite-element (FE) methods, see Ford et al.
(2004a,b), Maddison et al. (2011), and finite-volume (FV) methods, see Fringer et al.
(2006), Audusse et al. (2004), Bouchut (2007). More recently, however, high-order spectral
element (SE) methods, see Ma (1993), Iskandarani et al. (2003), Giraldo and Taylor
(2006), and discontinuous Galerkin (DG) methods, see Eskilsson and Sherwin (2004),
Giraldo and Warburton (2008), Cotter et al. (2009), have also been of interest thanks to
their high accuracy in resolving linear and weakly nonlinear waves.

In this work, we offer an alternative formulation in the framework of residual distri-
bution (RD). It was first introduced in Roe (1982), in which it was called fluctuation
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splitting, as a more accurate alternative to flux-based FV methods for the numerical dis-
cretisation of hyperbolic conservation laws. It has, indeed, been proved very successful in
two-dimensional steady-state problems thanks to its ability to better represent the physi-
cal properties of the underlying partial differential equations, see Deconinck et al. (1993).
In particular, it can naturally be constructed to be upwind, positive and conservative
while remaining second-order accurate when the discrete representation is linear. Recent
reviews of the field can be found in Deconinck and Ricchiuto (2007) and Abgrall (2012).

Extending the RD framework to time-dependent problems, however, is far from
straightforward and is a field of active research. For the nonlinear shallow-water equations,
a number of formulations have been designed in Ricchiuto et al. (2007), Ricchiuto and
Bollermann (2009), Ricchiuto (2011a) and Sarmany et al. (2012). While these schemes
often lack rigorous mathematical proofs for the preservation of positivity, they typically
nonetheless exhibit oscillation-free behaviour numerically. In Hubbard and Ricchiuto
(2011) and Sarmény et al. (2012), in particular, the space-time approach of Csik and
Deconinck (2002) was reformulated so that the discrete representation in time is allowed
to be discontinuous. This removes the time-step restriction on time marching and gives
rise to an unconditionally stable and positive implicit scheme. It was tested in Sarmany
et al. (2012) on a number of test cases and the results were rather promising.

The RD framework also provides a simple formulation to include source terms in the
residual. Most recent research has been focusing on the treatment of non-flat bottom to-
pography, also called bathymetry, and exact preservation of hydrostatic balance thereover,
see Ricchiuto et al. (2007), Ricchiuto and Bollermann (2009) and Sarmény et al. (2012).
In Ricchiuto (2011b), in particular, a case is made that, for a positive scheme on unstruc-
tured meshes, hydrostatic balance is more naturally preserved in the RD framework than
in either finite volumes or finite elements (see ? and references therein).

This work extends the treatment of source terms to the Coriolis force, essentially dis-
cretising the rotating shallow-water equations. The presented formulation does not pre-
serve the geostrophic balance exactly. Nevertheless, in many time-dependent situations
the geostrophic balance is sufficiently well represented for the numerical discretisation not
to produce ostensible spurious effects. The main difficulty for preserving the geostrophic
balance exactly for the FE method on unstructured triangular meshes is that it involves
some kind of mixed formulation similar to Cotter et al. (2009). This, in turn, often
introduces spurious inertial oscillations because the number of discrete (vector-valued)
momentum equations does not equal the number of discrete (scalar-valued) mass equa-
tions, as shown in 7 and ?. In the finite-volume framework, it is only recently that the
preservation of geostrophic balance has been addressed in 7 — but only on structured
rectangular meshes. Upwind RD offers at least two favourable properties in this respect.
First, it is genuinely upwind (i.e. no information is sent downstream) so it does not pro-
duce spurious pressure oscillations. Second, it is unstaggered on unstructured triangular
meshes so it has the same number of (scalar-valued) mass and (vector-valued) momentum
equations and, therefore, does not suffer from spurious inertial oscillations. These two
properties, however, do not necessarily suggest that RD is completely free of spurious (or
computational) modes. In order to assess the spectral properties of the scheme, a Fourier
analysis needs to be carried out on a shallow-water system that is linearised around the
conservative variables. This is currently ongoing work and will be reported elsewhere.
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In addition to the Coriolis force, this work also includes wind force and bottom friction
in the source term to be able to simulate ocean circulation with nonlinear effects. The
remaining part of this article is organised as follows. Section 2 gives a short description
of the oceanic shallow-water equations so that the source term includes bottom topogra-
phy, Coriolis force, wind force and bottom friction. Section 3 introduces the concept of
residual distribution for steady-state problems, Section 4 describes the space-time scheme
with discontinuous representation in time, and Section 5 addresses the most important
implementation aspects. In Section 6, the schemes are tested on four important exam-
ples, three of which are time-dependent. Finally, conclusions and outlook are provided in
Section 7.

2. The rotating shallow-water equations

In this article, we apply the RD framework to the frictionless rotating shallow-water
equations with possibly non-flat bottom topography. Thus we seek the solution to the
system

HWU+V-FU)+SU)=0 (1)
with

[ d du dv
U=|du|, F=[F, F]=|d?+%Z duw |,

| dv duv  dv? 4+ 42

- ; )
S = gd—abg;’y) — fdv— % +ydu| |

gd%ﬂ;y) + fdu — %’ + ydv

and with suitable initial and boundary conditions. Here, d is the water height, u = [u, v]"
is the velocity field, b is the height of the bottom topography, 7 = d + b is the level of the
free surface, 7 = [, 7,]” is the wind stress, p is the density of water, and ~ is the bottom
friction. The Coriolis parameter is approximated as f = fy + By. With § = 0 this is the
constant fy-plane approximation, which is suitable for describing mid-latitude processes.
The [-plane approximation (5 # 0) is typically needed in regions nearer the equator.

For numerical computations without wind stress and bottom friction (i.e. 7 = 0
and v = 0), we solve the non-dimensional version of (1). This is derived through the
substitutions

t=Tt, (z,y)=L(y), d=Hd, b=HV (uv)=W(\ ), [f=f/T, (3)

where T', L, H and W are the characteristic time, length, height and velocity in physical
dimensions. Dropping the primes we formally get (1) with g =1 and f — fT.

In the following two sections, we describe both steady-state and space-time RD
schemes for the oceanic shallow water system (1)-(2). In the latter case, we use dis-
continuous representation in time, as in Hubbard and Ricchiuto (2011) and Sarméany
et al. (2012), to eliminate the time-step constraint (given in Csik and Deconinck (2002))
associated with the time-marching procedure.
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2.1. Notation

Throughout the article, we assume a two-dimensional spatial domain Q C R?, which
is tessellated into a set of triangles, so that Q ~ €}, = Ugeq, E/, where E denotes a given
triangle. Let D; = U;,cpE denote the set of triangles connected to node 7. Finally, for

the time-dependent simulations, we define the space-time prism F; over the triangle E as
E, = E x [t",t""], where t" and t"! are the bottom and top time levels of the prism.

3. Steady-state residual distribution

Consider the system (1) in the steady-state limit,
V-FU)+SU)=0 o AU)-VU+SU)=0, (4)

with appropriate boundary conditions. Here, F(U) represents the flux Jacobian and
AU) = [A,, A)] = [0F,/O0U,0F,/0U] = OF /OU is the wave-speed tensor. The steady-

state elementwise residual is then given as

By = / (V- F(U)+ S(U)) dz dy (5)

E

so that
D = /(V-F(U) +S(U) dedy = > Pp.

Qn EeQy

We then formulate the discretisation of (4) in the framework of Deconinck and Ric-
chiuto (2007) and apply the following steps.
1. In the computational domain €, replace the unknown U with an approximation
Uy, that is linear in every (triangular) cell and continuous over the entire domain.
2. Evaluate the discrete cell residual

@E:/(VF(Uh)+S(Uh))dzvdy :84F(Uh)nd8+/S(Uh)dl’dy, (6)

E E

where n is the outward-pointing unit vector normal to the triangle.

3. Distribute the cell residual &g (6) to the three vertices of the triangular cell in
a conservative manner. That is, the fractions of the residual sent to vertex ¢ are
defined as

where B is a diagonal matrix so that Y oicE BY¥ = T with Z being the identity
matrix. Note that this means that every mesh-node residual receives contributions
from its neighbouring cells only,

;=) OF Vie,

EeD;
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4. Impose boundary conditions by adding a flux difference to the boundary-node resid-
ual for the incoming characteristics, so that

YN eF, (@)= (F(Uy) — F(U))-nl,  Yic o, (8)

EeD;

where U, is the boundary condition and the superscript * denotes the fact that
the flux difference is added only for the incoming characteristics. We discuss the
imposition of boundary conditions in more detail in Section 3.3.

5. Solve the algebraic system
d, =0, Vi € Q) (9)

at each time step.
Each of the above steps influences the properties of the numerical scheme. Depending
on the specific physical application, a successful numerical discretisation using a linear
representation should have the following properties: positivity, second-order accuracy,
conservation, upwinding, well-balancedness and computational efficiency. For a more
thorough discussion, see Hubbard (2008), Hubbard and Ricchiuto (2011) or Sarmany
et al. (2012).

3.1. Evaluation of the cell residual

By choosing the conservative variables U as the ones that vary linearly within each
triangle, it is not possible to compute the flux integral [ V- F(Up,) in a conservative
manner by using a single quadrature point. Instead, in order to achieve conservation, we
apply Simpson’s rule to the boundary integral

/F(Uh)-nds => |6‘ (F(U}) +AF(3UL + 3U3) + F(U))) - mu,
OE leE

where n; is the outward-pointing unit vector with length of the side [, while U} and U}
are the values of Uy, at the endpoints of the side [. Note that this evaluation is sufficiently
accurate for linearly varying Uy,.

The evaluation of the source-term integral [ 5 S(Uy) is often motivated by the preser-
vation of the balance properties. In the current study we take

/S(Uh) drdy =~

3% i) 78 2 ] 5T E L] 2]

i€E eE

where - denotes the arithmetic mean over the cell, n; is the outward-pointing normal
vector opposite node ¢ with length of the edge opposite node i, |E| is the area of the
triangle, and ut = [—v,u]”. As the results in Sarmany et al. (2012) show, the evaluation
(10) ensures that the hydrostatic balance is exactly preserved for many of the RD schemes.
However, (10) does not, in general, satisfy the geostrophic balance exactly. To be able to
do that on triangular meshes, a mixed formulation of one form or another is required, see
for example Cotter et al. (2009).



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

3.2. Distribution of the cell residual

Out of the large number of numerical schemes that can be recast in the RD framework,
we now describe two linear schemes that satisfy the multidimensional upwinding and
conservation properties. Being linear, Godunov (1959) proved that these schemes cannot
be both positive and second-order accurate. When necessary, however, this property can
be achieved by applying nonlinear blending on these two schemes. This can also be viewed
as a form of limiting.

To describe these schemes, we first introduce the upwind parameter

1—
Ki=-5A-n,
5T

where A = A(U) and n; is, as before, the outward-pointing normal vector opposite node
¢ with length of the edge opposite node i. Assuming that IC; is diagonalisable, we have

K;=(RDR™Y),, K;=(RD R,
B (11)
Kf=(RD'R™),, N=(> K| |
i€l

where D is the diagonal matrix with the eigenvalues of K;, and R ™! and R are the matrices
that contain the left and right eigenvectors, respectively. Furthermore, D* = % (D £+ |DJ),
where |D| denotes the absolute values of the entries. Then the schemes used in this work
are as follows.
e The LDA (low-diffusion A) scheme of Roe (1987) (see also Ricchiuto et al. (2005))
is defined as
PIPA = ICTN . (12)

This is an upwind, conservative and second-order accurate scheme, which lacks
positivity and is therefore unsuitable for capturing discontinuities in the solution.

e The N (narrow) scheme of Roe (1987) here is defined as in Sarmény et al. (2012)
so that the hydrostatic balance is satisfied exactly,

Oy = QP HICTN DY K (Vi V), (13)

jJEE

where V' = [n,du,dv]’. This is a linear scheme that is conservative and exhibits
oscillation-free behaviour, but it is also rather diffusive, making it less attractive for
the resolution of linear or weakly nonlinear waves.

e The B (blended) scheme is defined so that it combines the N and LDA schemes
through a nonlinear blending coefficient,

@EE = @cbfYE +(Z - 9) @5}3{ (14)

where 7 is the identity matrix and © is a diagonal matrix with the blending coeffi-
cients in the diagonal. The blending coefficients determine how ‘well’ the required
properties, especially oscillation-free behaviour, are satisfied. The approach adopted
in this article is from Abgrall and Mezine (2003) and it consists of: a) choosing a
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particular direction & = (&,,&,); b) using the decomposition A - £ = RngRgl to
compute the ‘characteristic’ residuals

A - A —
N

c¢) computing the blending coefficients as in Deconinck et al. (2000)

PN
O = diag (753265@3”‘) : (15)
1€ 7

and, finally, d) applying (14) on the characteristic residuals. The blended residual
on the original variables can then be calculated as ®7 = R¢®P. Throughout this
work, we make the typical choice of setting & = ﬁ:—‘ for the cell distribution.

3.8. Boundary conditions

To impose the boundary condition (8), we first need to define the outward-pointing
normal n! for each boundary node. This is given as

o [+ nfnf +nf
b nbnfl 2

where nF and nf are the outward-pointing normals of the two boundary edges that
connect at n’. Note that this definition satisfies > icon, }nf’ = [0Q]. To be able to

determine the incoming part of the shallow-water spectrum, we use a similar eigenvalue
decomposition as for the distribution of the cell residuals in the B scheme,

b

_ n;
Ay - € =RDR;Y,  €=—1,

n

where A, = A(%) The flux difference to be added to each node residual at the
boundary is then given as

[@:]" = Re¢ (senDf) R [®], Vi€ O,

where sgn DEL denotes the sign function applied to the entries of Dgr .

The boundary values U, are often imposed externally as predetermined values based
on some assumptions, an exact solution or just provided by a previous forecast in actual
simulations. Solid-wall boundary conditions u-n = 0 are imposed by the mirror principle,
so that d, = d, up = up, — 2(uw-n)n. When the test case requires a sponge — or
absorbing — boundary condition, which is neither transmissive nor reflective, we simply
set the boundary condition to be that of supercritical outflow. This often acts as a very
simple sponge boundary condition thanks to the numerical diffusion that is already in the
discretisation.



173

174

175

176

177

178

179

180

181

182

184

185

186

187

188

189

4. Space-time discontinuous residual distribution

For the space-time discontinuous scheme we consider the full time-dependent system
oU+V-FU)+SU)=0 o U+ AU)-VU+SU)=0 (16)

with appropriate initial and boundary conditions. As in the steady case, F'(U) represents
the flux Jacobian and A(U) = [A,, A, = [0F,/0U,0F,/0U] = OF /OU is the wave-speed
tensor. The space-time prism residual is then given as

[
By, — / /(8tU+V~F(U) + S(U)) d dy dt (17)
t" K
so that
gntl
B, — / /(&U+V-F(U)+S(U))dxdydt: S o,
n Qh EEQh

in every solution layer [t",t"*1] x . The discretisation steps are now similar to the
steady case in Section 3.

1. In the computational domain €2, replace the unknown U with an approximation Uy
that is both linear in every (triangular) cell and linear in time. The discrete repre-
sentation U} is designed to be continuous in space but allowed to be discontinuous
in time.

2. Evaluate the discrete prism residual, using the trapezium rule in time, as

tn+1

Dy, — / /(8tU+V~F(U) + S(U)) da dy i

z/(U;L‘H—U,’j) dxdy+% C/F(U")-nds%—/F(U"“)-nds
E OF

E

A
= / (U = Up) dady + Tt(cbg + @) (18)
FE

where n is the outward-pointing unit vector normal to the edge. The residuals ®7%
and <I>%+1 are calculated precisely as in the steady case described in Section 3.1.

3. Distribute the prism residual ®p, (18) to the six vertices of the prism in a conser-
vative manner. That is, the fractions of the residual sent to vertex ¢ at time levels
n and n 4 1 are defined as

éfn = BfnéEt and (I)fn—i-l = Bfn—l—lq)Et’ (19)

B B : : B E
where 8, and 8y, ,, are diagonal matrices and Y, Bi + > icp Bims1 = L.
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4. At time level t", add the contribution from the time discontinuity (see Hubbard and
Ricchiuto (2011) and Sarmany et al. (2012)) as

_|E]

\IIE
v 3

U], (20)
where [-] denotes the jump across the time discontinuity. For the first time step,
the initial condition is used as the value from the ‘previous time step’, i.e. [UY] =
U? — U;(0), where U is the numerical value and U;(0) is the initial condition.

5. Impose the boundary condition by adding a flux difference to each boundary node
at both time levels t" and ¢"*!, so that

At
OF = — [ + ) (0, +UE), Vi€,
A EeD; (21)
Pt = —[ept )T+ Y @f L, Vie o,
FEeD;

where the flux differences through the boundary are calculated exactly as in the
steady-state case, cf. (8).
6. Solve the algebraic system

=0, =0, VieQ, (22)
at each time step.

Remark. As a consequence of the discontinuous representation in time, there is no
stability restriction on the time step At in the current formulation. This contrasts with
the fully continuous scheme, where the condition

max diag D; ,, < 0, Vie ECQ

needs to be satisfied as shown in Deconinck and Ricchiuto (2007). In the discontinuous
case, the choice of At is driven solely by considerations about accuracy and performance
of the algebraic solver. An extensive study into the role of the size of At is carried out for
the non-rotating shallow-water system in Sarmény et al. (2012). Our choice of the time
step — which is twice as large as the maximum that the above formula would allow for
the continuous case — is based on those results.

4.1. Distribution of the prism residual

For space-time prisms, the inflow parameters used for the prism distribution are defined

* At — E
ICLn - __A 'n/i - %I,
(23)
At_ E
]Ci,n—i-l == __A n; —|— %I,

where T is the identity matrix and A represents a prism-averaged state of the flux Jacobian
A. Assuming that the inflow matrices in (23) are diagonalisable just as they are in the
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steady case, we can introduce the remaining inflow space-time parameters (cf. (11)),

Kf,=(RD*R™)
Kiw= (RDRY)

Kivo = (RD'RY)
’Ci_vn-i-l = (RD_R— ! )

i,n+1"

i,n’

i,n+1"

i,n’

-1
M - (Z IC:_n + Z IC;,—n—i-l) :

el ieE

(24)

These are used to define the upwind space-time RD schemes similarly to the steady case.
e The space-time LDA (STLDA) scheme is defined as

(@F) 7 = Kf N, (D5,) 7 = K N, (25)

e The space-time N (STN) scheme is again defined as in Sarmany et al. (2012) so that

it preserves the hydrostatic balance exactly,
((I)E )N _ ((I)E )LDA
FREN DK (Vi = V) o KEN D K (VI = Vi),
JEE JEE
((I)fn—l—l)N = ((I)fn+1)LDA

K NS K, (V= V) K NG S DKy (Vi - v

JjEE JjeE

(26)

o The space-time blended (STB) scheme is now defined as a nonlinear interpolation

between the STLDA and the STN schemes,
()" =0 (@) +( -6)(2f,)"".
B N LDA
((I)fn-kl) = @ ((I)fn-H) + (I - @) ((I)fn-H)
The blending is now carried out on the characteristic space-time residuals

N __ 15N N _ 15N LDA _ p»—-1xLDA LDA _ p—-15LDA
P _Rf ; @i,n—l—l_Rf q)i,n—i-l’ gsi,n _Rf (I)i,n ) @i,n—i-l_Rg q)i,n—i-l?

i,n i,n

(27)

with the blending parameter computed as

. 1> e PN+ Y ien PN
O = diag ’ : , 28
(zieE\% TS ] .

where we have dropped the superscript ‘E’ to avoid clutter. Finally, we calculate
the blended residuals based on the original variables by ®7 = R®F and @7 | =
RE@ZB n+1-

4.2. Boundary conditions

The imposition of the boundary conditions for the space-time scheme is precisely as
described in Section 3.3, i.e. the pointwise flux differences [®7]* and [@?Hr in (21) are
computed by using the decomposition

nb

A, € =ReDeR; E=——1,

T 1,0
‘"i

where Zb = A <w> for [(I)Zz]-i- and v_4b _ A <U;L+1;—Ui"+1> for [(I);H_l}-i_-

10
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5. Implementation details

For both steady-state and space-time computations, a nonlinear algebraic system of
equations has to be solved. In the steady case, the system (9) needs to be solved only
once, while for space-time simulations, the solution of the system (22) is required at each
time step.

A simple explicit pseudo-time-stepping algorithm is used in both cases. For the steady-
state scheme, this is given as

-
Urtt =um — —o", Vi e Oy, (29)
S;
where s; is the volume of the spatial dual cell and 7 is the pseudo-time step. It is computed
as
8.
r=09mn ————, o(K) = max diag D;, (30)
! ZEeDi oK)

with (M) denoting the spectral radius of a given matrix M. Similarly, for the space-time
computations the pseudo-time stepping takes the form

Uln m+1 Uln m . (I);L m .
(Uin+1) = (Uin+1) T <q>?+1> ) Vi € Qp, (31)

where st = Ats; is the volume of the dual space-time prism. The pseudo-time step 7 is
now calculated as

st

7=0.9min 5 QZ(’CJF y o(Ki41) = maxdiag D}, |, (32)
EeD; i,n+1

where, as before, IC;’n 4+ and D;fn 41 are associated with the prism-averaged state as opposed
to the cell-averaged one in (30).

Similarly to other iterative methods, it is often possible to solve the above algebraic
systems up to machine precision. Nevertheless, a much less accurate solution is sufficient
as long as the properties of the numerical scheme are not compromised. Consequently,
for the steady-state problem in Section 6.4, we use the stopping criterion

1™ [l
1°]4

rel tol =
_ s;

<10 with wm:{lcpgn} . Ym.
1€Qy,

In space-time calculations, such accuracy is not necessary because of a good initial guess
from the previous time step. For these test problems, we set the stopping criterion to

n n T
L@, o), L
@, o)y

n+1 -\ ¢ n+1 ’ .
v si \Pi i€y,

11

<1073

rel tol =

with
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5.1. Efficiency considerations

The above-described pseudo-time-stepping algorithms are solely a means of solving the
systems of nonlinear algebraic equations (9) and (22), so they do not need to be accurate
in (pseudo-)time. The size of the pseudo-time step 7 is determined by the stability
condition of the explicit Euler scheme and therefore the pseudo-CFL has to be smaller
than one (hence our choice of 0.9). It would be possible to use other iterative methods
— such as the Newton method — to solve the nonlinear algebraic systems. However, we
prefer pseudo-time stepping for inviscid flows mainly because it is local, it avoids the
need for assembling and solving a global system, and it is not sensitive to the initial
guess. Its locality, in particular, means that the implementation on parallel architectures
is relatively straightforward and it scales well. Each unknown is only connected to its
nearest neighbours in space-time and that connectivity does not depend on the size of the
time step At.

Its main drawback, however, is that the number of pseudo-time iterations required
to reach the stopping criterion of 1073 is large. For all time-dependent numerical tests
considered here, that number falls in the region of 20 to 40. Although it is sometimes
possible to take a larger stopping criterion, the value 1073 is typically necessary for having
negligible effect on the accuracy of the time-dependent approximation. This requirement
is generally independent of the actual test case.

6. Numerical results

In this section, we present a range of test cases to validate the performance of the RD
scheme applied to the rotating shallow-water equations. We solve the nonlinear system
(1) for all the numerical simulations, but the exact solutions — when available — are derived
through analytical approximations.

6.1. Equatorial Kelvin wave

This problem describes a wave travelling eastwards in equatorial regions. If the
shallow-water system is linearised around a constant state of the primitive variables, an
analytical solution can be obtained. We use an analytical solution of the nondimensional
equations, taken from Eskilsson and Sherwin (2004) and Giraldo and Warburton (2008).
It is given as

(33)

,U(x7 y? t) = 07

where A is the amplitude of the wave, fo =0, 5 =1,¢9g=1, b(z,y) =0,vy=0,7=0
and ©Q = [—10,10] x [—5,5]. Since we discretise the nonlinear equations, this analytical
solution can only be used to assess the convergence of the numerical scheme as long as the
error associated with the numerical discretisation is much larger than the error associated
with the linearisation to obtain (33). This is typically the case if the amplitude is small.
So in order to check grid convergence for the numerical scheme we set A = 10™* and
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A =103, and integrate until 7' = 10 with initial condition given by (33) with ¢t = 0. We
use a sequence of four meshes with characteristic edge lengths of 1, %, i and %. Figure 1
shows grid-convergence rates for the STLDA and the STB schemes. The left plot confirms
second-order convergence for the STLDA scheme and slightly suboptimal convergence for
the STB scheme, which tallies with existing results for both schemes when the solution is
smooth, see Hubbard and Ricchiuto (2011) and Sarmany et al. (2012). By comparison,
the right plot shows that with A = 107 the convergence rate, while maintained on coarser
meshes, drops for the finest mesh when the STLDA scheme is used. This is because at this
level the numerical error becomes comparable to that associated with the linearisation.
The STB formulation does not exhibit this for any of the meshes used since it is less
accurate overall.

A=le-4 A=le-3

—o—STLDA —o—STLDA
- — —Slope 2 /,// - — —Slope 2
——STB i ——STB
. — — Slope 1.75 . — — Slope 1.75
10 0 10 0
10 10
h h

Figure 1: Equatorial Kelvin wave. Grid-convergence study of the error between the linear analytical and
the nonlinear numerical solution for amplitudes 10~* and 1073,

Based on these convergence results, we can infer that the STLDA and the STB schemes
on the finest mesh approximate the equations with the respective accuracies of ||dj, —
dezll2/A ~ 10735 and ||d), — dey||2/A =~ 107*® independently of the amplitude. In Figure 2,
we plot the nonlinear numerical results for A = 1074, A = 1073, A = 1072, A = 107!
and compare them to the linear analytical results. They show that the ‘visible’ effects of
nonlinearity begin to appear for A = 1072 and become obvious for A = 107!, The results
of the STLDA and STB schemes look qualitatively identical so we only present the results
obtained with the STLDA method.

6.2. Equatorial nonlinear Rossby soliton

This example is an equatorial trapped nonlinear wave travelling westwards. The exact
solution is not known but an analytical approximation can be derived through the method
of multiple scales as shown in Boyd (1985). For the primitive variables, this is given as

d(z,y,t) = dO + 4V
u(z,y,t) = u® + o
U($a Y, t) = 'U(O) + U(l)>
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where the superscripts (0) and (1) denote the zeroth-order and the first-order wave mode
in the analytical solution, respectively. These are given as

1 y?
d9 =1+ 1(6y2 +3)ke” 7
1 y2
u® = Z(6y2 —9)ke T
Ok _y?
00 = an—ge_T
and 9 ,
dW = 1—601(2y —5)ke” T + K2d(y)
WO = 20y (22 + Byre s + KPily)
7612y Ke K-y
Ok
M — 25

where k(¢) = Acosh™*(B(), ( =2 —Ct, B=0.394, A= 0.771B? C = Cy+Cy, Cy = —3
and C; = —0.395B2. The variable x is the solution to the Korteweg—de Vries (KdV)
equation, which describes the behaviour of solitons. As shown in Boyd (1980), under
certain conditions the shallow-water equations reduce to the KdV equation by using the
method of multiple scales. The tilde terms above are computed as

d(y) . o [d(y) . 2 [d(y)
u(y) :e—%z u(y) Hn(y)%e_%z u(y) | Hu(y),
o(y) n=0 | 0(y) n=0 | d(y)

where H,(y) are the Hermite polynomials and d(y), @(y), 9(y) are the unnormalised
Hermite coefficients given originally in Boyd (1985) but also to be found in Eskilsson and
Sherwin (2004). The truncation of the series at n = 26 is exact in a computational sense
because the resulting error is well below machine precision.

The numerical simulations are carried out in the domain Q = [—24, 24] x [—8, 8] until
final time 7" = 40. Solid-wall conditions are used at the top and bottom parts of the
boundary while characteristic inflow /outflow conditions are imposed at the left and right
parts of the boundary. As in the case of the Kelvin wave, the parameters are set as fo = 0,
B=1,9g=1,b(z,y) =0,y=0and 7 =0.

Since the analytical solution is only a first-mode approximation, it cannot be used to
assess grid convergence — not even in the way we do it for the equatorial Kelvin wave.
Nevertheless, it is worth comparing the numerical phase speed with that of the analytical
solution as well as checking whether the numerical solution captures the main features of
the soliton.

Figures 3 and 4 show numerical solutions computed with the STLDA and STB schemes
on a mesh with 113830 triangles. The analytical solution yields a peak of 1.162 at (z,y) =
(—15.77,1.23). Both the STLDA and the STB schemes capture the phase speed quite
accurately. The general shape of the wave is also preserved, although both schemes emit
low-amplitude gravity waves. This is a feature that is in part the result of a non-exact
initial condition and in part associated with many higher-order numerical schemes, see
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Eskilsson and Sherwin (2004) and Giraldo and Warburton (2008). Overall, we observe
little qualitative difference between the solutions obtained by the two schemes.

6.3. Nonlinear adjustment of a front

This example describes the evolution of a pressure discontinuity over an escarpment,
similar to the one in Bouchut et al. (2008). The computational domain is = [—30, 10]?,
the bottom topography is defined as

0.5 if y<—25
b(z,y) =< 0.1(2.5 —y) if —25<y<2.5,
0 if y>2.5,

and the initial condition is given by

1.1 if z<0,

to =0, dol,y) = {1 if otherwise.
This problem is also solved as the nondimensionalised system but using the fy-plane
approximation rather than the [-plane one. The parameters are thus defined as fy = 1,
6=0,g=1,v=0and 7 = 0. Still-water boundary conditions are imposed by means of
characteristics at the left and right boundaries, while absorbing boundary conditions are
used for the top and bottom boundaries to indicate middle-of-the-ocean situations.
Since the initial condition contains a discontinuity, we use the STB scheme to eliminate
unphysical oscillations around the discontinuity. Figures 5 and 6 show contour and slice
plots, respectively, at six different times. The results show that the expected behaviour
after the initial discontinuity is captured, see Bouchut et al. (2008). First, fast inertia-
gravity waves are emitted from the area of the discontinuity and they leave the domain
at different speeds because of the varying bottom topography. Second, a jet forms along
the initial discontinuity. Third, a trapped topographic Rossby wave develops around
the intersection of the initial discontinuity and the escarpment. Since f > 0 (northern
hemisphere), it travels such that the shallower water is on the right. Last, a packet of
short waves is also created that travels in the opposite direction to the wave tongue.

6.4. Nonlinear Stommel problem

This is the only steady-state problem that we consider in this work. It describes a
situation when the wind stress, bottom friction, Coriolis force and the nonlinear advective
term are in balance. In this case, we solve the dimensional system (1) in the domain
Q = [0,10%?* with parameters fo = 107 8 = 107!, g = 9.80665, v = 107%, 7 =
0.2 [cos(my), 0]%, b(x,y) = 0. The initial condition is that of a still lake [n, du, dv]’ =
[d, du, dv]T = [1000,0,0]7, while the boundary conditions are solid wall everywhere.

Since the solution of this problem is smooth and the nonlinearity is weak, we only
consider the STLDA scheme. The results in Figure 7 show an accumulation of water at
the northwesterly part of the domain — in line with observations of oceanic currents and
with recent numerical results obtained by the DG method, see for example Giraldo and
Warburton (2008), Comblen et al. (2010) and Escobar-Vargas et al. (2012).
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7. Concluding remarks and outlook

This article has introduced the framework of residual distribution (RD) to shallow-
water ocean modelling. While the method has a relatively long history in computational
fluid dynamics, this is — to our knowledge — the first time it has been successfully applied
to the rotating shallow-water equations. It shares many similarities with other numerical
methods suitable for unstructured triangular meshes, such as finite volumes or finite
elements. It has, however, significant advantages over those methods in situations when
both nonlinear dynamics and the preservation of certain balance properties are important.
The formulation presented here preserves only the hydrostatic balance exactly (over any
shape of topography) but not the geostrophic balance because all unknown fields are
stored at the vertices of the triangles. However, the upwinding character of the scheme,
together with the fact that there are the same number of (vector-valued) unknowns for
the velocity field as (scalar-valued) unknowns for the water height, suggests that the
scheme is expected to be free of both spurious pressure and inertial modes. We have,
indeed, detected no such spurious modes in the space-time simulations, but a Fourier
analysis into the spectral properties of the linearised shallow-water equations remains to
be conducted.

The main drawback of the proposed space-time RD formulation is that it is computa-
tionally relatively expensive. Although it is shown in Sarmany et al. (2012) to outperform
other implicit RD schemes, it is generally still more computationally intensive than most
explicit approaches. Future research efforts will concentrate on including a moving-mesh
algorithm that both reduces the number of pseudo-time iterations in the algebraic solver
and the number of total degrees of freedom required to achieve the same quality of the
solution.
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Figure 2: Equatorial Kelvin wave. Water-height contours and slice plots along the line y = 0 for four
different amplitudes, obtained by the STLDA scheme.
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(b) STB: diax = 1.156 at (2,y) = (—15.34, —1.25)

Figure 3: Equatorial Rossby soliton. Contours and three-dimensional plots of the level of free surface for
the STLDA (top) and STB (bottom) schemes.
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(b) Slice plot along the line © = —15.77 for the STLDA and STB schemes

Figure 4: Equatorial Rossby soliton. Free-surface slice plots along two, perpendicular, lines the STLDA
and STB schemes.
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Figure 5: Nonlinear front adjustment. Eleven equidistant contours between 0.95 and 1.15 obtained by
the STB scheme.
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Figure 6: Nonlinear front adjustment. Slice plots of the free surface along the line y = 0 obtained by the
STB scheme.
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Figure 7: Nonlinear Stommel problem. The contours — obtained by the STLDA scheme — depict the
water-height anomaly compared with the level of the still, current-free ocean.



