
Upwind residual distribution for shallow-water oean modellingD. Sármánya,∗, M.E. HubbardaaShool of Computing, University of Leeds, LS2 9JT, Leeds, United KingdomAbstratThis artile desribes residual distribution for the rotating shallow water equations arisingin oeanographi and meteorologial modelling. The method is similar to (dis)ontinuous�nite elements in that it is well suited for unstrutured, loally re�ned meshes � thereforepromising to be a viable alternative to more traditional methods for shallow-water oeanmodelling. It has, however, two main advantages over �nite-element methods. First,it reates a framework in whih nonlinear dynamis an be represented very naturally.Seond, by ombining the treatment of the �ux and soure terms, it makes the preservationof ertain balane properties � espeially hydrostati balane � easier to guarantee. Themethods onsidered in this artile have been previously shown to preserve many of theimportant physial properties of the original equations, suh as onservation, osillation-free behaviour and the exat preservation of hydrostati balane. This work is intended asthe �rst step into investigating the method's suitability for modelling geophysial �uids.This is done through a number of arefully-hosen test ases, whih inlude both f0-planeand β-plane approximations as well as non-�at bottom topography.Keywords: upwind residual distribution, rotating shallow-water equations,disontinuous representation in time, balane properties for hyperboli equations1. Introdution1 There has been onsiderable researh interest in the past two deades in numerial2 methods for oean modelling that are suitable for unstrutured triangular meshes. It3 is primarily beause these meshes an both resolve omplex geometri features (suh4 as oastal regions) and use dynamial loal mesh adaptation to redue omputational5 osts. The most established of these are �nite-element (FE) methods, see Ford et al.6 (2004a,b), Maddison et al. (2011), and �nite-volume (FV) methods, see Fringer et al.7 (2006), Audusse et al. (2004), Bouhut (2007). More reently, however, high-order spetral8 element (SE) methods, see Ma (1993), Iskandarani et al. (2003), Giraldo and Taylor9 (2006), and disontinuous Galerkin (DG) methods, see Eskilsson and Sherwin (2004),10 Giraldo and Warburton (2008), Cotter et al. (2009), have also been of interest thanks to11 their high auray in resolving linear and weakly nonlinear waves.12 In this work, we o�er an alternative formulation in the framework of residual distri-13 bution (RD). It was �rst introdued in Roe (1982), in whih it was alled �utuation14
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splitting, as a more aurate alternative to �ux-based FV methods for the numerial dis-15 retisation of hyperboli onservation laws. It has, indeed, been proved very suessful in16 two-dimensional steady-state problems thanks to its ability to better represent the physi-17 al properties of the underlying partial di�erential equations, see Deonink et al. (1993).18 In partiular, it an naturally be onstruted to be upwind, positive and onservative19 while remaining seond-order aurate when the disrete representation is linear. Reent20 reviews of the �eld an be found in Deonink and Rihiuto (2007) and Abgrall (2012).21 Extending the RD framework to time-dependent problems, however, is far from22 straightforward and is a �eld of ative researh. For the nonlinear shallow-water equations,23 a number of formulations have been designed in Rihiuto et al. (2007), Rihiuto and24 Bollermann (2009), Rihiuto (2011a) and Sármány et al. (2012). While these shemes25 often lak rigorous mathematial proofs for the preservation of positivity, they typially26 nonetheless exhibit osillation-free behaviour numerially. In Hubbard and Rihiuto27 (2011) and Sármány et al. (2012), in partiular, the spae-time approah of Csík and28 Deonink (2002) was reformulated so that the disrete representation in time is allowed29 to be disontinuous. This removes the time-step restrition on time marhing and gives30 rise to an unonditionally stable and positive impliit sheme. It was tested in Sármány31 et al. (2012) on a number of test ases and the results were rather promising.32 The RD framework also provides a simple formulation to inlude soure terms in the33 residual. Most reent researh has been fousing on the treatment of non-�at bottom to-34 pography, also alled bathymetry, and exat preservation of hydrostati balane thereover,35 see Rihiuto et al. (2007), Rihiuto and Bollermann (2009) and Sármány et al. (2012).36 In Rihiuto (2011b), in partiular, a ase is made that, for a positive sheme on unstru-37 tured meshes, hydrostati balane is more naturally preserved in the RD framework than38 in either �nite volumes or �nite elements (see ? and referenes therein).39 This work extends the treatment of soure terms to the Coriolis fore, essentially dis-40 retising the rotating shallow-water equations. The presented formulation does not pre-41 serve the geostrophi balane exatly. Nevertheless, in many time-dependent situations42 the geostrophi balane is su�iently well represented for the numerial disretisation not43 to produe ostensible spurious e�ets. The main di�ulty for preserving the geostrophi44 balane exatly for the FE method on unstrutured triangular meshes is that it involves45 some kind of mixed formulation similar to Cotter et al. (2009). This, in turn, often46 introdues spurious inertial osillations beause the number of disrete (vetor-valued)47 momentum equations does not equal the number of disrete (salar-valued) mass equa-48 tions, as shown in ? and ?. In the �nite-volume framework, it is only reently that the49 preservation of geostrophi balane has been addressed in ? � but only on strutured50 retangular meshes. Upwind RD o�ers at least two favourable properties in this respet.51 First, it is genuinely upwind (i.e. no information is sent downstream) so it does not pro-52 due spurious pressure osillations. Seond, it is unstaggered on unstrutured triangular53 meshes so it has the same number of (salar-valued) mass and (vetor-valued) momentum54 equations and, therefore, does not su�er from spurious inertial osillations. These two55 properties, however, do not neessarily suggest that RD is ompletely free of spurious (or56 omputational) modes. In order to assess the spetral properties of the sheme, a Fourier57 analysis needs to be arried out on a shallow-water system that is linearised around the58 onservative variables. This is urrently ongoing work and will be reported elsewhere.59 2



In addition to the Coriolis fore, this work also inludes wind fore and bottom frition60 in the soure term to be able to simulate oean irulation with nonlinear e�ets. The61 remaining part of this artile is organised as follows. Setion 2 gives a short desription62 of the oeani shallow-water equations so that the soure term inludes bottom topogra-63 phy, Coriolis fore, wind fore and bottom frition. Setion 3 introdues the onept of64 residual distribution for steady-state problems, Setion 4 desribes the spae-time sheme65 with disontinuous representation in time, and Setion 5 addresses the most important66 implementation aspets. In Setion 6, the shemes are tested on four important exam-67 ples, three of whih are time-dependent. Finally, onlusions and outlook are provided in68 Setion 7.69 2. The rotating shallow-water equations70 In this artile, we apply the RD framework to the fritionless rotating shallow-water71 equations with possibly non-�at bottom topography. Thus we seek the solution to the72 system73
∂tU + ∇ · F (U) + S(U) = 0 (1)with74
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(2)
and with suitable initial and boundary onditions. Here, d is the water height, u = [u, v]T75 is the veloity �eld, b is the height of the bottom topography, η = d + b is the level of the76 free surfae, τ = [τx, τy]

T is the wind stress, ρ is the density of water, and γ is the bottom77 frition. The Coriolis parameter is approximated as f = f0 + βy. With β = 0 this is the78 onstant f0-plane approximation, whih is suitable for desribing mid-latitude proesses.79 The β-plane approximation (β 6= 0) is typially needed in regions nearer the equator.80 For numerial omputations without wind stress and bottom frition (i.e. τ = 081 and γ = 0), we solve the non-dimensional version of (1). This is derived through the82 substitutions83
t = Tt′, (x, y) = L(x′, y′), d = Hd′, b = Hb′, (u, v) = W (u′, v′), f ′ = f/T, (3)where T , L, H and W are the harateristi time, length, height and veloity in physial84 dimensions. Dropping the primes we formally get (1) with g = 1 and f → fT .85 In the following two setions, we desribe both steady-state and spae-time RD86 shemes for the oeani shallow water system (1)�(2). In the latter ase, we use dis-87 ontinuous representation in time, as in Hubbard and Rihiuto (2011) and Sármány88 et al. (2012), to eliminate the time-step onstraint (given in Csík and Deonink (2002))89 assoiated with the time-marhing proedure.90 3



2.1. Notation91 Throughout the artile, we assume a two-dimensional spatial domain Ω ⊂ R
2, whih92 is tessellated into a set of triangles, so that Ω ≈ Ωh = ∪E∈Ωh

E, where E denotes a given93 triangle. Let Di = ∪i∈EE denote the set of triangles onneted to node i. Finally, for94 the time-dependent simulations, we de�ne the spae-time prism Et over the triangle E as95
Et = E × [tn, tn+1], where tn and tn+1 are the bottom and top time levels of the prism.96 3. Steady-state residual distribution97 Consider the system (1) in the steady-state limit,98

∇ · F (U) + S(U) = 0 or A(U) · ∇U + S(U) = 0, (4)with appropriate boundary onditions. Here, F (U) represents the �ux Jaobian and99
A(U) = [Ax,Ay] = [∂Fx/∂U, ∂Fy/∂U ] = ∂F /∂U is the wave-speed tensor. The steady-100 state elementwise residual is then given as101

ΦE =

∫

E

(∇ · F (U) + S(U)) dx dy (5)so that
Φ =

∫

Ωh

(∇ · F (U) + S(U)) dx dy =
∑

E∈Ωh

ΦE .We then formulate the disretisation of (4) in the framework of Deonink and Ri-102 hiuto (2007) and apply the following steps.103 1. In the omputational domain Ωh, replae the unknown U with an approximation104
Uh that is linear in every (triangular) ell and ontinuous over the entire domain.105 2. Evaluate the disrete ell residual106

ΦE =

∫

E

(∇ · F (Uh) + S(Uh)) dx dy =

∫

∂E

F (Uh) · nds +

∫

E

S(Uh) dx dy, (6)where n is the outward-pointing unit vetor normal to the triangle.107 3. Distribute the ell residual ΦE (6) to the three verties of the triangular ell in108 a onservative manner. That is, the frations of the residual sent to vertex i are109 de�ned as110
ΦE

i = βE
i ΦE , (7)where βE

i is a diagonal matrix so that ∑i∈E βE
i = I with I being the identitymatrix. Note that this means that every mesh-node residual reeives ontributionsfrom its neighbouring ells only,

Φi =
∑

E∈Di

ΦE
i , ∀i ∈ Ωh.
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4. Impose boundary onditions by adding a �ux di�erene to the boundary-node resid-111 ual for the inoming harateristis, so that112
Φi = [Φi]

+ +
∑

E∈Di

ΦE
i , [Φi] = (F (Ub) − F (Ui)) · n

b
i , ∀i ∈ ∂Ωh, (8)where Ub is the boundary ondition and the supersript + denotes the fat that113 the �ux di�erene is added only for the inoming harateristis. We disuss the114 imposition of boundary onditions in more detail in Setion 3.3.115 5. Solve the algebrai system116

Φi = 0, ∀i ∈ Ωh (9)at eah time step.117 Eah of the above steps in�uenes the properties of the numerial sheme. Depending118 on the spei� physial appliation, a suessful numerial disretisation using a linear119 representation should have the following properties: positivity, seond-order auray,120 onservation, upwinding, well-balanedness and omputational e�ieny. For a more121 thorough disussion, see Hubbard (2008), Hubbard and Rihiuto (2011) or Sármány122 et al. (2012).123 3.1. Evaluation of the ell residual124 By hoosing the onservative variables U as the ones that vary linearly within eahtriangle, it is not possible to ompute the �ux integral ∫
E
∇ · F (Uh) in a onservativemanner by using a single quadrature point. Instead, in order to ahieve onservation, weapply Simpson's rule to the boundary integral

∫
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∑
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6
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· nl,where nl is the outward-pointing unit vetor with length of the side l, while U l
1 and U l

2125 are the values of Uh at the endpoints of the side l. Note that this evaluation is su�iently126 aurate for linearly varying Uh.127 The evaluation of the soure-term integral ∫
E

S(Uh) is often motivated by the preser-vation of the balane properties. In the urrent study we take
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, (10)where · denotes the arithmeti mean over the ell, ni is the outward-pointing normal128 vetor opposite node i with length of the edge opposite node i, |E| is the area of the129 triangle, and u⊥ = [−v, u]T . As the results in Sármány et al. (2012) show, the evaluation130 (10) ensures that the hydrostati balane is exatly preserved for many of the RD shemes.131 However, (10) does not, in general, satisfy the geostrophi balane exatly. To be able to132 do that on triangular meshes, a mixed formulation of one form or another is required, see133 for example Cotter et al. (2009).134 5



3.2. Distribution of the ell residual135 Out of the large number of numerial shemes that an be reast in the RD framework,136 we now desribe two linear shemes that satisfy the multidimensional upwinding and137 onservation properties. Being linear, Godunov (1959) proved that these shemes annot138 be both positive and seond-order aurate. When neessary, however, this property an139 be ahieved by applying nonlinear blending on these two shemes. This an also be viewed140 as a form of limiting.141 To desribe these shemes, we �rst introdue the upwind parameter
Ki = −

1

2
A · ni,where A = A(U) and ni is, as before, the outward-pointing normal vetor opposite node142

i with length of the edge opposite node i. Assuming that Ki is diagonalisable, we have143
Ki =

(

RDR−1
)

i
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(
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)

i
,
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i =
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i
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∑
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K+
i

)−1

,
(11)where D is the diagonal matrix with the eigenvalues of Ki, andR−1 andR are the matries144 that ontain the left and right eigenvetors, respetively. Furthermore, D± = 1

2
(D ± |D|),145 where |D| denotes the absolute values of the entries. Then the shemes used in this work146 are as follows.147

• The LDA (low-di�usion A) sheme of Roe (1987) (see also Rihiuto et al. (2005))148 is de�ned as149
ΦLDA

i = K+
i NΦE . (12)This is an upwind, onservative and seond-order aurate sheme, whih laks150 positivity and is therefore unsuitable for apturing disontinuities in the solution.151

• The N (narrow) sheme of Roe (1987) here is de�ned as in Sármány et al. (2012)152 so that the hydrostati balane is satis�ed exatly,153
ΦN

i,E = ΦLDA
i,E + K+

i N
∑

j∈E

K+
j (Vi − Vj) , (13)where V = [η, du, dv]T . This is a linear sheme that is onservative and exhibits154 osillation-free behaviour, but it is also rather di�usive, making it less attrative for155 the resolution of linear or weakly nonlinear waves.156

• The B (blended) sheme is de�ned so that it ombines the N and LDA shemes157 through a nonlinear blending oe�ient,158
ΦB

i,E = ΘΦN
i,E + (I − Θ)ΦLDA

i,E , (14)where I is the identity matrix and Θ is a diagonal matrix with the blending oe�-ients in the diagonal. The blending oe�ients determine how `well' the requiredproperties, espeially osillation-free behaviour, are satis�ed. The approah adoptedin this artile is from Abgrall and Mezine (2003) and it onsists of: a) hoosing a6



partiular diretion ξ = (ξx, ξy); b) using the deomposition A · ξ = RξDξR
−1
ξ toompute the `harateristi' residuals

ΦLDA
i = R−1

ξ ΦLDA
i , ΦN

i = R−1
ξ ΦN

i ;) omputing the blending oe�ients as in Deonink et al. (2000)159
Θ = diag

(
∣

∣

∑

i∈E ΦN
i

∣

∣

∑

i∈E |ΦN
i |

)

; (15)and, �nally, d) applying (14) on the harateristi residuals. The blended residual160 on the original variables an then be alulated as ΦB
i = RξΦ

B
i . Throughout this161 work, we make the typial hoie of setting ξ = u

|u|
for the ell distribution.162 3.3. Boundary onditions163 To impose the boundary ondition (8), we �rst need to de�ne the outward-pointingnormal nb

i for eah boundary node. This is given as
nb

i =

∣

∣nL
i

∣

∣+
∣

∣nR
i

∣

∣

|nL
i + nR

i |

nL
i + nR

i

2
,where nL

i and nR
i are the outward-pointing normals of the two boundary edges thatonnet at nb

i . Note that this de�nition satis�es ∑i∈∂Ωh

∣

∣nb
i

∣

∣ = |∂Ωh|. To be able todetermine the inoming part of the shallow-water spetrum, we use a similar eigenvaluedeomposition as for the distribution of the ell residuals in the B sheme,
Ab · ξ = RξDξR

−1
ξ , ξ = −

nb
i

∣

∣nb
i

∣

∣

,where Ab = A
(

Ub+Ui

2

). The �ux di�erene to be added to eah node residual at theboundary is then given as
[Φi]

+ = Rξ

(

sgnD+
ξ

)

R−1
ξ [Φi] , ∀i ∈ ∂Ωh,where sgnD+

ξ denotes the sign funtion applied to the entries of D+
ξ .164 The boundary values Ub are often imposed externally as predetermined values based165 on some assumptions, an exat solution or just provided by a previous foreast in atual166 simulations. Solid-wall boundary onditions u·n = 0 are imposed by the mirror priniple,167 so that db = dh, ub = uh − 2 (u · n)n. When the test ase requires a sponge � or168 absorbing � boundary ondition, whih is neither transmissive nor re�etive, we simply169 set the boundary ondition to be that of superritial out�ow. This often ats as a very170 simple sponge boundary ondition thanks to the numerial di�usion that is already in the171 disretisation.172
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4. Spae-time disontinuous residual distribution173 For the spae-time disontinuous sheme we onsider the full time-dependent system174
∂tU + ∇ · F (U) + S(U) = 0 or ∂tU + A(U) · ∇U + S(U) = 0 (16)with appropriate initial and boundary onditions. As in the steady ase, F (U) represents175 the �ux Jaobian and A(U) = [Ax,Ay] = [∂Fx/∂U, ∂Fy/∂U ] = ∂F /∂U is the wave-speed176 tensor. The spae-time prism residual is then given as177

ΦEt
=

tn+1
∫

tn

∫

E

(∂tU + ∇ · F (U) + S(U)) dx dy dt (17)so that
Φt =

tn+1
∫

tn

∫

Ωh

(∂tU + ∇ · F (U) + S(U)) dx dy dt =
∑

E∈Ωh

ΦEtin every solution layer [tn, tn+1] × Ωh. The disretisation steps are now similar to the178 steady ase in Setion 3.179 1. In the omputational domain Ωh, replae the unknown U with an approximation Uh180 that is both linear in every (triangular) ell and linear in time. The disrete repre-181 sentation Uh is designed to be ontinuous in spae but allowed to be disontinuous182 in time.183 2. Evaluate the disrete prism residual, using the trapezium rule in time, as
ΦEt

=

tn+1
∫

tn

∫

E

(∂tU + ∇ · F (U) + S(U)) dx dy dt

≈

∫

E

(

Un+1
h − Un

h

)

dx dy +
∆t

2





∫

∂E

F (Un) · n ds +

∫

∂E

F (Un+1) · nds





=

∫

E

(

Un+1
h − Un

h

)

dx dy +
∆t

2
(Φn

E + Φn+1
E ), (18)where n is the outward-pointing unit vetor normal to the edge. The residuals Φn

E184 and Φn+1
E are alulated preisely as in the steady ase desribed in Setion 3.1.185 3. Distribute the prism residual ΦEt

(18) to the six verties of the prism in a onser-186 vative manner. That is, the frations of the residual sent to vertex i at time levels187
n and n + 1 are de�ned as188

ΦE
i,n = βE

i,nΦEt
and ΦE

i,n+1 = βE
i,n+1ΦEt

, (19)where βE
i,n and βE

i,n+1 are diagonal matries and ∑i∈E βE
i,n +

∑

i∈E βE
i,n+1 = I.189 8



4. At time level tn, add the ontribution from the time disontinuity (see Hubbard and190 Rihiuto (2011) and Sármány et al. (2012)) as191
ΨE

i,n =
|E|

3
[Un

i ] , (20)where [·] denotes the jump aross the time disontinuity. For the �rst time step,192 the initial ondition is used as the value from the `previous time step', i.e. [U0
i ] =193

U0
i − Ui(0), where U0

i is the numerial value and Ui(0) is the initial ondition.194 5. Impose the boundary ondition by adding a �ux di�erene to eah boundary node195 at both time levels tn and tn+1, so that196
Φn

i =
∆t

2
[Φn

i ]+ +
∑

E∈Di

(

ΦE
i,n + ΨE

i,n

)

, ∀i ∈ ∂Ωh,

Φn+1
i =

∆t

2

[

Φn+1
i

]+
+
∑

E∈Di

ΦE
i,n+1, ∀i ∈ ∂Ωh,

(21)where the �ux di�erenes through the boundary are alulated exatly as in the197 steady-state ase, f. (8).198 6. Solve the algebrai system199
Φn

i = 0, Φn+1
i = 0, ∀i ∈ Ωh (22)at eah time step.200 Remark. As a onsequene of the disontinuous representation in time, there is nostability restrition on the time step ∆t in the urrent formulation. This ontrasts withthe fully ontinuous sheme, where the ondition

max diagDi,n ≤ 0, ∀i ∈ E ⊂ Ωhneeds to be satis�ed as shown in Deonink and Rihiuto (2007). In the disontinuous201 ase, the hoie of ∆t is driven solely by onsiderations about auray and performane202 of the algebrai solver. An extensive study into the role of the size of ∆t is arried out for203 the non-rotating shallow-water system in Sármány et al. (2012). Our hoie of the time204 step � whih is twie as large as the maximum that the above formula would allow for205 the ontinuous ase � is based on those results.206 4.1. Distribution of the prism residual207 For spae-time prisms, the in�ow parameters used for the prism distribution are de�ned208 as209
Ki,n = −

∆t

4
A · ni −

|E|

3
I,

Ki,n+1 = −
∆t

4
A · ni +

|E|

3
I,

(23)where I is the identity matrix and A represents a prism-averaged state of the �ux Jaobian210
A. Assuming that the in�ow matries in (23) are diagonalisable just as they are in the211 9



steady ase, we an introdue the remaining in�ow spae-time parameters (f. (11)),212
K+

i,n =
(

RD+R−1
)

i,n
, K+

i,n+1 =
(

RD+R−1
)

i,n+1
,

K−
i,n =

(

RD−R−1
)

i,n
, K−

i,n+1 =
(

RD−R−1
)

i,n+1
,

Nt =

(

∑

i∈E

K+
i,n +

∑

i∈E

K+
i,n+1

)−1

.

(24)These are used to de�ne the upwind spae-time RD shemes similarly to the steady ase.213
• The spae-time LDA (STLDA) sheme is de�ned as214

(

ΦE
i,n

)LDA
= K+

i,nNtΦEt
,

(

ΦE
i,n+1

)LDA
= K+

i,n+1NtΦEt
. (25)

• The spae-time N (STN) sheme is again de�ned as in Sármány et al. (2012) so that215 it preserves the hydrostati balane exatly,216
(
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)N
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ΦE
i,n

)LDA

+ K+
i,nNt

∑

j∈E

K+
j,n

(
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)N
=
(

ΦE
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)LDA
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i,n+1Nt

∑

j∈E

K+
j,n

(

V n
i − V n

j

)

+ K+
i,n+1Nt

∑

j∈E

K+
j,n+1

(

V n+1
i − V n+1

j

)

.

(26)
• The spae-time blended (STB) sheme is now de�ned as a nonlinear interpolation217 between the STLDA and the STN shemes,218

(

ΦE
i,n

)B
= Θ

(

ΦE
i,n

)N
+ (I − Θ)

(

ΦE
i,n

)LDA
,

(

ΦE
i,n+1

)B
= Θ

(

ΦE
i,n+1

)N
+ (I − Θ)

(

ΦE
i,n+1

)LDA
.

(27)The blending is now arried out on the harateristi spae-time residuals
ΦN

i,n = R−1
ξ ΦN

i,n, ΦN
i,n+1 = R−1

ξ ΦN
i,n+1, ΦLDA

i,n = R−1
ξ ΦLDA

i,n , ΦLDA
i,n+1 = R−1

ξ ΦLDA
i,n+1,with the blending parameter omputed as219

Θ = diag

(
∣

∣

∑

i∈E ΦN
i,n +

∑

i∈E ΦN
i,n+1

∣

∣

∑

i∈E

∣

∣ΦN
i,n

∣

∣+
∑

i∈E

∣

∣ΦN
i,n+1

∣

∣

)

, (28)where we have dropped the supersript `E' to avoid lutter. Finally, we alulate220 the blended residuals based on the original variables by ΦB
i,n = RξΦ

B
i,n and ΦB

i,n+1 =221
RξΦ

B
i,n+1.222 4.2. Boundary onditions223 The imposition of the boundary onditions for the spae-time sheme is preisely asdesribed in Setion 3.3, i.e. the pointwise �ux di�erenes [Φn

i ]+ and [Φn+1
i

]+ in (21) areomputed by using the deomposition
Ab · ξ = RξDξR

−1
ξ , ξ = −

nb
i

∣

∣nb
i

∣

∣

,where Ab = A

(

Un
b

+Un
i

2

) for [Φn
i ]+ and Ab = A

(

Un+1

b
+Un+1

i

2

) for [Φn+1
i

]+.224 10



5. Implementation details225 For both steady-state and spae-time omputations, a nonlinear algebrai system of226 equations has to be solved. In the steady ase, the system (9) needs to be solved only227 one, while for spae-time simulations, the solution of the system (22) is required at eah228 time step.229 A simple expliit pseudo-time-stepping algorithm is used in both ases. For the steady-230 state sheme, this is given as231
Um+1

i = Um
i −

τ

si

Φm
i , ∀i ∈ Ωh, (29)where si is the volume of the spatial dual ell and τ is the pseudo-time step. It is omputed232 as233

τ = 0.9 min
i

si
∑

E∈Di
̺(K+

i )
, ̺(K+

i ) = max diagD+
i , (30)with ̺(M) denoting the spetral radius of a given matrixM. Similarly, for the spae-time234 omputations the pseudo-time stepping takes the form235

(

Un
i

Un+1
i

)m+1

=

(

Un
i

Un+1
i

)m

−
τ

st
i

(

Φn
i

Φn+1
i

)m

, ∀i ∈ Ωh, (31)where st
i = ∆tsi is the volume of the dual spae-time prism. The pseudo-time step τ is236 now alulated as237

τ = 0.9 min
i

st
i

∑

E∈Di
̺(K+

i,n+1)
, ̺(K+

i,n+1) = max diagD+
i,n+1, (32)where, as before, K+

i,n+1 andD+
i,n+1 are assoiated with the prism-averaged state as opposed238 to the ell-averaged one in (30).239 Similarly to other iterative methods, it is often possible to solve the above algebraisystems up to mahine preision. Nevertheless, a muh less aurate solution is su�ientas long as the properties of the numerial sheme are not ompromised. Consequently,for the steady-state problem in Setion 6.4, we use the stopping riterion

rel_tol =
‖Ψm‖1

‖Ψ 0‖1
< 10−8 with Ψm =

{

τ

si

Φm
i

}

i∈Ωh

, ∀m.In spae-time alulations, suh auray is not neessary beause of a good initial guessfrom the previous time step. For these test problems, we set the stopping riterion to
rel_tol =

‖ (Ψn, Ψn+1)
T

m ‖1

‖ (Ψn, Ψn+1)T

0 ‖1

< 10−3with
(

Ψn

Ψn+1

)m

=

{

τ

st
i

(

Φn
i

Φn+1
i

)m}

i∈Ωh

, ∀m.
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5.1. E�ieny onsiderations240 The above-desribed pseudo-time-stepping algorithms are solely a means of solving the241 systems of nonlinear algebrai equations (9) and (22), so they do not need to be aurate242 in (pseudo-)time. The size of the pseudo-time step τ is determined by the stability243 ondition of the expliit Euler sheme and therefore the pseudo-CFL has to be smaller244 than one (hene our hoie of 0.9). It would be possible to use other iterative methods245 � suh as the Newton method � to solve the nonlinear algebrai systems. However, we246 prefer pseudo-time stepping for invisid �ows mainly beause it is loal, it avoids the247 need for assembling and solving a global system, and it is not sensitive to the initial248 guess. Its loality, in partiular, means that the implementation on parallel arhitetures249 is relatively straightforward and it sales well. Eah unknown is only onneted to its250 nearest neighbours in spae-time and that onnetivity does not depend on the size of the251 time step ∆t.252 Its main drawbak, however, is that the number of pseudo-time iterations required253 to reah the stopping riterion of 10−3 is large. For all time-dependent numerial tests254 onsidered here, that number falls in the region of 20 to 40. Although it is sometimes255 possible to take a larger stopping riterion, the value 10−3 is typially neessary for having256 negligible e�et on the auray of the time-dependent approximation. This requirement257 is generally independent of the atual test ase.258 6. Numerial results259 In this setion, we present a range of test ases to validate the performane of the RD260 sheme applied to the rotating shallow-water equations. We solve the nonlinear system261 (1) for all the numerial simulations, but the exat solutions � when available � are derived262 through analytial approximations.263 6.1. Equatorial Kelvin wave264 This problem desribes a wave travelling eastwards in equatorial regions. If the265 shallow-water system is linearised around a onstant state of the primitive variables, an266 analytial solution an be obtained. We use an analytial solution of the nondimensional267 equations, taken from Eskilsson and Sherwin (2004) and Giraldo and Warburton (2008).268 It is given as269
d(x, y, t) = 1 + A exp

(

−
1

2
y2

)

exp

(

−
1

2
(x + 5 − t)2

)

,

u(x, y, t) = A exp

(

−
1

2
y2

)

exp

(

−
1

2
(x + 5 − t)2

)

,

v(x, y, t) = 0,

(33)where A is the amplitude of the wave, f0 = 0, β = 1, g = 1, b(x, y) ≡ 0, γ = 0, τ ≡ 0270 and Ω = [−10, 10] × [−5, 5]. Sine we disretise the nonlinear equations, this analytial271 solution an only be used to assess the onvergene of the numerial sheme as long as the272 error assoiated with the numerial disretisation is muh larger than the error assoiated273 with the linearisation to obtain (33). This is typially the ase if the amplitude is small.274 So in order to hek grid onvergene for the numerial sheme we set A = 10−4 and275 12



A = 10−3, and integrate until T = 10 with initial ondition given by (33) with t = 0. We276 use a sequene of four meshes with harateristi edge lengths of 1, 1
2
, 1

4
and 1

8
. Figure 1277 shows grid-onvergene rates for the STLDA and the STB shemes. The left plot on�rms278 seond-order onvergene for the STLDA sheme and slightly suboptimal onvergene for279 the STB sheme, whih tallies with existing results for both shemes when the solution is280 smooth, see Hubbard and Rihiuto (2011) and Sármány et al. (2012). By omparison,281 the right plot shows that with A = 10−3 the onvergene rate, while maintained on oarser282 meshes, drops for the �nest mesh when the STLDA sheme is used. This is beause at this283 level the numerial error beomes omparable to that assoiated with the linearisation.284 The STB formulation does not exhibit this for any of the meshes used sine it is less285 aurate overall.286
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Slope 1.75Figure 1: Equatorial Kelvin wave. Grid-onvergene study of the error between the linear analytial andthe nonlinear numerial solution for amplitudes 10−4 and 10−3.Based on these onvergene results, we an infer that the STLDA and the STB shemes287 on the �nest mesh approximate the equations with the respetive auraies of ‖dh −288
dex‖2/A ≈ 10−3.5 and ‖dh−dex‖2/A ≈ 10−2.8 independently of the amplitude. In Figure 2,289 we plot the nonlinear numerial results for A = 10−4, A = 10−3, A = 10−2, A = 10−1290 and ompare them to the linear analytial results. They show that the `visible' e�ets of291 nonlinearity begin to appear for A = 10−2 and beome obvious for A = 10−1. The results292 of the STLDA and STB shemes look qualitatively idential so we only present the results293 obtained with the STLDA method.294 6.2. Equatorial nonlinear Rossby soliton295 This example is an equatorial trapped nonlinear wave travelling westwards. The exatsolution is not known but an analytial approximation an be derived through the methodof multiple sales as shown in Boyd (1985). For the primitive variables, this is given as

d(x, y, t) = d(0) + d(1)

u(x, y, t) = u(0) + u(1)

v(x, y, t) = v(0) + v(1),13



where the supersripts (0) and (1) denote the zeroth-order and the �rst-order wave modein the analytial solution, respetively. These are given as
d(0) = 1 +

1

4
(6y2 + 3)κe−

y2

2

u(0) =
1

4
(6y2 − 9)κe−

y2

2

v(0) = 2y
∂κ

∂ζ
e−

y2

2and
d(1) =

9

16
C1(2y

2 − 5)κe−
y2

2 + κ2d̃(y)

u(1) =
9

16
C1(2y

2 + 3)κe−
y2

2 + κ2ũ(y)

v(1) = κ
∂κ

∂ζ
ṽ(y),where κ(ζ) = A cosh−2(Bζ), ζ = x−Ct, B = 0.394, A = 0.771B2, C = C0 +C1, C0 = −1

3and C1 = −0.395B2. The variable κ is the solution to the Korteweg�de Vries (KdV)equation, whih desribes the behaviour of solitons. As shown in Boyd (1980), underertain onditions the shallow-water equations redue to the KdV equation by using themethod of multiple sales. The tilde terms above are omputed as
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Hn(y),where Hn(y) are the Hermite polynomials and d̂(y), û(y), v̂(y) are the unnormalised296 Hermite oe�ients given originally in Boyd (1985) but also to be found in Eskilsson and297 Sherwin (2004). The trunation of the series at n = 26 is exat in a omputational sense298 beause the resulting error is well below mahine preision.299 The numerial simulations are arried out in the domain Ω = [−24, 24]× [−8, 8] until300 �nal time T = 40. Solid-wall onditions are used at the top and bottom parts of the301 boundary while harateristi in�ow/out�ow onditions are imposed at the left and right302 parts of the boundary. As in the ase of the Kelvin wave, the parameters are set as f0 = 0,303
β = 1, g = 1, b(x, y) ≡ 0, γ = 0 and τ ≡ 0.304 Sine the analytial solution is only a �rst-mode approximation, it annot be used to305 assess grid onvergene � not even in the way we do it for the equatorial Kelvin wave.306 Nevertheless, it is worth omparing the numerial phase speed with that of the analytial307 solution as well as heking whether the numerial solution aptures the main features of308 the soliton.309 Figures 3 and 4 show numerial solutions omputed with the STLDA and STB shemes310 on a mesh with 113830 triangles. The analytial solution yields a peak of 1.162 at (x, y) =311
(−15.77, 1.23). Both the STLDA and the STB shemes apture the phase speed quite312 aurately. The general shape of the wave is also preserved, although both shemes emit313 low-amplitude gravity waves. This is a feature that is in part the result of a non-exat314 initial ondition and in part assoiated with many higher-order numerial shemes, see315 14



Eskilsson and Sherwin (2004) and Giraldo and Warburton (2008). Overall, we observe316 little qualitative di�erene between the solutions obtained by the two shemes.317 6.3. Nonlinear adjustment of a front318 This example desribes the evolution of a pressure disontinuity over an esarpment,similar to the one in Bouhut et al. (2008). The omputational domain is Ω = [−30, 10]2,the bottom topography is de�ned as
b(x, y) =











0.5 if y ≤ −2.5,

0.1(2.5 − y) if − 2.5 < y < 2.5,

0 if y ≥ 2.5,and the initial ondition is given by
u0 = 0, d0(x, y) =

{

1.1 if x < 0,

1 if otherwise.This problem is also solved as the nondimensionalised system but using the f0-plane319 approximation rather than the β-plane one. The parameters are thus de�ned as f0 = 1,320
β = 0, g = 1, γ = 0 and τ = 0. Still-water boundary onditions are imposed by means of321 harateristis at the left and right boundaries, while absorbing boundary onditions are322 used for the top and bottom boundaries to indiate middle-of-the-oean situations.323 Sine the initial ondition ontains a disontinuity, we use the STB sheme to eliminate324 unphysial osillations around the disontinuity. Figures 5 and 6 show ontour and slie325 plots, respetively, at six di�erent times. The results show that the expeted behaviour326 after the initial disontinuity is aptured, see Bouhut et al. (2008). First, fast inertia-327 gravity waves are emitted from the area of the disontinuity and they leave the domain328 at di�erent speeds beause of the varying bottom topography. Seond, a jet forms along329 the initial disontinuity. Third, a trapped topographi Rossby wave develops around330 the intersetion of the initial disontinuity and the esarpment. Sine f > 0 (northern331 hemisphere), it travels suh that the shallower water is on the right. Last, a paket of332 short waves is also reated that travels in the opposite diretion to the wave tongue.333 6.4. Nonlinear Stommel problem334 This is the only steady-state problem that we onsider in this work. It desribes a335 situation when the wind stress, bottom frition, Coriolis fore and the nonlinear advetive336 term are in balane. In this ase, we solve the dimensional system (1) in the domain337
Ω = [0, 106]2 with parameters f0 = 10−4, β = 10−11, g = 9.80665, γ = 10−6, τ =338
0.2 [cos(πy), 0]T , b(x, y) ≡ 0. The initial ondition is that of a still lake [η, du, dv]T =339
[d, du, dv]T = [1000, 0, 0]T , while the boundary onditions are solid wall everywhere.340 Sine the solution of this problem is smooth and the nonlinearity is weak, we only341 onsider the STLDA sheme. The results in Figure 7 show an aumulation of water at342 the northwesterly part of the domain � in line with observations of oeani urrents and343 with reent numerial results obtained by the DG method, see for example Giraldo and344 Warburton (2008), Comblen et al. (2010) and Esobar-Vargas et al. (2012).345 15



7. Conluding remarks and outlook346 This artile has introdued the framework of residual distribution (RD) to shallow-347 water oean modelling. While the method has a relatively long history in omputational348 �uid dynamis, this is � to our knowledge � the �rst time it has been suessfully applied349 to the rotating shallow-water equations. It shares many similarities with other numerial350 methods suitable for unstrutured triangular meshes, suh as �nite volumes or �nite351 elements. It has, however, signi�ant advantages over those methods in situations when352 both nonlinear dynamis and the preservation of ertain balane properties are important.353 The formulation presented here preserves only the hydrostati balane exatly (over any354 shape of topography) but not the geostrophi balane beause all unknown �elds are355 stored at the verties of the triangles. However, the upwinding harater of the sheme,356 together with the fat that there are the same number of (vetor-valued) unknowns for357 the veloity �eld as (salar-valued) unknowns for the water height, suggests that the358 sheme is expeted to be free of both spurious pressure and inertial modes. We have,359 indeed, deteted no suh spurious modes in the spae-time simulations, but a Fourier360 analysis into the spetral properties of the linearised shallow-water equations remains to361 be onduted.362 The main drawbak of the proposed spae-time RD formulation is that it is omputa-363 tionally relatively expensive. Although it is shown in Sármány et al. (2012) to outperform364 other impliit RD shemes, it is generally still more omputationally intensive than most365 expliit approahes. Future researh e�orts will onentrate on inluding a moving-mesh366 algorithm that both redues the number of pseudo-time iterations in the algebrai solver367 and the number of total degrees of freedom required to ahieve the same quality of the368 solution.369 Referenes370 Abgrall, R., 2012. A review of residual distribution shemes for hyperboli and paraboli371 problems: the July 2010 state of the art. Commun. Comput. Phys. 11, 1043�1080.372 Abgrall, R., Mezine, M., 2003. Constrution of seond order aurate monotone and373 stable residual distribution shemes for unsteady �ow problems. J. Comput. Phys. 188,374 16�55.375 Audusse, E., Bouhut, F., Bristeau, M.O., Klein, R., Perthame, B., 2004. A fast and376 stable well-balaned sheme with hydrostati reonstrution for shallow water �ows.377 SIAM J. Si. Comput. 25, 2050�2065.378 Bouhut, F., 2007. Chapter 4 E�ient numerial �nite volume shemes for shallow water379 models, in: Zeitlin, V. (Ed.), Nonlinear Dynamis of Rotating Shallow Water: Methods380 and Advanes. Elsevier Siene. volume 2 of Edited Series on Advanes in Nonlinear381 Siene and Complexity, pp. 189�256.382 Bouhut, F., Sherer, E., Zeitlin, V., 2008. Nonlinear adjustment of a front over esarp-383 ment. Physis of Fluids 20.384 16
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(b) A = 10−3

0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

0 2 4 6 8 10

1

1.002

1.004

1.006

1.008

1.01

 

 

Numeric

Analytical

() A = 10−2

0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

0 2 4 6 8 10

1

1.02

1.04

1.06

1.08

1.1

 

 

Numeric

Analytical

(d) A = 10−1Figure 2: Equatorial Kelvin wave. Water-height ontours and slie plots along the line y = 0 for fourdi�erent amplitudes, obtained by the STLDA sheme.19
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(a) STLDA: dmax = 1.165 at (x, y) = (−15.66, 1.30)
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(b) STB: dmax = 1.156 at (x, y) = (−15.34,−1.25)Figure 3: Equatorial Rossby soliton. Contours and three-dimensional plots of the level of free surfae forthe STLDA (top) and STB (bottom) shemes.
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(a) Slie plot along the line y = 1.23 for the STLDA and STB shemes
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(b) Slie plot along the line x = −15.77 for the STLDA and STB shemesFigure 4: Equatorial Rossby soliton. Free-surfae slie plots along two, perpendiular, lines the STLDAand STB shemes.
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Figure 5: Nonlinear front adjustment. Eleven equidistant ontours between 0.95 and 1.15 obtained bythe STB sheme.
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Figure 6: Nonlinear front adjustment. Slie plots of the free surfae along the line y = 0 obtained by theSTB sheme. 22
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Figure 7: Nonlinear Stommel problem. The ontours � obtained by the STLDA sheme � depit thewater-height anomaly ompared with the level of the still, urrent-free oean.
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