
Upwind residual distribution for shallow-water o
ean modellingD. Sármánya,∗, M.E. HubbardaaS
hool of Computing, University of Leeds, LS2 9JT, Leeds, United KingdomAbstra
tThis arti
le des
ribes residual distribution for the rotating shallow water equations arisingin o
eanographi
 and meteorologi
al modelling. The method is similar to (dis)
ontinuous�nite elements in that it is well suited for unstru
tured, lo
ally re�ned meshes � thereforepromising to be a viable alternative to more traditional methods for shallow-water o
eanmodelling. It has, however, two main advantages over �nite-element methods. First,it 
reates a framework in whi
h nonlinear dynami
s 
an be represented very naturally.Se
ond, by 
ombining the treatment of the �ux and sour
e terms, it makes the preservationof 
ertain balan
e properties � espe
ially hydrostati
 balan
e � easier to guarantee. Themethods 
onsidered in this arti
le have been previously shown to preserve many of theimportant physi
al properties of the original equations, su
h as 
onservation, os
illation-free behaviour and the exa
t preservation of hydrostati
 balan
e. This work is intended asthe �rst step into investigating the method's suitability for modelling geophysi
al �uids.This is done through a number of 
arefully-
hosen test 
ases, whi
h in
lude both f0-planeand β-plane approximations as well as non-�at bottom topography.Keywords: upwind residual distribution, rotating shallow-water equations,dis
ontinuous representation in time, balan
e properties for hyperboli
 equations1. Introdu
tion1 There has been 
onsiderable resear
h interest in the past two de
ades in numeri
al2 methods for o
ean modelling that are suitable for unstru
tured triangular meshes. It3 is primarily be
ause these meshes 
an both resolve 
omplex geometri
 features (su
h4 as 
oastal regions) and use dynami
al lo
al mesh adaptation to redu
e 
omputational5 
osts. The most established of these are �nite-element (FE) methods, see Ford et al.6 (2004a,b), Maddison et al. (2011), and �nite-volume (FV) methods, see Fringer et al.7 (2006), Audusse et al. (2004), Bou
hut (2007). More re
ently, however, high-order spe
tral8 element (SE) methods, see Ma (1993), Iskandarani et al. (2003), Giraldo and Taylor9 (2006), and dis
ontinuous Galerkin (DG) methods, see Eskilsson and Sherwin (2004),10 Giraldo and Warburton (2008), Cotter et al. (2009), have also been of interest thanks to11 their high a

ura
y in resolving linear and weakly nonlinear waves.12 In this work, we o�er an alternative formulation in the framework of residual distri-13 bution (RD). It was �rst introdu
ed in Roe (1982), in whi
h it was 
alled �u
tuation14
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splitting, as a more a

urate alternative to �ux-based FV methods for the numeri
al dis-15 
retisation of hyperboli
 
onservation laws. It has, indeed, been proved very su

essful in16 two-dimensional steady-state problems thanks to its ability to better represent the physi-17 
al properties of the underlying partial di�erential equations, see De
onin
k et al. (1993).18 In parti
ular, it 
an naturally be 
onstru
ted to be upwind, positive and 
onservative19 while remaining se
ond-order a

urate when the dis
rete representation is linear. Re
ent20 reviews of the �eld 
an be found in De
onin
k and Ri

hiuto (2007) and Abgrall (2012).21 Extending the RD framework to time-dependent problems, however, is far from22 straightforward and is a �eld of a
tive resear
h. For the nonlinear shallow-water equations,23 a number of formulations have been designed in Ri

hiuto et al. (2007), Ri

hiuto and24 Bollermann (2009), Ri

hiuto (2011a) and Sármány et al. (2012). While these s
hemes25 often la
k rigorous mathemati
al proofs for the preservation of positivity, they typi
ally26 nonetheless exhibit os
illation-free behaviour numeri
ally. In Hubbard and Ri

hiuto27 (2011) and Sármány et al. (2012), in parti
ular, the spa
e-time approa
h of Csík and28 De
onin
k (2002) was reformulated so that the dis
rete representation in time is allowed29 to be dis
ontinuous. This removes the time-step restri
tion on time mar
hing and gives30 rise to an un
onditionally stable and positive impli
it s
heme. It was tested in Sármány31 et al. (2012) on a number of test 
ases and the results were rather promising.32 The RD framework also provides a simple formulation to in
lude sour
e terms in the33 residual. Most re
ent resear
h has been fo
using on the treatment of non-�at bottom to-34 pography, also 
alled bathymetry, and exa
t preservation of hydrostati
 balan
e thereover,35 see Ri

hiuto et al. (2007), Ri

hiuto and Bollermann (2009) and Sármány et al. (2012).36 In Ri

hiuto (2011b), in parti
ular, a 
ase is made that, for a positive s
heme on unstru
-37 tured meshes, hydrostati
 balan
e is more naturally preserved in the RD framework than38 in either �nite volumes or �nite elements (see ? and referen
es therein).39 This work extends the treatment of sour
e terms to the Coriolis for
e, essentially dis-40 
retising the rotating shallow-water equations. The presented formulation does not pre-41 serve the geostrophi
 balan
e exa
tly. Nevertheless, in many time-dependent situations42 the geostrophi
 balan
e is su�
iently well represented for the numeri
al dis
retisation not43 to produ
e ostensible spurious e�e
ts. The main di�
ulty for preserving the geostrophi
44 balan
e exa
tly for the FE method on unstru
tured triangular meshes is that it involves45 some kind of mixed formulation similar to Cotter et al. (2009). This, in turn, often46 introdu
es spurious inertial os
illations be
ause the number of dis
rete (ve
tor-valued)47 momentum equations does not equal the number of dis
rete (s
alar-valued) mass equa-48 tions, as shown in ? and ?. In the �nite-volume framework, it is only re
ently that the49 preservation of geostrophi
 balan
e has been addressed in ? � but only on stru
tured50 re
tangular meshes. Upwind RD o�ers at least two favourable properties in this respe
t.51 First, it is genuinely upwind (i.e. no information is sent downstream) so it does not pro-52 du
e spurious pressure os
illations. Se
ond, it is unstaggered on unstru
tured triangular53 meshes so it has the same number of (s
alar-valued) mass and (ve
tor-valued) momentum54 equations and, therefore, does not su�er from spurious inertial os
illations. These two55 properties, however, do not ne
essarily suggest that RD is 
ompletely free of spurious (or56 
omputational) modes. In order to assess the spe
tral properties of the s
heme, a Fourier57 analysis needs to be 
arried out on a shallow-water system that is linearised around the58 
onservative variables. This is 
urrently ongoing work and will be reported elsewhere.59 2



In addition to the Coriolis for
e, this work also in
ludes wind for
e and bottom fri
tion60 in the sour
e term to be able to simulate o
ean 
ir
ulation with nonlinear e�e
ts. The61 remaining part of this arti
le is organised as follows. Se
tion 2 gives a short des
ription62 of the o
eani
 shallow-water equations so that the sour
e term in
ludes bottom topogra-63 phy, Coriolis for
e, wind for
e and bottom fri
tion. Se
tion 3 introdu
es the 
on
ept of64 residual distribution for steady-state problems, Se
tion 4 des
ribes the spa
e-time s
heme65 with dis
ontinuous representation in time, and Se
tion 5 addresses the most important66 implementation aspe
ts. In Se
tion 6, the s
hemes are tested on four important exam-67 ples, three of whi
h are time-dependent. Finally, 
on
lusions and outlook are provided in68 Se
tion 7.69 2. The rotating shallow-water equations70 In this arti
le, we apply the RD framework to the fri
tionless rotating shallow-water71 equations with possibly non-�at bottom topography. Thus we seek the solution to the72 system73
∂tU + ∇ · F (U) + S(U) = 0 (1)with74

U =





d
du
dv



 , F =
[

Fx Fy

]

=





du dv

du2 + gd2

2
duv

duv dv2 + gd2

2



 ,

S =







0

gd∂b(x,y)
∂x

− fdv − τx

ρ
+ γdu

gd∂b(x,y)
∂y

+ fdu − τy

ρ
+ γdv






,

(2)
and with suitable initial and boundary 
onditions. Here, d is the water height, u = [u, v]T75 is the velo
ity �eld, b is the height of the bottom topography, η = d + b is the level of the76 free surfa
e, τ = [τx, τy]

T is the wind stress, ρ is the density of water, and γ is the bottom77 fri
tion. The Coriolis parameter is approximated as f = f0 + βy. With β = 0 this is the78 
onstant f0-plane approximation, whi
h is suitable for des
ribing mid-latitude pro
esses.79 The β-plane approximation (β 6= 0) is typi
ally needed in regions nearer the equator.80 For numeri
al 
omputations without wind stress and bottom fri
tion (i.e. τ = 081 and γ = 0), we solve the non-dimensional version of (1). This is derived through the82 substitutions83
t = Tt′, (x, y) = L(x′, y′), d = Hd′, b = Hb′, (u, v) = W (u′, v′), f ′ = f/T, (3)where T , L, H and W are the 
hara
teristi
 time, length, height and velo
ity in physi
al84 dimensions. Dropping the primes we formally get (1) with g = 1 and f → fT .85 In the following two se
tions, we des
ribe both steady-state and spa
e-time RD86 s
hemes for the o
eani
 shallow water system (1)�(2). In the latter 
ase, we use dis-87 
ontinuous representation in time, as in Hubbard and Ri

hiuto (2011) and Sármány88 et al. (2012), to eliminate the time-step 
onstraint (given in Csík and De
onin
k (2002))89 asso
iated with the time-mar
hing pro
edure.90 3



2.1. Notation91 Throughout the arti
le, we assume a two-dimensional spatial domain Ω ⊂ R
2, whi
h92 is tessellated into a set of triangles, so that Ω ≈ Ωh = ∪E∈Ωh

E, where E denotes a given93 triangle. Let Di = ∪i∈EE denote the set of triangles 
onne
ted to node i. Finally, for94 the time-dependent simulations, we de�ne the spa
e-time prism Et over the triangle E as95
Et = E × [tn, tn+1], where tn and tn+1 are the bottom and top time levels of the prism.96 3. Steady-state residual distribution97 Consider the system (1) in the steady-state limit,98

∇ · F (U) + S(U) = 0 or A(U) · ∇U + S(U) = 0, (4)with appropriate boundary 
onditions. Here, F (U) represents the �ux Ja
obian and99
A(U) = [Ax,Ay] = [∂Fx/∂U, ∂Fy/∂U ] = ∂F /∂U is the wave-speed tensor. The steady-100 state elementwise residual is then given as101

ΦE =

∫

E

(∇ · F (U) + S(U)) dx dy (5)so that
Φ =

∫

Ωh

(∇ · F (U) + S(U)) dx dy =
∑

E∈Ωh

ΦE .We then formulate the dis
retisation of (4) in the framework of De
onin
k and Ri
-102 
hiuto (2007) and apply the following steps.103 1. In the 
omputational domain Ωh, repla
e the unknown U with an approximation104
Uh that is linear in every (triangular) 
ell and 
ontinuous over the entire domain.105 2. Evaluate the dis
rete 
ell residual106

ΦE =

∫

E

(∇ · F (Uh) + S(Uh)) dx dy =

∫

∂E

F (Uh) · nds +

∫

E

S(Uh) dx dy, (6)where n is the outward-pointing unit ve
tor normal to the triangle.107 3. Distribute the 
ell residual ΦE (6) to the three verti
es of the triangular 
ell in108 a 
onservative manner. That is, the fra
tions of the residual sent to vertex i are109 de�ned as110
ΦE

i = βE
i ΦE , (7)where βE

i is a diagonal matrix so that ∑i∈E βE
i = I with I being the identitymatrix. Note that this means that every mesh-node residual re
eives 
ontributionsfrom its neighbouring 
ells only,

Φi =
∑

E∈Di

ΦE
i , ∀i ∈ Ωh.

4



4. Impose boundary 
onditions by adding a �ux di�eren
e to the boundary-node resid-111 ual for the in
oming 
hara
teristi
s, so that112
Φi = [Φi]

+ +
∑

E∈Di

ΦE
i , [Φi] = (F (Ub) − F (Ui)) · n

b
i , ∀i ∈ ∂Ωh, (8)where Ub is the boundary 
ondition and the supers
ript + denotes the fa
t that113 the �ux di�eren
e is added only for the in
oming 
hara
teristi
s. We dis
uss the114 imposition of boundary 
onditions in more detail in Se
tion 3.3.115 5. Solve the algebrai
 system116

Φi = 0, ∀i ∈ Ωh (9)at ea
h time step.117 Ea
h of the above steps in�uen
es the properties of the numeri
al s
heme. Depending118 on the spe
i�
 physi
al appli
ation, a su

essful numeri
al dis
retisation using a linear119 representation should have the following properties: positivity, se
ond-order a

ura
y,120 
onservation, upwinding, well-balan
edness and 
omputational e�
ien
y. For a more121 thorough dis
ussion, see Hubbard (2008), Hubbard and Ri

hiuto (2011) or Sármány122 et al. (2012).123 3.1. Evaluation of the 
ell residual124 By 
hoosing the 
onservative variables U as the ones that vary linearly within ea
htriangle, it is not possible to 
ompute the �ux integral ∫
E
∇ · F (Uh) in a 
onservativemanner by using a single quadrature point. Instead, in order to a
hieve 
onservation, weapply Simpson's rule to the boundary integral

∫

∂E

F (Uh) · n ds =
∑

l∈E

|l|

6

(

F (U l
1) + 4F (1

2
U l

1 + 1
2
U l

2) + F (U l
2)
)

· nl,where nl is the outward-pointing unit ve
tor with length of the side l, while U l
1 and U l

2125 are the values of Uh at the endpoints of the side l. Note that this evaluation is su�
iently126 a

urate for linearly varying Uh.127 The evaluation of the sour
e-term integral ∫
E

S(Uh) is often motivated by the preser-vation of the balan
e properties. In the 
urrent study we take
∫

E

S(Uh) dx dy ≈

−
1

2
gd
∑

i∈E

[

0
bini

]

+ f
|E|

3

∑

i∈E

[

0
du⊥

i

]

−
1

ρ

|E|

3

∑

i∈E

[

0
τ i

]

+ γ
|E|

3

∑

i∈E

[

0
dui

]

, (10)where · denotes the arithmeti
 mean over the 
ell, ni is the outward-pointing normal128 ve
tor opposite node i with length of the edge opposite node i, |E| is the area of the129 triangle, and u⊥ = [−v, u]T . As the results in Sármány et al. (2012) show, the evaluation130 (10) ensures that the hydrostati
 balan
e is exa
tly preserved for many of the RD s
hemes.131 However, (10) does not, in general, satisfy the geostrophi
 balan
e exa
tly. To be able to132 do that on triangular meshes, a mixed formulation of one form or another is required, see133 for example Cotter et al. (2009).134 5



3.2. Distribution of the 
ell residual135 Out of the large number of numeri
al s
hemes that 
an be re
ast in the RD framework,136 we now des
ribe two linear s
hemes that satisfy the multidimensional upwinding and137 
onservation properties. Being linear, Godunov (1959) proved that these s
hemes 
annot138 be both positive and se
ond-order a

urate. When ne
essary, however, this property 
an139 be a
hieved by applying nonlinear blending on these two s
hemes. This 
an also be viewed140 as a form of limiting.141 To des
ribe these s
hemes, we �rst introdu
e the upwind parameter
Ki = −

1

2
A · ni,where A = A(U) and ni is, as before, the outward-pointing normal ve
tor opposite node142

i with length of the edge opposite node i. Assuming that Ki is diagonalisable, we have143
Ki =

(

RDR−1
)

i
, K−

i =
(

RD−R−1
)

i
,

K+
i =

(

RD+R−1
)

i
, N =

(

∑

i∈E

K+
i

)−1

,
(11)where D is the diagonal matrix with the eigenvalues of Ki, andR−1 andR are the matri
es144 that 
ontain the left and right eigenve
tors, respe
tively. Furthermore, D± = 1

2
(D ± |D|),145 where |D| denotes the absolute values of the entries. Then the s
hemes used in this work146 are as follows.147

• The LDA (low-di�usion A) s
heme of Roe (1987) (see also Ri

hiuto et al. (2005))148 is de�ned as149
ΦLDA

i = K+
i NΦE . (12)This is an upwind, 
onservative and se
ond-order a

urate s
heme, whi
h la
ks150 positivity and is therefore unsuitable for 
apturing dis
ontinuities in the solution.151

• The N (narrow) s
heme of Roe (1987) here is de�ned as in Sármány et al. (2012)152 so that the hydrostati
 balan
e is satis�ed exa
tly,153
ΦN

i,E = ΦLDA
i,E + K+

i N
∑

j∈E

K+
j (Vi − Vj) , (13)where V = [η, du, dv]T . This is a linear s
heme that is 
onservative and exhibits154 os
illation-free behaviour, but it is also rather di�usive, making it less attra
tive for155 the resolution of linear or weakly nonlinear waves.156

• The B (blended) s
heme is de�ned so that it 
ombines the N and LDA s
hemes157 through a nonlinear blending 
oe�
ient,158
ΦB

i,E = ΘΦN
i,E + (I − Θ)ΦLDA

i,E , (14)where I is the identity matrix and Θ is a diagonal matrix with the blending 
oe�-
ients in the diagonal. The blending 
oe�
ients determine how `well' the requiredproperties, espe
ially os
illation-free behaviour, are satis�ed. The approa
h adoptedin this arti
le is from Abgrall and Mezine (2003) and it 
onsists of: a) 
hoosing a6



parti
ular dire
tion ξ = (ξx, ξy); b) using the de
omposition A · ξ = RξDξR
−1
ξ to
ompute the `
hara
teristi
' residuals

ΦLDA
i = R−1

ξ ΦLDA
i , ΦN

i = R−1
ξ ΦN

i ;
) 
omputing the blending 
oe�
ients as in De
onin
k et al. (2000)159
Θ = diag

(
∣

∣

∑

i∈E ΦN
i

∣

∣

∑

i∈E |ΦN
i |

)

; (15)and, �nally, d) applying (14) on the 
hara
teristi
 residuals. The blended residual160 on the original variables 
an then be 
al
ulated as ΦB
i = RξΦ

B
i . Throughout this161 work, we make the typi
al 
hoi
e of setting ξ = u

|u|
for the 
ell distribution.162 3.3. Boundary 
onditions163 To impose the boundary 
ondition (8), we �rst need to de�ne the outward-pointingnormal nb

i for ea
h boundary node. This is given as
nb

i =

∣

∣nL
i

∣

∣+
∣

∣nR
i

∣

∣

|nL
i + nR

i |

nL
i + nR

i

2
,where nL

i and nR
i are the outward-pointing normals of the two boundary edges that
onne
t at nb

i . Note that this de�nition satis�es ∑i∈∂Ωh

∣

∣nb
i

∣

∣ = |∂Ωh|. To be able todetermine the in
oming part of the shallow-water spe
trum, we use a similar eigenvaluede
omposition as for the distribution of the 
ell residuals in the B s
heme,
Ab · ξ = RξDξR

−1
ξ , ξ = −

nb
i

∣

∣nb
i

∣

∣

,where Ab = A
(

Ub+Ui

2

). The �ux di�eren
e to be added to ea
h node residual at theboundary is then given as
[Φi]

+ = Rξ

(

sgnD+
ξ

)

R−1
ξ [Φi] , ∀i ∈ ∂Ωh,where sgnD+

ξ denotes the sign fun
tion applied to the entries of D+
ξ .164 The boundary values Ub are often imposed externally as predetermined values based165 on some assumptions, an exa
t solution or just provided by a previous fore
ast in a
tual166 simulations. Solid-wall boundary 
onditions u·n = 0 are imposed by the mirror prin
iple,167 so that db = dh, ub = uh − 2 (u · n)n. When the test 
ase requires a sponge � or168 absorbing � boundary 
ondition, whi
h is neither transmissive nor re�e
tive, we simply169 set the boundary 
ondition to be that of super
riti
al out�ow. This often a
ts as a very170 simple sponge boundary 
ondition thanks to the numeri
al di�usion that is already in the171 dis
retisation.172
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4. Spa
e-time dis
ontinuous residual distribution173 For the spa
e-time dis
ontinuous s
heme we 
onsider the full time-dependent system174
∂tU + ∇ · F (U) + S(U) = 0 or ∂tU + A(U) · ∇U + S(U) = 0 (16)with appropriate initial and boundary 
onditions. As in the steady 
ase, F (U) represents175 the �ux Ja
obian and A(U) = [Ax,Ay] = [∂Fx/∂U, ∂Fy/∂U ] = ∂F /∂U is the wave-speed176 tensor. The spa
e-time prism residual is then given as177

ΦEt
=

tn+1
∫

tn

∫

E

(∂tU + ∇ · F (U) + S(U)) dx dy dt (17)so that
Φt =

tn+1
∫

tn

∫

Ωh

(∂tU + ∇ · F (U) + S(U)) dx dy dt =
∑

E∈Ωh

ΦEtin every solution layer [tn, tn+1] × Ωh. The dis
retisation steps are now similar to the178 steady 
ase in Se
tion 3.179 1. In the 
omputational domain Ωh, repla
e the unknown U with an approximation Uh180 that is both linear in every (triangular) 
ell and linear in time. The dis
rete repre-181 sentation Uh is designed to be 
ontinuous in spa
e but allowed to be dis
ontinuous182 in time.183 2. Evaluate the dis
rete prism residual, using the trapezium rule in time, as
ΦEt

=

tn+1
∫

tn

∫

E

(∂tU + ∇ · F (U) + S(U)) dx dy dt

≈

∫

E

(

Un+1
h − Un

h

)

dx dy +
∆t

2





∫

∂E

F (Un) · n ds +

∫

∂E

F (Un+1) · nds





=

∫

E

(

Un+1
h − Un

h

)

dx dy +
∆t

2
(Φn

E + Φn+1
E ), (18)where n is the outward-pointing unit ve
tor normal to the edge. The residuals Φn

E184 and Φn+1
E are 
al
ulated pre
isely as in the steady 
ase des
ribed in Se
tion 3.1.185 3. Distribute the prism residual ΦEt

(18) to the six verti
es of the prism in a 
onser-186 vative manner. That is, the fra
tions of the residual sent to vertex i at time levels187
n and n + 1 are de�ned as188

ΦE
i,n = βE

i,nΦEt
and ΦE

i,n+1 = βE
i,n+1ΦEt

, (19)where βE
i,n and βE

i,n+1 are diagonal matri
es and ∑i∈E βE
i,n +

∑

i∈E βE
i,n+1 = I.189 8



4. At time level tn, add the 
ontribution from the time dis
ontinuity (see Hubbard and190 Ri

hiuto (2011) and Sármány et al. (2012)) as191
ΨE

i,n =
|E|

3
[Un

i ] , (20)where [·] denotes the jump a
ross the time dis
ontinuity. For the �rst time step,192 the initial 
ondition is used as the value from the `previous time step', i.e. [U0
i ] =193

U0
i − Ui(0), where U0

i is the numeri
al value and Ui(0) is the initial 
ondition.194 5. Impose the boundary 
ondition by adding a �ux di�eren
e to ea
h boundary node195 at both time levels tn and tn+1, so that196
Φn

i =
∆t

2
[Φn

i ]+ +
∑

E∈Di

(

ΦE
i,n + ΨE

i,n

)

, ∀i ∈ ∂Ωh,

Φn+1
i =

∆t

2

[

Φn+1
i

]+
+
∑

E∈Di

ΦE
i,n+1, ∀i ∈ ∂Ωh,

(21)where the �ux di�eren
es through the boundary are 
al
ulated exa
tly as in the197 steady-state 
ase, 
f. (8).198 6. Solve the algebrai
 system199
Φn

i = 0, Φn+1
i = 0, ∀i ∈ Ωh (22)at ea
h time step.200 Remark. As a 
onsequen
e of the dis
ontinuous representation in time, there is nostability restri
tion on the time step ∆t in the 
urrent formulation. This 
ontrasts withthe fully 
ontinuous s
heme, where the 
ondition

max diagDi,n ≤ 0, ∀i ∈ E ⊂ Ωhneeds to be satis�ed as shown in De
onin
k and Ri

hiuto (2007). In the dis
ontinuous201 
ase, the 
hoi
e of ∆t is driven solely by 
onsiderations about a

ura
y and performan
e202 of the algebrai
 solver. An extensive study into the role of the size of ∆t is 
arried out for203 the non-rotating shallow-water system in Sármány et al. (2012). Our 
hoi
e of the time204 step � whi
h is twi
e as large as the maximum that the above formula would allow for205 the 
ontinuous 
ase � is based on those results.206 4.1. Distribution of the prism residual207 For spa
e-time prisms, the in�ow parameters used for the prism distribution are de�ned208 as209
Ki,n = −

∆t

4
A · ni −

|E|

3
I,

Ki,n+1 = −
∆t

4
A · ni +

|E|

3
I,

(23)where I is the identity matrix and A represents a prism-averaged state of the �ux Ja
obian210
A. Assuming that the in�ow matri
es in (23) are diagonalisable just as they are in the211 9



steady 
ase, we 
an introdu
e the remaining in�ow spa
e-time parameters (
f. (11)),212
K+

i,n =
(

RD+R−1
)

i,n
, K+

i,n+1 =
(

RD+R−1
)

i,n+1
,

K−
i,n =

(

RD−R−1
)

i,n
, K−

i,n+1 =
(

RD−R−1
)

i,n+1
,

Nt =

(

∑

i∈E

K+
i,n +

∑

i∈E

K+
i,n+1

)−1

.

(24)These are used to de�ne the upwind spa
e-time RD s
hemes similarly to the steady 
ase.213
• The spa
e-time LDA (STLDA) s
heme is de�ned as214

(

ΦE
i,n

)LDA
= K+

i,nNtΦEt
,

(

ΦE
i,n+1

)LDA
= K+

i,n+1NtΦEt
. (25)

• The spa
e-time N (STN) s
heme is again de�ned as in Sármány et al. (2012) so that215 it preserves the hydrostati
 balan
e exa
tly,216
(

ΦE
i,n

)N
=
(

ΦE
i,n

)LDA

+ K+
i,nNt

∑

j∈E

K+
j,n

(

V n
i − V n

j

)

+ K+
i,nNt

∑

j∈E

K+
j,n+1

(

V n+1
i − V n+1

j

)

,

(

ΦE
i,n+1

)N
=
(

ΦE
i,n+1

)LDA

+ K+
i,n+1Nt

∑

j∈E

K+
j,n

(

V n
i − V n

j

)

+ K+
i,n+1Nt

∑

j∈E

K+
j,n+1

(

V n+1
i − V n+1

j

)

.

(26)
• The spa
e-time blended (STB) s
heme is now de�ned as a nonlinear interpolation217 between the STLDA and the STN s
hemes,218

(

ΦE
i,n

)B
= Θ

(

ΦE
i,n

)N
+ (I − Θ)

(

ΦE
i,n

)LDA
,

(

ΦE
i,n+1

)B
= Θ

(

ΦE
i,n+1

)N
+ (I − Θ)

(

ΦE
i,n+1

)LDA
.

(27)The blending is now 
arried out on the 
hara
teristi
 spa
e-time residuals
ΦN

i,n = R−1
ξ ΦN

i,n, ΦN
i,n+1 = R−1

ξ ΦN
i,n+1, ΦLDA

i,n = R−1
ξ ΦLDA

i,n , ΦLDA
i,n+1 = R−1

ξ ΦLDA
i,n+1,with the blending parameter 
omputed as219

Θ = diag

(
∣

∣

∑

i∈E ΦN
i,n +

∑

i∈E ΦN
i,n+1

∣

∣

∑

i∈E

∣

∣ΦN
i,n

∣

∣+
∑

i∈E

∣

∣ΦN
i,n+1

∣

∣

)

, (28)where we have dropped the supers
ript `E' to avoid 
lutter. Finally, we 
al
ulate220 the blended residuals based on the original variables by ΦB
i,n = RξΦ

B
i,n and ΦB

i,n+1 =221
RξΦ

B
i,n+1.222 4.2. Boundary 
onditions223 The imposition of the boundary 
onditions for the spa
e-time s
heme is pre
isely asdes
ribed in Se
tion 3.3, i.e. the pointwise �ux di�eren
es [Φn

i ]+ and [Φn+1
i

]+ in (21) are
omputed by using the de
omposition
Ab · ξ = RξDξR

−1
ξ , ξ = −

nb
i

∣

∣nb
i

∣

∣

,where Ab = A

(

Un
b

+Un
i

2

) for [Φn
i ]+ and Ab = A

(

Un+1

b
+Un+1

i

2

) for [Φn+1
i

]+.224 10



5. Implementation details225 For both steady-state and spa
e-time 
omputations, a nonlinear algebrai
 system of226 equations has to be solved. In the steady 
ase, the system (9) needs to be solved only227 on
e, while for spa
e-time simulations, the solution of the system (22) is required at ea
h228 time step.229 A simple expli
it pseudo-time-stepping algorithm is used in both 
ases. For the steady-230 state s
heme, this is given as231
Um+1

i = Um
i −

τ

si

Φm
i , ∀i ∈ Ωh, (29)where si is the volume of the spatial dual 
ell and τ is the pseudo-time step. It is 
omputed232 as233

τ = 0.9 min
i

si
∑

E∈Di
̺(K+

i )
, ̺(K+

i ) = max diagD+
i , (30)with ̺(M) denoting the spe
tral radius of a given matrixM. Similarly, for the spa
e-time234 
omputations the pseudo-time stepping takes the form235

(

Un
i

Un+1
i

)m+1

=

(

Un
i

Un+1
i

)m

−
τ

st
i

(

Φn
i

Φn+1
i

)m

, ∀i ∈ Ωh, (31)where st
i = ∆tsi is the volume of the dual spa
e-time prism. The pseudo-time step τ is236 now 
al
ulated as237

τ = 0.9 min
i

st
i

∑

E∈Di
̺(K+

i,n+1)
, ̺(K+

i,n+1) = max diagD+
i,n+1, (32)where, as before, K+

i,n+1 andD+
i,n+1 are asso
iated with the prism-averaged state as opposed238 to the 
ell-averaged one in (30).239 Similarly to other iterative methods, it is often possible to solve the above algebrai
systems up to ma
hine pre
ision. Nevertheless, a mu
h less a

urate solution is su�
ientas long as the properties of the numeri
al s
heme are not 
ompromised. Consequently,for the steady-state problem in Se
tion 6.4, we use the stopping 
riterion

rel_tol =
‖Ψm‖1

‖Ψ 0‖1
< 10−8 with Ψm =

{

τ

si

Φm
i

}

i∈Ωh

, ∀m.In spa
e-time 
al
ulations, su
h a

ura
y is not ne
essary be
ause of a good initial guessfrom the previous time step. For these test problems, we set the stopping 
riterion to
rel_tol =

‖ (Ψn, Ψn+1)
T

m ‖1

‖ (Ψn, Ψn+1)T

0 ‖1

< 10−3with
(

Ψn

Ψn+1

)m

=

{

τ

st
i

(

Φn
i

Φn+1
i

)m}

i∈Ωh

, ∀m.
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5.1. E�
ien
y 
onsiderations240 The above-des
ribed pseudo-time-stepping algorithms are solely a means of solving the241 systems of nonlinear algebrai
 equations (9) and (22), so they do not need to be a

urate242 in (pseudo-)time. The size of the pseudo-time step τ is determined by the stability243 
ondition of the expli
it Euler s
heme and therefore the pseudo-CFL has to be smaller244 than one (hen
e our 
hoi
e of 0.9). It would be possible to use other iterative methods245 � su
h as the Newton method � to solve the nonlinear algebrai
 systems. However, we246 prefer pseudo-time stepping for invis
id �ows mainly be
ause it is lo
al, it avoids the247 need for assembling and solving a global system, and it is not sensitive to the initial248 guess. Its lo
ality, in parti
ular, means that the implementation on parallel ar
hite
tures249 is relatively straightforward and it s
ales well. Ea
h unknown is only 
onne
ted to its250 nearest neighbours in spa
e-time and that 
onne
tivity does not depend on the size of the251 time step ∆t.252 Its main drawba
k, however, is that the number of pseudo-time iterations required253 to rea
h the stopping 
riterion of 10−3 is large. For all time-dependent numeri
al tests254 
onsidered here, that number falls in the region of 20 to 40. Although it is sometimes255 possible to take a larger stopping 
riterion, the value 10−3 is typi
ally ne
essary for having256 negligible e�e
t on the a

ura
y of the time-dependent approximation. This requirement257 is generally independent of the a
tual test 
ase.258 6. Numeri
al results259 In this se
tion, we present a range of test 
ases to validate the performan
e of the RD260 s
heme applied to the rotating shallow-water equations. We solve the nonlinear system261 (1) for all the numeri
al simulations, but the exa
t solutions � when available � are derived262 through analyti
al approximations.263 6.1. Equatorial Kelvin wave264 This problem des
ribes a wave travelling eastwards in equatorial regions. If the265 shallow-water system is linearised around a 
onstant state of the primitive variables, an266 analyti
al solution 
an be obtained. We use an analyti
al solution of the nondimensional267 equations, taken from Eskilsson and Sherwin (2004) and Giraldo and Warburton (2008).268 It is given as269
d(x, y, t) = 1 + A exp

(

−
1

2
y2

)

exp

(

−
1

2
(x + 5 − t)2

)

,

u(x, y, t) = A exp

(

−
1

2
y2

)

exp

(

−
1

2
(x + 5 − t)2

)

,

v(x, y, t) = 0,

(33)where A is the amplitude of the wave, f0 = 0, β = 1, g = 1, b(x, y) ≡ 0, γ = 0, τ ≡ 0270 and Ω = [−10, 10] × [−5, 5]. Sin
e we dis
retise the nonlinear equations, this analyti
al271 solution 
an only be used to assess the 
onvergen
e of the numeri
al s
heme as long as the272 error asso
iated with the numeri
al dis
retisation is mu
h larger than the error asso
iated273 with the linearisation to obtain (33). This is typi
ally the 
ase if the amplitude is small.274 So in order to 
he
k grid 
onvergen
e for the numeri
al s
heme we set A = 10−4 and275 12



A = 10−3, and integrate until T = 10 with initial 
ondition given by (33) with t = 0. We276 use a sequen
e of four meshes with 
hara
teristi
 edge lengths of 1, 1
2
, 1

4
and 1

8
. Figure 1277 shows grid-
onvergen
e rates for the STLDA and the STB s
hemes. The left plot 
on�rms278 se
ond-order 
onvergen
e for the STLDA s
heme and slightly suboptimal 
onvergen
e for279 the STB s
heme, whi
h tallies with existing results for both s
hemes when the solution is280 smooth, see Hubbard and Ri

hiuto (2011) and Sármány et al. (2012). By 
omparison,281 the right plot shows that with A = 10−3 the 
onvergen
e rate, while maintained on 
oarser282 meshes, drops for the �nest mesh when the STLDA s
heme is used. This is be
ause at this283 level the numeri
al error be
omes 
omparable to that asso
iated with the linearisation.284 The STB formulation does not exhibit this for any of the meshes used sin
e it is less285 a

urate overall.286

10
0

10
−4

10
−3

10
−2

10
−1

A = 1e−4

|| 
d

 −
 d

ex
 ||

2
 /

 A

h

 

 

STLDA

Slope 2

STB

Slope 1.75

10
0

10
−4

10
−3

10
−2

10
−1

A = 1e−3

|| 
d

 −
 d

ex
 ||

2
 /

 A

h

 

 

STLDA

Slope 2

STB

Slope 1.75Figure 1: Equatorial Kelvin wave. Grid-
onvergen
e study of the error between the linear analyti
al andthe nonlinear numeri
al solution for amplitudes 10−4 and 10−3.Based on these 
onvergen
e results, we 
an infer that the STLDA and the STB s
hemes287 on the �nest mesh approximate the equations with the respe
tive a

ura
ies of ‖dh −288
dex‖2/A ≈ 10−3.5 and ‖dh−dex‖2/A ≈ 10−2.8 independently of the amplitude. In Figure 2,289 we plot the nonlinear numeri
al results for A = 10−4, A = 10−3, A = 10−2, A = 10−1290 and 
ompare them to the linear analyti
al results. They show that the `visible' e�e
ts of291 nonlinearity begin to appear for A = 10−2 and be
ome obvious for A = 10−1. The results292 of the STLDA and STB s
hemes look qualitatively identi
al so we only present the results293 obtained with the STLDA method.294 6.2. Equatorial nonlinear Rossby soliton295 This example is an equatorial trapped nonlinear wave travelling westwards. The exa
tsolution is not known but an analyti
al approximation 
an be derived through the methodof multiple s
ales as shown in Boyd (1985). For the primitive variables, this is given as

d(x, y, t) = d(0) + d(1)

u(x, y, t) = u(0) + u(1)

v(x, y, t) = v(0) + v(1),13



where the supers
ripts (0) and (1) denote the zeroth-order and the �rst-order wave modein the analyti
al solution, respe
tively. These are given as
d(0) = 1 +

1

4
(6y2 + 3)κe−

y2

2

u(0) =
1

4
(6y2 − 9)κe−

y2

2

v(0) = 2y
∂κ

∂ζ
e−

y2

2and
d(1) =

9

16
C1(2y

2 − 5)κe−
y2

2 + κ2d̃(y)

u(1) =
9

16
C1(2y

2 + 3)κe−
y2

2 + κ2ũ(y)

v(1) = κ
∂κ

∂ζ
ṽ(y),where κ(ζ) = A cosh−2(Bζ), ζ = x−Ct, B = 0.394, A = 0.771B2, C = C0 +C1, C0 = −1

3and C1 = −0.395B2. The variable κ is the solution to the Korteweg�de Vries (KdV)equation, whi
h des
ribes the behaviour of solitons. As shown in Boyd (1980), under
ertain 
onditions the shallow-water equations redu
e to the KdV equation by using themethod of multiple s
ales. The tilde terms above are 
omputed as




d̃(y)
ũ(y)
ṽ(y)



 = e−
y2

2

∞
∑

n=0





d̂(y)
û(y)
v̂(y)



Hn(y) ≈ e−
y2

2

26
∑

n=0





d̂(y)
û(y)
v̂(y)



Hn(y),where Hn(y) are the Hermite polynomials and d̂(y), û(y), v̂(y) are the unnormalised296 Hermite 
oe�
ients given originally in Boyd (1985) but also to be found in Eskilsson and297 Sherwin (2004). The trun
ation of the series at n = 26 is exa
t in a 
omputational sense298 be
ause the resulting error is well below ma
hine pre
ision.299 The numeri
al simulations are 
arried out in the domain Ω = [−24, 24]× [−8, 8] until300 �nal time T = 40. Solid-wall 
onditions are used at the top and bottom parts of the301 boundary while 
hara
teristi
 in�ow/out�ow 
onditions are imposed at the left and right302 parts of the boundary. As in the 
ase of the Kelvin wave, the parameters are set as f0 = 0,303
β = 1, g = 1, b(x, y) ≡ 0, γ = 0 and τ ≡ 0.304 Sin
e the analyti
al solution is only a �rst-mode approximation, it 
annot be used to305 assess grid 
onvergen
e � not even in the way we do it for the equatorial Kelvin wave.306 Nevertheless, it is worth 
omparing the numeri
al phase speed with that of the analyti
al307 solution as well as 
he
king whether the numeri
al solution 
aptures the main features of308 the soliton.309 Figures 3 and 4 show numeri
al solutions 
omputed with the STLDA and STB s
hemes310 on a mesh with 113830 triangles. The analyti
al solution yields a peak of 1.162 at (x, y) =311
(−15.77, 1.23). Both the STLDA and the STB s
hemes 
apture the phase speed quite312 a

urately. The general shape of the wave is also preserved, although both s
hemes emit313 low-amplitude gravity waves. This is a feature that is in part the result of a non-exa
t314 initial 
ondition and in part asso
iated with many higher-order numeri
al s
hemes, see315 14



Eskilsson and Sherwin (2004) and Giraldo and Warburton (2008). Overall, we observe316 little qualitative di�eren
e between the solutions obtained by the two s
hemes.317 6.3. Nonlinear adjustment of a front318 This example des
ribes the evolution of a pressure dis
ontinuity over an es
arpment,similar to the one in Bou
hut et al. (2008). The 
omputational domain is Ω = [−30, 10]2,the bottom topography is de�ned as
b(x, y) =











0.5 if y ≤ −2.5,

0.1(2.5 − y) if − 2.5 < y < 2.5,

0 if y ≥ 2.5,and the initial 
ondition is given by
u0 = 0, d0(x, y) =

{

1.1 if x < 0,

1 if otherwise.This problem is also solved as the nondimensionalised system but using the f0-plane319 approximation rather than the β-plane one. The parameters are thus de�ned as f0 = 1,320
β = 0, g = 1, γ = 0 and τ = 0. Still-water boundary 
onditions are imposed by means of321 
hara
teristi
s at the left and right boundaries, while absorbing boundary 
onditions are322 used for the top and bottom boundaries to indi
ate middle-of-the-o
ean situations.323 Sin
e the initial 
ondition 
ontains a dis
ontinuity, we use the STB s
heme to eliminate324 unphysi
al os
illations around the dis
ontinuity. Figures 5 and 6 show 
ontour and sli
e325 plots, respe
tively, at six di�erent times. The results show that the expe
ted behaviour326 after the initial dis
ontinuity is 
aptured, see Bou
hut et al. (2008). First, fast inertia-327 gravity waves are emitted from the area of the dis
ontinuity and they leave the domain328 at di�erent speeds be
ause of the varying bottom topography. Se
ond, a jet forms along329 the initial dis
ontinuity. Third, a trapped topographi
 Rossby wave develops around330 the interse
tion of the initial dis
ontinuity and the es
arpment. Sin
e f > 0 (northern331 hemisphere), it travels su
h that the shallower water is on the right. Last, a pa
ket of332 short waves is also 
reated that travels in the opposite dire
tion to the wave tongue.333 6.4. Nonlinear Stommel problem334 This is the only steady-state problem that we 
onsider in this work. It des
ribes a335 situation when the wind stress, bottom fri
tion, Coriolis for
e and the nonlinear adve
tive336 term are in balan
e. In this 
ase, we solve the dimensional system (1) in the domain337
Ω = [0, 106]2 with parameters f0 = 10−4, β = 10−11, g = 9.80665, γ = 10−6, τ =338
0.2 [cos(πy), 0]T , b(x, y) ≡ 0. The initial 
ondition is that of a still lake [η, du, dv]T =339
[d, du, dv]T = [1000, 0, 0]T , while the boundary 
onditions are solid wall everywhere.340 Sin
e the solution of this problem is smooth and the nonlinearity is weak, we only341 
onsider the STLDA s
heme. The results in Figure 7 show an a

umulation of water at342 the northwesterly part of the domain � in line with observations of o
eani
 
urrents and343 with re
ent numeri
al results obtained by the DG method, see for example Giraldo and344 Warburton (2008), Comblen et al. (2010) and Es
obar-Vargas et al. (2012).345 15



7. Con
luding remarks and outlook346 This arti
le has introdu
ed the framework of residual distribution (RD) to shallow-347 water o
ean modelling. While the method has a relatively long history in 
omputational348 �uid dynami
s, this is � to our knowledge � the �rst time it has been su

essfully applied349 to the rotating shallow-water equations. It shares many similarities with other numeri
al350 methods suitable for unstru
tured triangular meshes, su
h as �nite volumes or �nite351 elements. It has, however, signi�
ant advantages over those methods in situations when352 both nonlinear dynami
s and the preservation of 
ertain balan
e properties are important.353 The formulation presented here preserves only the hydrostati
 balan
e exa
tly (over any354 shape of topography) but not the geostrophi
 balan
e be
ause all unknown �elds are355 stored at the verti
es of the triangles. However, the upwinding 
hara
ter of the s
heme,356 together with the fa
t that there are the same number of (ve
tor-valued) unknowns for357 the velo
ity �eld as (s
alar-valued) unknowns for the water height, suggests that the358 s
heme is expe
ted to be free of both spurious pressure and inertial modes. We have,359 indeed, dete
ted no su
h spurious modes in the spa
e-time simulations, but a Fourier360 analysis into the spe
tral properties of the linearised shallow-water equations remains to361 be 
ondu
ted.362 The main drawba
k of the proposed spa
e-time RD formulation is that it is 
omputa-363 tionally relatively expensive. Although it is shown in Sármány et al. (2012) to outperform364 other impli
it RD s
hemes, it is generally still more 
omputationally intensive than most365 expli
it approa
hes. Future resear
h e�orts will 
on
entrate on in
luding a moving-mesh366 algorithm that both redu
es the number of pseudo-time iterations in the algebrai
 solver367 and the number of total degrees of freedom required to a
hieve the same quality of the368 solution.369 Referen
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(d) A = 10−1Figure 2: Equatorial Kelvin wave. Water-height 
ontours and sli
e plots along the line y = 0 for fourdi�erent amplitudes, obtained by the STLDA s
heme.19
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(a) STLDA: dmax = 1.165 at (x, y) = (−15.66, 1.30)
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(b) STB: dmax = 1.156 at (x, y) = (−15.34,−1.25)Figure 3: Equatorial Rossby soliton. Contours and three-dimensional plots of the level of free surfa
e forthe STLDA (top) and STB (bottom) s
hemes.
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Figure 5: Nonlinear front adjustment. Eleven equidistant 
ontours between 0.95 and 1.15 obtained bythe STB s
heme.
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