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Abstract. This paper is concerned with the design of a new approach to
numerical simulation of time-dependent hyperbolic PDEs within the resid-
ual distribution framework. The underlying representation of the solution is

discontinuous-in-space which introduces extra flexibility into the design of new
schemes. This is mainly due to edge-based residuals, which are necessary to
impose communication between the cells and which are in addition to their
cell-based counterparts. We show how to construct a scheme free of spurious

oscillations and present numerical results for 2d scalar nonlinear equations on
unstructured triangular grids to validate the method. The proposed frame-
work leads to explicit time-stepping which is a promising alternative to more

frequently applied implicit approaches.

1. Introduction

In this paper we consider a class of new numerical schemes for scalar hyperbolic
conservation laws governing the evolution of an unknown quantity u(x, t), given by

(1.1) ∂tu + ∇ · f(u) = 0 in Ω × [0, T ],

where Ω is a closed subset of R
2 and f is the flux of u. Equation (1.1) is equipped

with appropriate boundary conditions and the initial conditions:

u(x, 0) = u0(x).

The framework we shall design our schemes in is that of Residual Distribution
(RD). Extension of the work presented here to systems, although possible with the
aid of well-understood methods like the one in [12], is beyond the scope of this
paper and will not be considered here.

Since their inception in [15], RD methods have proven to be reliable and accu-
rate ways of discretizing hyperbolic equations. Their ability to carry out genuinely
multidimensional upwinding enables them to capture more accurately the properties
of the underlying physical problem which are incorporated within the mathemati-
cal model. This, at least in theory [10], means that they are capable of producing
solutions of higher resolution then those produced by other known algorithms. For
promising experimental observations on this matter see [13]. It was also demon-
strated (see, for instance, [4] and [5]) that residual distribution methods are very
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robust and perform well when applied to complex problems arising in engineering
and other applications.

In the case of steady state problems, at least for scalar equations, the RD
framework has already reached a high level of sophistication and understanding
(this was summarized in [3]). Even though further research is still being carried
out, the emphasis is now mainly laid on the development of residual distribution
methods for time-dependent problems. The main challenge is to design a scheme
which retains all the properties of its steady counterpart(s), in particular positivity
and linearity preservation [11] at the same time, and which is relatively efficient.

The space-time framework investigated in [8] (see also [11] and references
therein) allows construction of discretizations with all the desired properties. Un-
fortunately, those methods are subject to a CFL-type restriction on the time-step,
which is particularly disappointing when taking into account that they are, by con-
struction, implicit. In the two layer variant [9] one couples two space-time slabs at
a time and solves the equations simultaneously in both. On one hand the result-
ing system to be solved at each step is larger, but on the other the construction
removes from one of the layers the restriction on the time-step. In theory this
means that an arbitrarily large time-step can be used. For a full discussion see [8].
Recently, Hubbard and Ricchiuto [1] proposed to drive the height of one of the
space-time slabs (and hence its associated time-step) to zero so that the scheme be-
comes discontinuous-in-time. The resulting formulation is simpler than the original
whereas all of the properties are retained.

In this contribution we investigate a somewhat similar in spirit approach. We
also assume that the discrete representation of the data is discontinuous, however
we will consider discontinuities in space instead of time. Such an approach will
enable us to construct explicit schemes with a localised system and a simple frame-
work within which h− and p− adaptivity can be incorporated. This work extends
previous work on discontinuous residual distribution schemes initiated by Hubbard
[14] and Abgrall [2] in which only steady state problems were considered. We first
apply those schemes to time-dependent equations and then show how to design
positive schemes. Only first order methods will be considered. This paper also
extends work of Abgrall and Shu [6] in the sense that it shows how ideas from
the discontinuous Galerkin framework can be incorporated within residual distri-
bution methods. This is, briefly speaking, done by considering flux differences (edge
residuals in the RD nomenclature) instead of the fluxes themselves.

This paper is organised as follows. In the next section the residual distribution
and discontinuous residual distribution methods are presented. A quick overview
of available distribution strategies for the edges is given and one new distribution
method (based on the discontinuous Galerkin method) is then introduced. Next,
in Section 4, we present discontinuous-in-space residual distribution methods for
time-dependent problems. This is followed by numerical results and conclusions.

2. Continuous Residual Distribution Schemes for Steady State

Problems

The residual distribution framework (both in the continuous and discontinuous
setting) was originally introduced for steady state problems:

(2.1) ∇ · f(u) = 0 or a(u) · ∇u = 0 in Ω,
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in which a(u) = ∂f

∂u
. Throughout the text we will assume that a triangulation of

Ω is given and will denote it by Th (h being the mesh parameter). The numerical
solution uh is assumed to be of the same form as in the case of finite-element-type
approximations, i.e. given its nodal values ui = uh(xi)(xi ∈ Th), it reads

(2.2) uh(x) =
∑

i∈Th

ψi(x)ui,

in which ψi is the standard Lagrange basis function associated with xi. Cell inter-
faces will be denoted by e and Di will stand for the subset of triangles containing
node i. The median dual cell, obtained by joining the gravity centres of triangles in
Di with the midpoints of the edges meeting at i, will be denoted by Si (illustrated
in Figure 1).

To construct a set of linear equations for the nodal values of uh one first, for
each cell E ∈ Th, calculates the cell residual

φE =

∫

E

∇ · f(u) dΩ.

Next, fractions of this residual are distributed among the vertices of E so that the
resulting linear system reads:

(2.3)
∑

E∈Di

βiφ
E = 0 ∀i.

The distribution coefficients βi signify the fraction of the cell residual that is as-
signed to the node i and are used to impose various properties of the scheme.

Here we will consider only the N (for Narrow) scheme [3] - the most successful
linear positive distribution strategy. In order to introduce it, for each vertex i ∈ E,
we define the so-called flow sensors:

ki = −
a(u) · ~ni

2
|ei|, k+

i = max(0, ki), k−

i = min(0, ki),

in which ~ni is the outward pointing unit normal vector to edge ei (opposite the ith
vertex). We will also need the following quantities:

N =





∑

j∈E

k+
j





−1

, uin = −
∑

j∈E

Nk−

j uj .

Finally, the distribution itself reads:

(2.4) βiφ
E = k+

i (ui − uin).

In practice, system (2.3) is solved with the aid of pseudo time-stepping:

un+1
i = un

i −
∆t

|Si|

∑

E∈Di

βiφ
E ∀i,

which is used to iterate to the steady state.

3. Discontinuous Residual Distribution Schemes For Steady State

Problems

Discontinuous-in-space residual distribution schemes were introduced simulta-
neously by Abgrall [2] (based on a report written in French in 2007) and Hubbard
[14]. In this framework the numerical solution is no longer assumed to be globally
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continuous which means that, at least in each cell E ∈ Th, its discrete representation
remains unchanged (cf. Equation (2.2)):

∀x ∈ E uh(x) =
∑

i∈Th

ψi(x)ui.

Relaxing the continuity constraint means that one needs to impose some sort of
communication between the cells. In both cases the authors suggest using the edge
residuals:

φe =

∫

e

[f(uh) · ~n] dΓ

where [f(uh) · ~n] represents the jump of the function f(uh) · ~n across the edge, the
sign of the difference being dictated by the direction chosen for ~n. To be more
precise

φe(uh) =

∫

e

[f(uh) · ~n] dΓ =

∫

e

(fL · ~nL + fR · ~nR) dΓ

=

∫

e

(fL − fR) · ~nL dΓ =

∫

e

(fR − fL) · ~nR dΓ,

where the subscripts L and R mean that we take the value of a quantity in EL and
ER respectively, the cells associated with e (see Figure 1). Obviously φe is zero if

Di Si

i edge e

cell EL

nL nR

1

4 3

2

cell ER

Figure 1. Edge e and the two cells associated with it: EL and ER.

uh is assumed to be globally continuous. As in the case of cell residuals, fractions of
φe are sent to the vertices of e. Similar to continuous residual distribution, to find
the numerical solution uh one first assembles signals sent to each degree of freedom
i and then solves the resulting linear system with the aid of pseudo time-stepping:

(3.1) un+1
i = un

i −
3∆t

|E|

(

βE
i φE + αe1

i φe1 + αe2

i φe2

)

∀i.

In analogy to the cell residual, αe1

i and αe2

i are the distribution coefficients for the
degree of freedom i ∈ E corresponding to the edges e1 ∈ E and e2 ∈ E, respectively,
adjacent to vertex i. Note that in the discontinuous setting each degree of freedom
belongs to only one cell and two of its edges.

As far as cell residuals are concerned we will utilize only the aforementioned N
scheme (2.4). It is the distribution strategy for the edges that is the main novelty
within the discontinuous framework and we shall look into it in more detail. We
point out that it gives us extra freedom in the design of new schemes compared to
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the continuous case where only the cell distribution can be altered. Three natural
choices that will be applied in this work are as follows.

The mED scheme of Hubbard [14] is linear, positive and linearity preserving.
For a generic edge e and its vertices 1, 2, 3 and 4 (see Figure 1) it is given by

φe
1 =

1

2
[a12 · ~n]

−
(u1 − u2) = α1 φe,

φe
2 =

1

2
[a12 · ~n]

+
(u1 − u2) = α2 φe,

φe
3 =

1

2
[a43 · ~n]

+
(u4 − u3) = α3 φe,

φe
4 =

1

2
[a43 · ~n]

−
(u4 − u3) = α4 φe.

The aij are conservatively averaged values of the flux Jacobian defined as:

a12 =
1

3

(

a1 + a2 +
a3 + a4

2

)

, a43 =
1

3

(

a3 + a4 +
a1 + a2

2

)

in which ai (i = 1, . . . , 4) are the values of a at the vertices of e and ~n = |e|~nR.
The (local) Lax-Friedrichs distribution for edges was proposed by Abgrall

in [2] and is based on its counterpart for cells. It is defined as

αi φe =
φe

4
+ αe(ui − ū), i = 1, . . . , 4,

with

ū =
u1 + u2 + u3 + u4

4
,

where u1, u2, u3.u4 are the values of uh at the vertices of e (cf. Figure 1) and

αe ≥ max
x∈e

‖f ′(uh(x))‖.

It is also positive and linear, but not linearity preserving.
The DG distribution is simply the edge integral appearing in the strong

formulation of the discontinuous Galerkin approximation of (2.1) (see [7] for a
review of discontinuous Galerkin methods):

αDG
1 φe =

∫

e

(f∗ − f) (uh) · ~nL ψEL

1 dΓ,

αDG
2 φe =

∫

e

(f∗ − f) (uh) · ~nR ψER

2 dΓ,

αDG
3 φe =

∫

e

(f∗ − f) (uh) · ~nR ψER

3 dΓ,

αDG
4 φe =

∫

e

(f∗ − f) (uh) · ~nL ψEL

4 dΓ,

in which the numerical flux f∗ is defined as usual and ψE
i is the Lagrange basis

function in cell E associated with edge vertex i. Now, since ~nR = −~nL it follows
immediately that:

∑

i∈e

αDG
i = 1

which makes the above a valid distribution. It has yet to be tested on steady state
problems, but in this paper we concentrate on transient problems and will not
address that.
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4. Discontinuous Residual Distribution Schemes for Transient

Problems

To the authors’ best knowledge there have been no (successful) attempts to
apply discontinuous residual distribution methods to time-dependent problems. We
start by assuming that the temporal domain [0, T ] is discretized into a set of N
discrete levels {tn}n=0,1...,N−1 such that

t0 = 0, tN−1 = T, tn < tn+1 and ∆tn = tn+1 − tn.

Given an appropriate initial condition u0(x), the method has the following form:

(4.1) un+1
i = un

i −
3∆tn

|E|

(

βiφ
E(un

h) + αi φe1(un
h) + αi φe2(un

h)
)

∀E ∈ Th ∀i ∈ E

in which un
h = uh(x, tn) is the known numerical solution at time tn. The numerical

solution uh(x, 0) is taken as the interpolation of the analytical initial condition u0.
The above is simply (3.1) applied to time-dependent problems which means that
now ∆t has physical meaning. The limit on the time-step guaranteeing positivity
is given by (cf. Equation (40) in [14]):

∆t ≤
|E|/3

(kE
i )+ + (ke1

i )+ + (ke2

i )+
∀E ∈ Th ∀i ∈ E,

in which cell E and edges e1 and e2 are the only ones i receives signals from.
We note that, since the time derivative was discretized with the aid of a first

order approximation, the overall order of the approximation error should be ex-
pected to be no higher than one. Extension to higher order schemes is a subject of
ongoing work.

5. Numerical Results

The two dimensional inviscid Burgers’ equation,

∂tu + ∇ · f(u) = 0 in Ω × [0, T ],

with f =
(

u2

2
, u2

2

)

is approximated over the square Ω = [−1, 1]2 with the discon-

tinuous initial condition:

u(x, 0) =

{

1 if x ∈ (−0.5, 0) × (−0.5, 0),

0 otherwise.

The problem is solved up to the final time T = 1. In all the experiments the N
scheme was used to distribute the cell residuals and the three methods outlined in
Section 3 were applied to the edges. In Figure 2 we present cross sections of the
solutions and in Table 1 we show the corresponding minimal and maximal values.

The results show that both mED and LF lead to numerical approximations
free of unphysical oscillations whereas the solution obtained with the aid of the
DG-type approach exhibits some overshoots. This was expected as both mED and
LF distributions were designed so that the resulting scheme is positive and in the
case of discontinuous Galerkin methods extra limiting is usually applied to achieve
similar results. We also note that the LF method is very diffusive and of all the
considered approaches the mED algorithm performed the best.
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Figure 2. Solution along the line y = 0.3 and the symmetry line
y = x for the 2d Burgers’ equation at time t = 1. Top left: the
exact solution. Top right: N + mED. Bottom left: N + LF. Bottom
right: N + DG.

exact N + mED N + LF N + DG

umin 0 0 0 -1.026e-01
umax 1 8.833e-01 5.567e-01 9.319e-01

Table 1. Mininum and maximum values of the exact and numer-
ical solution to the 2d Burgers’ equation at time t = 1.

6. Conclusions

We proposed a new class of numerical approximations to time-dependent hy-
perbolic conservation laws. This new formulation was successfully applied to the
inviscid Burgers’ equation and three different methods for distributing the edge
residuals were compared. The numerical results confirmed that as long as the cell
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and edge residuals are distributed in a positive manner the resulting method is
positive. All the presented schemes are first order accurate.

Our future work will be focused on the design of second order schemes. This can
be achieved by, for instance, applying second order time-stepping and consistent
mass matrices to discretize the time derivative. Incorporating discontinuities in
time into our framework is also being investigated.
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