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A numerical method of second order of accuracy for computing conditional Wiener integrals of smooth
functionals of a general form is proposed. The method is based on the simulation of a Brownian bridge
via the corresponding stochastic differential equations (SDEs) and on ideas of the weak-sense numer-
ical integration of SDEs. A convergence theorem is proved. Special attention is paid to integral-type
functionals. A generalization to the case of pinned diffusions is considered. Results of some numerical
experiments are presented.
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1. Introduction

Let Cg a7.p 0ethe set of alld-dimensional continuous vector functioré) over [0, T] satisfying the
conditionsx(0) = a andx(T) = b. Consider the conditional Wiener integral

7=, Feedugieo. (L.1)

0,a;T,b

whereF is a functional onCc‘,j’a;T’b and ygj’;’(x) is the conditional Wiener measure, corresponding to
the Brownian pathé(g’f(t) with fixed initial and final points, i.e., it corresponds to thelimensional
Brownian bridge frora at the timet = O tob at the timet = T. The integral {.1) is to be understood
in the sense of a Lebesgue integral with respect to the me,a-gr;tfra) andis taken over the sétg,a;T’b
(seee.g.,Gelfand & Yaglom 1960;Simon,2005).

The importance of path integrals.() for computing various quantities in quantum statistical me-
chanics is well known (Gelfand & Yaglon1960; Feynman & Hibbs 1965; Egorov et al., 1993;
Roepstorff 1994;Kleinert, 1995;Simon,2005). For instance, the Feynman path integral of the form

J = (ale "Hb)

T mx2(t) 1
=/exp(/o |: 5 —V(x(t))] dt)DX(t), H =—§A+V,

is equivalent to the conditional Wiener integral 1) with the exponential-type functional

T
F(x(\)) = exp[—/0 V(x(t))dt]. (1.2)
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Suchquantities as the free energy of the system, the ground state energy, the wave function, etc., can be
written in terms of the integral given il (1) and L.2) Gelfand & Yaglom 1960;Feynman & Hibbs,
1965;Roepstorff 1994;Kleinert, 1995;Lobanoy 1996;Simon,2005).

A wider class of functionals tharlL(2) is also of interest. For example, correlation functions are
expressed via the conditional Wiener integdall) with a more general functional thah2) (see, e.g.,
Roepstorff 1994;Kleinert, 1995;Lobanoy 1996, and references therein). They are written as the func-
tional averages of products of path positions at different times. For instance, $oil, a two-point
correlation function/” (6), where 0< 6 < T, has the form

I'0) = (x(0)x(@))

1 o) T T
= —— 0 0 v dt ) dugy (0d
s |, X (x@). [ viexonat) dugfooay

— 1 OO T Y
- 55 /_ ) /C W (x(e), /0 V(t,x(t))dt) dugY 0y, (1.3)

wherewe have
9 (X, 2) = xexp(—2),

the patrtition function

00 T
Z(T)=Tre ™ =/ /C exp[—/o V(x(t))dt] dﬂoyy(x)dy
—o0 JL0,y; T,y

and Co y. T,y meansC0 .1.y- Correlation functions contain important information about quantum
mechanical systems and t%ey are observable in scattering experiments (s&égiagyt, 1995).

Other important examples of more general functionals tHa®) (are those corresponding to in-
ternal and kinetic energies (see, effegynman,1972; Takahashi & Imadal984;Ceperley 1995). In
Example 6.3 we simulate the kinetic energy of a bosonic system.

We propose a probabilistic numerical method of second order of accuracy for computing conditional
Wiener integrals of sufficiently smooth functionals. This method exploits a Markovian representation of
the Brownian bridge. Together with the Monte Carlo technique, it gives an effective algorithm for com-
puting the conditional Wiener integrdl.(). A virtue of the approach is that the infinite-dimensional in-
tegral is expressed as an expectation with respect to a system of stochastic differential equations (SDES)
before any discretization takes place, rather than beginning by using a finite-dimensional approxima-
tion to the integral as is usually done (Creutz & Freedmi®81; Wagner 1988;Egorovet al., 1993;
Ceperley 1995;Lobanoy 1996). The proposed algorithm is very simple to realize in practice.

In Gladyshev & Milstein(1984) and/entzelet al. (1984) (see alsMilstein & Tretyakoy, 2004b) the
probabilistic approach was used for computing Wiener integrals with respect to the usual (unconditional)
Wiener measure. IMilstein & Tretyakov(2004a) (see alsMlilstein & Tretyakoy, 2004b) this approach
was exploited to compute conditional Wiener integrals of exponential-type functionals. Here, on the one
hand, we deal with a more complicated system tha@ladyshev & Milstein(1984) andventzelet al.

(1984) since the SDEs involved in the method are singular. This leads to a rather sophisticated proof
of the method’s convergence, requiring some new ideas. On the other hand, we consider a much wider
class of functionals than iWlilstein & Tretyakov(2004a). The proposed method is new in comparison
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with the ones available iMilstein & Tretyakov (2004a) and it is analogous to the one used in the
case of the usual Wiener measure (Ven&tedl., 1984). We also note that there are a large number of
methods and results (see, eMilstein & Tretyakoy 2004b, and references therein) for approximating
simple functionalsf (X(T)), wheref is a function from a sufficiently wide class aixdt), wheretg <

t < T, is a solution of SDEs. But not much attention (except, a/gntzelet al., 1984;Mackevicius
1997;Milstein & Tretyakovy 2004b) has been paid to approximating general functionals depending on
trajectories of the SDE solution. Other approaches to computing Wiener integrals can be found, for
example, inCreutz & Freedmarf1981), Wagner(1988), Egorovet al. (1993), Ceperley(1995) and
Lobanov(1996) (see also references therein).

In Section2 we specify the class of functionals considered, together with some examples, propose
the numerical methods (analogues of the trapezoidal rule and of an Euler-type scheme) and formulat
convergence theorems for them. In SectBwe prove the convergence theorem for the second-order
method, using the Taylor formula for functionals. Sectibdeals with conditional Wiener integrals
of integral-type functionals. In Sectioh we consider a generalization to the case of path integrals
with respect to nonlinear diffusion bridges (with additive noise). We exploit the resuttadf (1990)
andDelyon & Hu (2006) to express path integrals of integral-type functionals over pinned diffusions
as expectations with respect to a Markovian process that solves a system of SDEs. In this case w
propose an Euler-type method and prove its first-order convergence. See, for exaipleet al.

(2009) (and references therein) for other approaches to simulating diffusion bridges. Some results of
numerical experiments are presented in Sediion

/Woo
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2. Functionals of a general form

We start this section by specifying the class of functionals for which the corresponding convergence
theorem shall be proved. This is done via the formal assumptions listed below. Then, in 3eLtiva
give some examples from this class of functionals.

Let us consider functionalg (x) defined on the spacA[0, T] of right-continuousd-dimensional
vector functionsx(t) on the interval [0T] without discontinuities of the second kind, i.e., consider
functionals on a larger space th@@’a;T,b.

ASSUMPTIONS2.1. We make the following assumptions &n

() Let0 <Oy <--- < B <--- <06y < T.Introduce the measutg on[0, T]", which is the sum
of ther -dimensional Lebesgue measure onT({,, of the (r —1)-dimensional Lebesgue measure
on the hyperplanef(s;,...,s) € [0, T]": s; = 6},wherei = 1,...,n,andj = 1,...,r,
and on the diagonal hyperplangsy, ..., s) € [0, T]": s = s;}, of the (r — 2)-dimensional
Lebesgue measure on tiie — 2)-dimensional hyperplanggs:,...,s) € [0, T]": s« = 6;
ands = 6j,k # 1} and{(sy,...,s) € [0,T]": s = sj andsq = §} andso on, including
the one-dimensional Lebesgue measure on the {iep& Gy, S-1 = air—l}? whereij e
{1,...,n}, and on the diagondé; = s, = - - - = 5} plusthe unit measures concentrated on the
points(6i,, ..., 6, ), whereij € {1,...,n}.

(i) We assume that the functionBl(x) is six times Fechet differentiable and that itsh derivative
has the following form:

€102 ‘6T |Udy uo weybumon Jo AiseAlun e /Bio'seulnolploixoeule

F“)(x)(él,...,ér)=/[0T1rv“>(x; Sty .- §)01(S1) -+ O (S)vr (dsy - - - ),

r=1,...,6, (2.1)
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wheres; € A[0, T] and the vector functions™) (x; sy, . .., S ) aresymmetric in the arguments
S1, - .., & anduniformly bounded fox € A[0, T] ands € [0, T].

(iii) For any functiorx e A0, T] that is constant on a semi-intervab[ c®) c [0, T], there are the
following continuous derivatives:

d 0 d
dSU ( ’ )7 6310 ( ssla 82)3 l#SZa ] # (] dSD ( D )’

d )
d—sn(z)(x;s, 6), i=1,...,n,

which are bounded by a constant that is independertyotf) andx € A[0, T].

We recall (see, e.gkolmogorov & Fomin,1999) thatF ") (x)(dy, . .., &) arer-linearfunctionals.
Under Assumption&.1, we will prove a convergence theorem (Theoz®) for the method proposed
in Section2.2. We emphasize that the method is applicable much more widely.

Roughly speaking, one might say that we consider functionals of the general foAfdpm] that
satisfy some conditions on smoothness and boundedness. As is usual for any numerical methods, if we
weaken the assumptions about the smoothness, then, as a rule, the convergence order of the considered
method becomes lower than the optimal one. In physical applications the smoothness part of Assump-
tions2.1is not particularly restrictive since it is usually satisfied. The assumption on the boundedness of
derivatives of functionals can be, to some extent, weakened without loss of convergence order, but this
would significantly complicate the proof of the convergence theorem. At the same time, the common
computational practice in quantum statistical mechanics is to curtail potentials so that they and their
derivatives remain bounded, which usually implies the boundedness of derivatives of functionals. Al-
ternatively, the concept of rejecting exploding trajectories fiditstein & Tretyakov(2005) could be
exploited here, that is, we might choose not to take into account those trajectories that leave a bounded
domainsS during the timeT. The domainsS is chosen so that the boundedness condition is satisfied
whenx(-) € S.

2.1 Examples of functionals

To illustrate the class of functionals satisfying Assumpti@ris we give two particular examples here,
although many more can be immediately constructed.

1. We start with the integral-type functionals (see the functional needed to compute the correlation
function (1.3))

€702 ‘6T |Udy uo weybumon Jo AiseAlun e /Bio'seuinolploixoeufewl//:dny wouy pepeojumoq

.
F(X() = ¢ (x(@),/o f(t, x(t))dt) , 0<O<T, xeClyry (2.2)

Onecan check that, if the functioni(t, x) ande (X, z) have continuous and bounded derivatives up to
a sufficiently high order, then AssumptioBsl hold. In particular, the Fachet derivatives 1) have the
following form:

FOX)G1) = /[0 IRECEARTCACY
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with
@ op
0 (X; 81)01(81) = EVX f(s1,x(s1)) - d1(s1), <1 #0,

v®(x;0)81(0) = Vo - 61(0)

and the measung beingthe sum of the Lebesgue measure anl[Ppand the unit measure concentrated
at the poin®,

FE00 (01, 62) = /[O 1006 51 )RS v2(ds d)

with
52
0@ (x; 51, )01 (51)92(S2) = a—;;’vxf(sl, X(s1) - 1SV f (2, X(82)) - 02(82),  S1# S § #£0,

d 2
o205, 0590 = 3 LV A6 X(6) - 519%0), 5£0,

d 25
02065, 901529 = L > (s X)), 5£0,
| j=1

0X
d 52
0@ (x;0,0)51(0)52(0) = Z VE 810)51(0)

ij=

and the measure, beingthe sum of the two-dimensional Lebesgue measure off J) the one-
dimensional Lebesgue measures on the liiggs= 0} and{s; = 6} andon the diagonals; = s}
andthe unit measure concentrated at the p&h®); the other derivatives can be written analogously.

In the above formulas the derivatives of the functioare taken at the poirfk (), fOT f(t, x(t))dt) and
thedot ‘-’ means the usual scalar product of vectors.

2. Let the functionsf (t, x), g(t, x) and ¢(z) have continuous and bounded derivatives up to a
sufficiently high order. Then the functional

T t
F(x(-))=<o( /0 /0 f(s,x(s»g(t,x(t))dsdt)

satisfiesAssumptions .

2.2 Numerical method

Let (Q, F, F, P), where 0< t < T, be a filtered probability space andt) = (wi(t), ..., wd ()T
be a d-dimensional Fi }+»o-adaptedstandard Wiener process. As is knowke@da & Watanabe] 981;
Karatzas & Shrevel988), thed-dimensional Brownian bridgX(t) = XT b(t) where 0< t < T,
from a to b can be characterized as the pathwise unique solution of the system of SDEs

b —
dX = ﬁolt +duwt), 0<t<T, X(0)=a, (2.3)
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with
X(T) =h. (2.4)

Clearly the conditional Wiener integral from (1.1) is equal to the expectation of the functional taken
over all realizations oK (t), where 0< t < T, that s,

J = EF(X). (2.5)
We introduce a discretization of the time interval TJ as follows:
O=thp<tp<---<ty=T,
sothat the point®;, wherei =1, ..., n, belong to the s€ft, t1, ..., tn}. Let

h:= max (k41 —t
0<k<_(k+1 k)

andtyy1/2 = (tke1 +t)/2, wherek =0, ..., N — 1.
The solution of 2.3) is

X(t) = ar—* 4 b— (T —t)/ dw(s) (2.6)
Hencefor any 0< 4 < T —t we have
X(t+ 4) = X(t) + Ab_l_ XO 1o A)/HA dw(s). 2.7)
We also have
E [(T —t— ) /tw iw_(sg X(t)} —o,
E |:((T —t— ) /tw iw_(si)z X(t):| - (1— %) 4. 2.8)

We can exactly simulate the solution @ 8) by a simple recurrent procedure based on the formula

B b=Xt) . a1 [T 4
X(t+4) = X(O) + d———+ 4 1/—T_t g ot<T, (2.9)

where¢ is a random vector whose components are independent Gaussian random variables with zero
mean and unit variance and are also independeXt(bf.
We also introduce a piecewise constant functiéiit), wheret < [0, T], given by

X"t):=a, tel0,t1y),
X"t):=b, teltn12T] (2.10)

Clearly, the trajectoriesk"(t) belongto the space\[0, T].
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We define the approximation of the conditional Wiener integfals follows:
J =EF(X)~ J = EF(X"). (2.11)

This method is analogous to the one used in the case of the usual (unconditional) Wiener measure
(Ventzelet al.,1984; see alsMlilstein & Tretyakoy, 2004b). We will prove the following convergence
theorem.

THEOREM2.2. Assume that Assumptior#s1 hold. The method2.11) and(2.10) applied to the eval-
uation of the Wiener integrdlL.1) is of second order of accuracy, i.e.,

|7 — | = |EF(X) — EF(X™)| < Kh?, (2.12)

wherethe constanK is independent offi.
The proof of the theorem is given in Secti8n

REMARK 2.3. The method2.11) and (2.10) is exact(i.e., there is no integration erroon the class
of functionals that depend only on the value of the functi¢h at a finite number of point§ , where
i=1,...,n

The methodZ?.11) and 2.10) together with the Monte Carlo technique gives an effective algorithm
for computing conditional Wiener integrals that is very simple to realize in practice. The m&Hdq (
and @.10) can be interpreted as a trapezoidal scheme. This interpretation becomes obvious in the cas
of integral-type functionals (see (4.4) antlR)).

Now consider the Euler method, i.e., introduce the following piecewise constant fur)(:@(n),
wheret € [0, T]:

XB(t) := X(t), teltkter), k=0,...,N—-1,  XL(T):=h. (2.13)

THEOREM 2.4. Assume that Assumptior&s1(i) and2.1(iii) hold and2.1(ii) holds withr = 1,2, 3,4
in (2.1). Then
J = EF(X]) (2.14)

approximates7 with the first order of accuracy.

The proof of this theorem is easier than that of Theo&fand it is omitted here. In numerical
Example 6.3 we compare the methdl1(1) and 2.10) and the Euler metho@.4) and 2.13). The
experimental results confirm our theoretical predictions.

€T0Z ‘6T |1dy uo weybumon Jo Aiseaun e /6iose®nolpiojxoeufew //:dny wolj pspeojumoq

3. Proof of the convergence theorem

Here we exploit some constructions frovientzelet al. (1984), although the singularity of the drift

in (2.3) ast approached causes additional difficulties, which are overcome by adopting ideas from
Milstein & Tretyakov (2004a). For simplicity and legibility, let us prove the theorem in the one-
dimensional casd = 1. No additional ideas are required to carry it over to an arbitrary dimension
d (see, however, Remafk2 at the end of this section). Note that, in this section, we shall use the letter
K to denote various constants that are independekgofilh.
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In addition to the processe$(t) and X"(t), we shall also introduce the following two auxiliary

processeX(t), wherek =0, ..., N, andXk(t), wherek =0, ..., N — 1:

N-1
Xk (t) == X(t) x10,t0 (1) + X ) xty, 71 (1) + Z A X Xltj1,2,11(0),
=k
4j X = X(tj41) — X(t)) (3.1)
and
Xi(t) 1= X (1) 110,50 1) + X (t) 11,71 (1)
N-1 k1 dw(s
+ 2 (Aj X+ (tj+1 - tj)/t TTS)) At 112710 (3.2)
k

j=k+1

We note thatXy(t) = X(t) for t € [t, tx4+3/2) N[0, T], i.e., the random functioXy(t) is constant on
the interval {x, tk-3/2) N[O, T].
Onecan see thaXy (t) = X(t) and Xp(t) = X"(t). We rewrite the global error in the form

EF(X) — EF(X") = EF(Xn) — EF(Xo)

N-1
= > [EF(Xks1) — EF(XW)]. (3.3)
k=0
Thuswe need to analyse the difference
pk = EF (Xkq1) — EF(Xy). (3.4)

Recallthe following Taylor formula for functionals (see, e.fglmogorov & Fomin 1999):
Fx+0)=FX) + FOX) @) +---+ éF@(x)(é, ., 0)
+ éF(G)(x-i-/lé)((S,...,é), 0<i<1.
We expand- (Xk+1) andF (Xk) at Xk asfollows:

F (Xt = F(Ri) + /[0 00 s (v

1 _
51 flgags O 81 )i (1) i ()vs(y - d)
1 _
+ & - 0@ (Xi 4 2ikis St - - - » $6)0k,i (S1) - - - . (Se)ve(dsy - - - dsp),

0<l <1, 1i=0,1, (3.5)
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where
v bt du(s’
K.0(8) = Xk(S) = Xk(S) = AkXXte11,2,71(S) _/ ) Z (41 = 6 ALt412.T1(S)
t j=k+1

( k Y+ duw (s

= Altis12.T1(S) |:(tk+l - tk) ) + (T — tys1) = )/

_ " e

b1 du(s))
_/ T_¢ Z 1 = ) Altj112.T1(S), (3.6)
j=k+1

3,1(8) = Xi41(5) — Xk(S) = (X(S) — X(t)) Xti.ter) (S) + Ak X Xitys2,71(S)

bt du(s))
—/ Z 41 = 8 X1ty 11,2.T1(S)

_/
Sjk+l

t sg
= Xltoter) (S) [(S - tk) :kk) +(T ) w_(ss),}
1 /
+ Altesr.T1(S) [(tkﬂ 2o X (k) (T —tiw) Tw_(s)}
tk —S
k1
N /t w_(ss)/ Z A1 = 1A 12.T1(S)-
k

j=k+1

It is clear thatdk o(s) = dk1(s) for s ¢ (i, tk+1). It can also be seen that the measurewhere
r=1,...,6,ofthe seﬁﬁr) onwhich the differenC(ﬂrj —19k,1(Sj )—Hrj:1 dk,0(sj) isdifferent from zero
has ordeh. Indeed SE” = Ujouln ... 8)05) € (tk, teya)} andhenceur(sg”) <rvr({(st,...,8):

s € (tk, tk+1)}) which is of orderh. Furthermore, it is not difficult to verify that the mtegrﬁﬂ‘ d.r” ?5 ,

wherety < s < tx,1, and Xy areindependent by showing thEt[Xk(t)ftS T’"(Z, ] =0forany0<t<T
andty <'s < tk+1. In what follows these properties are used in the anaIyS|s of the papis Wfe shall

also exploit the following inequality (see, e.Mlilstein & Tretyakoy 2004a, Lemma A.4) for ang > 1:

Elb — X(t)]?P < K(T —t)P. (3.7)
We have from 8.4) and 8.5) that

pk=E /[o - oD (Xk; s1)[0k 1(51) — k.o(S1)]v1(dsn)

1

#5800 51 a1 ~ ool vzl + -

5 5
1 :
+ = E/[o . 0O Xs s, .+, %) H5k,1(sj) - Hék,o(sj) v5(ds; - - - dss)

|
! j=1 j=1
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6
! ;
t 5 E/ 0@ Xk + A1 1351, ... 50) [ [oka(s))
[O’T]G ]=l
— 0@ Xk + Aodk 0; L. - .., 59) [ [dk0(5)) | ve(dsy - - - dsp). (3.8)

j=1

Beforewe start with the analysis gk, we state the lemma that will be used in estimating the second
term of 3.8) and that is proved at the end of this section.

LEMMA 3.1 LetUs(x) := 0@ (x; s, s). Then the following estimate holds:

K
T — 1t

>

(T —t)?

_ 2
Eutk(xk)[(b X () _ 1&

whereK > 0is a constant that is independentdndh.

Now we analyse the terms forming in (3.8). Let us introduce the indicatbf = 1o,
the first term in 8.8) we obtain

on (k). For

M= /[0 P0G Sk = dotsuatds)

k1 _
_E / o (R sk 1(51) — do(sp)ldsy
tk

+ 0D (Xi; t)[0k.1(tk) — k.ot Ik 4+ 0P (Xic; teg1) [0k, 1tk 1) — Ik 0(tkr1)] Ik

S dw(s)
T —s’}d

e+
=E/ o D(Xy: sl)[(sl—t) “k)+(T— |
t

b— X(tk)

tkt1
FT =t | ‘ dw(s)}d

_E / oD (R 51) |:(tk+1—tk)
k12 T-¢

b — X(t tk+1 _ tk+1 _
E—() / oD (Xy; s1)(s1 — t)dst — (tks1 — t) oD (Xg; s1)dsy
T—1t% ty tkta/2

b— X(t tk+1/2 _ tk+1
g2 X |:/ o (X; s1)(s1 — th)dst —/
t

T oD (X; 81) (tkr1 — s1)dsy | -
-k k tkta/2

Integrating by parts, we get

2 tky1/2 2
1) b— X(tk) Ay, . (tk+l - tk) / +72 d (l) ( tk)
rD gl 2K Xi; t AL B O Xi; s1)———"d
K T4 |” (Xi; tkt1/2) 8 . a5’ Xk $1)—— SL

. tir1 — t)? ki1 d - tir1 — 1)
— DXy tk+1/2)(+—) _/ A (% 5y Bt =SV
8 k12 2
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b— X [ 2 d o (51— t)?
2 ) (X 1) ————
Tt [/m g’ s

bt g - (ty1 — S1)2
DXy gy kL TP
+/t dslv (Xk; s1) > ds |.

k+1/2

It follows from here and the inequality (3.7) that
Kh3

\/TTtk’

Now consider the second term i8.8). We obtain

Ird| < k=0,...,N—1. (3.9)

1 i}
|£2) =5 5E /[0 e 0@ (Xi; 51, 92)[0k 1(51)0 1(S2) — dk,0(S1)dk,0(S2)]v2(ds1 dsp)

1

= 5E / v @(Xe: 1, 99)
[0,T]?

+ (1A — )

(b~ X(t)® SV S
x [ |:(51 — (2 — tk)W ftk:|

X Xticotiern) (S Xt tier 1) (S2)

b — X(ty))? Tt
+2 |:(tk 1 —t)(s1 — tk)—( = Ek';)z) + (1 — &) T Kt } Hltioter1) (S Xty 1,71 (S2)
b — X(ty))? —t
+ |:(tk+1 t )ZH (k1 —t ) k+1i|

X (X[tk+1,T] (Sfl.)X[tk+1,T] (52) - X[tk+1/2,T] (Sl)X[tk+1/2,T] (82))

Z (11— ) [t 012,71 (S2)

J =k+1

X [(sl - tk)X[tk,tk+1) (Sl) - (tk+l - tk)X[tk+1/2,tk+1) (Sl)] ] VZ(dS.L dSZ) (310)
We decompose the integral fro®.10) and estimate each part separately. We have

Ay = E/ 0@ (Xy; s1, )
[0,T]2

—t
T =12 +EGASR—%) Tt

_ 2 _
y [(Sl RN Clap {(13) T_ﬂ

X Xt ter 1) (S1) Xtk e 1) (S2)v2(ds1 dsp)
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e . (b — X(ty))? T-s
_ @) (X, - )2 T AN _
= E/tk v (Xk; S, S) [(s tk) T =102 + (s tk)T s ds

tr1r ik B
+ E/ 0@ (Xi; 51, )
1]

K i

(b — X(t))?
(T —t)?

SV

T—
+(EAS— tk)T—tkSZ:| ds ds, (3.11)

X |:(81 — (2 —tk)

wherethe last integral is estimated b¢h® by observing that sup@| is bounded (see Assumptions
2.1) and using3.7) to get

(b — X(t))? < K K

(T—-t? ~T—-t h’

Also note that, in 8.11), we omit the integrals over the measure concentrated on thesliaetg and

s = tk+1 andover the unit measures since it is obvious that they are equal to zero. Furthermore, since
0@ (Xk; s, 8) = Q(Z)(Xk; ti, k) + fti %v@)(xk; s/, §')ds, the first integral on the right-hand side of
(3.11) can be written as

tkt1 _ (b - X(tk))z T-s
@) . — )2 -
E/tk v (Xk, S, S) |:(S tk) (T — tk)z + (S tk)T _ tk:| ds

_ b — X(tx)? [+ tkt1 T—
= Eo@(X; tk, t) (—/ (s—tk)2d5—|—/ (s — ti)
(T - tk)2 tk tk T-

Sds]

tk
tir1 S _ — 2

+ E/ ' %O(Z)(Xk; s,9) [(S— tk)zm +(s— tk)T—:| ds'ds,
t

—S
K tk (T - tk)z T —1t

wherethe second integral is estimated Ky® usingthe same arguments as Bi{1). So, we have

- b— X(t)? (k1 — )3 (tke1 — t)? T — tir + (k1 — te)/3
Atk = Ev@(X; ti, t (
1k = Eo™ (X t, t) T =102 3 > T4

+0(h®)
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with |O(h%)| < Kh3. The next part 0f3.10) can be written as

Ao = 2E /[O,T]2 0@ (X; s1, ) |:(tk+1 —t)(s1 - tk)(b(%il;)z)z + (s1— tk)%]
X Altitesn) (S Xt 1. 71 (S2)v2(ds1 dsp)
= ZE/T /‘tk+l @D (Xk; s1, ) |:(tk+1 — (s — tk)(bL(tk)z)z +(s1— tk)T—_tk+1] ds ds
tis ot (T —1t) T — 1t
. Moo (b— X()? T —teis
+i§ 16,> 1 E/tk 0@ (Xk: s1.6) [(tkﬂ —W(SL— W o+ (51— tk)?tkj| dst

_op | M1 - )3 (b= X(1))? | (k1 =t T —tiya
n 2 (T — t)? 2 T —tg

T n
X [/ @ (Xi: te, A% + D 11,0 @ (Xt 6 )] +0(h®).
t

k+1 i=1

Thethird part of 3.10) is

b — X(t))? Tt .
Agi= E [(tkﬂ ~ 10?2 C X —tk>¢} R

(T —%)? T—t

X [X[tk+1,T] (Sl)X[tk+1,T] (SZ) - X[tk+1/2,T] (Sl))([tk+1/2,T] (52)] VZ(dS.L dsz)

For the integral inAzx we have

/[ - 0@ (X; 81, %) [X1ties .71 (5D Xt 1. T1(52) = Hltur1,2.T1 (S Xftus1,2,71(S2) | v2(dsy dsp)

T T
:/ 0@ (Xg: s, s)ds—/ 0@ (Xy; s, s)ds
¢ 12

k+1

n T T
+2 g, / @ (Xy; s, 6)ds — / 0@ (X; s, 6)ds
=1 t ka2

k+1
T T T T
+/ / 0@ (X; s1, 52)d31d92—/ / 0@ (Xy; 81, 2)ds; dp
1 Stk tkr1/2 Y k12
ST VR . @ (Xp: t. 6 2
= 0P e 1) = (i1 = 10 D 110 @ (Xic t. 6) + O(h?)

i=1

i=
T et NG tr1r ikt .

- 2/ / 0@ (Xi; 51, 9)ds; ds +/ 0@ (Xi; 51, 92)ds; ds
tkt1/2 J tkt1/2 !

k+1/2 ¥ tkt1/2
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k1 — 7 : 7
= —%0(2)()(% o 1) = (s — 1) D 140D Xics t, )
i=1

Then

n
Agc=-E |:(D(2)(>_(k; t, t) + 2 g -0 @ (X t, 6 ))

i=1

y (k1 — )3 (b — X (t))? + (1 — )2 T =ty
2 (T —t)2 2 T —t

(b — X(t))? 2T —tiga /T .
—E | (t — )P t — )= @ (X t d
[( k1 — ) T =102 + (k1 — ) Tt tmv (Xk; t, s2)d=p
+ O(hd).
Thelast part of 8.10) is

N-1

2 _
Agi= ——2E / VD (Riss1,%2) > (et — )ty 271(S2)
[0.T]? j=kr1

X [(S1 = ) Xty 1) (S1) = (k1 = ) Xfties1 2.tes0) (S1) | v2(dsy dsp)

N—-1
2 _
_ E/ bR s1 %) S Wt = )1 o1 071 ()
To0E Joap ,-:Zm 41 = )T 41/2.T)

X [(S]_ - tk)X[tk,tk+1/2) (Sl) - (tk-l-l - Sl)X[tk+1/2,tk+1) (S[]_)] \)Z(dS]_ dSZ)

2 T N-1
—- B [ G
— 1ty +3/2 j=k+1

k+1/2 NG
x ( / 0@ (Xy; 81, 92) (51 — th)dst
tk

tkt1 _ !
—/ 0@ (X; s1, ) (tkr1 — Sl)dsl) ds + E 65110 — tn)
t

k+1/2 i=1

tk+1/2 @0 et @9
X / 0@ (X; 31,9i)(81—tk)d81—/ 0@ (Xi; s1, ) (tke1 — s1)dst ) |-
1]

k tk+1/2

Exploiting arguments similar to the ones used before, it is not difficult to getthat= O(h3).
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As a result, we obtain

1
e = E(Alk + Aok + Ask + Ag)

—t)3 _ 2
_ (e — %) EU(Z)()_(k;tk,tk)|:(b X)) 1

3
> w2 T tk} +O(h3). (3.12)

Applying Lemma3.1, we get

(3.13)

Now we estimate the remaining terms B1§). We obtain from (3.6) that

X (t %+t du(s
%,0(8) = Xltip1/2.T1(S) (k1 — tk)J * /t =

T_o z 41 = ) Xtk 12,8 42,20 (S)-

— & k j=k+1
Then
3
Eo® (X; s, 82, 59)[ [ko(s)
i=1
= Ev ¥ (Xk; 51,92 )
N-1
(t ) et dan(s')

X H (tk+1 - tk) Altks1/2,T] (S) +/’[ T_¢ Z (tj+l - t] )X[tk+1/2,tj+1/2) (S)

k j=k+1
- b — X(t) (b— X ()21
= Eo® (X 51, S, S3) (tey 1 — tk)z(T——tk)Z (tey1 — tk)T—HX[tk+1/2 T1(8)

Hltir1/2.T1(S)
+Z {LH Z (41 = 4 Htusr 24120 (S)

i1 b1 50

Fromhere we get the estimate

_ 3 Kh2
E | 0® (X 51,9, ) [ [dko(s)) || € ===
i1 T —t
Analogously we obtain
3 K h?

E | 0®(X; s1, %, Ss)Hék,l(sj) <
j=1
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Then,also taking into account that the measugef the selsg ) onwhich the dlf'ference}_[J 10k, 1(8j)) —
]'[J 10k,0(8j) is different from zero has ord&?(h), we arrive at

j=1 j=1

3 3
1 -
EE/[O - 0@ (X; s1, 52, S8) |:H5k,l(3j) - H(Sk,o(sj):| v3(ds, ds, dss)

1 3 3

~E /[0 e P )03 (Xi: 51, 2. %3) [Hak,1<sj> - H5k,0(5j):| v3(dsy dsp dsg)

6 j=1 j=1

:
< = I3 (S1, 2, B)
6 [O,T]3 3<

3
Eo® (X; s, 52, 58) [ [ka(s))
j=1

3
Eo® (X; st 52, 58) [ [ dko(s)
i=1

+

} v3(ds, ds dsp)

3
< Kh . (3.14)
T — 1tk

Sincewe have for the terms in (3.6) that

E(AX)* < Kh%, E(X(S) — X)) * it () < Kh

4
%+ dw(s') N-1
- </t T-¢ z 41 =t | < Kh?,

k j=k+1

andthe measurey of the setS,EA') on which the difference]'[‘j‘zlék’l(sj) — H?zlék,o(sj') is different
from zero has orde®(h), we obtain

4 4
1 _
= @) (X,: N ,
4!E/[O,T]4v (Xi; S1, - - -, S4) [l [oca(s) — ] |5k,0(sj)i| va(dsy - - - dsg)

j=1 j=1
1
= 4)

< 4! sup|v |/[0,T]4 |S1£4)(Sl, ) ( | |5k 1(s) JI |15k o(sj) ) va(dsy - - - dsy)

< Kh3, (3.15)

+E

By analogous arguments, we get

5 5
1 }
= ®(x,- D) — :
5!E/[0 T]5U (Xk; 81, -+, S5) |:| |5k,1(51) I I5k,0(51):| vs(ds; - - - dss)

<= sup|v(5)|/ E |H5k 1(sj) — Hék o(Sj)

j=1
< Kh'/2, (3.16)

vs(dsy - - - dss)
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SinceE]‘[?zlwk,i (sl < K h3, the last term in3.8) is estimated as

6

1 _

6E/ . 0(6)(Xk+/115k,i;81,--.,Se)l |5k,1(Sj)
) [O,T] j:]_

6
— 0O X + 20dkis St - - 56)1_[5k,0(5j) ve(ds, - - - dsg)
i=1 i

6 6
1
< o suplo®) /MGE{H|ak,1(sj)|+1'[|ak,o(sj)| vo(dsy - dsg)
' ’ i=1 i=1

< Kh3, (3.17)

Substituting(3.9) and 8.13)—(3.17) into §.8), we get
Kh3
< , k=0,...,N-1,
| Pkl T

which together with (3.3) and(4) implies £.12). Hence Theorem.2is proved.

Proof of Lemma3.1. Assumptions2.1 ensure that, for a fixed € [0, T], the functionalU, (X) =
v@(x; 7, 7) is Fréchet differentiable and its derivative has the form

T n
UM )©) = /0 uB(x; 9)3()ds +uD(x; (@) + D ub(x; 63,
i=1

whereuD(x; s) is uniformly bounded fox e A[0, T] ands € [0, T].
We also noteNlilstein & Tretyakoy, 2004a, Corollary A.1) that

_b=Xx®)* 1

f) = |=0,...,N—-1
l//(l) (T—t|)2 T—tl’ 2 2 9

is a martingale.
Let us introduce the auxiliary processiég))(t), wherek =0, ..., N — 1, as follows:

X (t) 1= Xk(®) 710,40 ®) + by 11 (1)

Usingthe Taylor formula for functionals, we get

.
Uy (Xi) = Uy (X)) + / UKD + 16, 5)8(s)ds + uD (XD + 25; )5 (t)
0

n
+ Z u(l)(>'<|£°) + A6; 61)6(6h),
i=1
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where

5(s) = Xk(s) — XV(s)

Nl b1 doo(s/
- |:X(tk)+ > (a1 [ ) iaan© -5 | amn
k

j=k+1

and0 < 4 < 1.
We have

)
BV (0w 0] < Bl (O @] + (vt | uDX? + 2019
tk

N1 b1 du(s’
x |:X(tk)+ > (Aj><+(tj+1—tj)/t T _(S?)X[thrl/z,T](S)—b ds
k

j=k+1

+ |Ev touD X + 25; 10 (X (t) - b)

n
+ Z |Hi>tk

i=1

Ev (tlou® (X + 15; )56 )( . (3.18)

It is not difficult to see that the second term on the right-hand sid&.&8] is bounded by a constant
and the third and fourth terms are boundeddoys/T — tk. Thus, we have

[EU (w (8)] < [EU (X (0| +

K
. 3.19
T — 1tk ( )
Now introduce the auxiliary processe_q((j)(t), wherej = 1,...,kandk = 0,...,N — 1, as
follows:
D) =Xty ®+b t
k = Nk X[0,t—j) )+ X[tkfj,T]( )
We have
i iy T » n »
Ug (XU = Up (XD 4+ /O uD XL + 26; 9)5(9)ds + > uD(XD + 45 6)5@),
i=1
where
(S) = g (S) K (S) = ( (S) )X[tkfj,tk_j_,.l) (S)
Then(as beforelx = lyg,,....0,) (tk))
o (-1) ciy [T @)
U (X 7) = Ug (X )+/ U (X" + Ad; s)[X(s) — blds

t—j

+ |k—jU(1)()_(|£j) + 495 tk—)[ X (tk—j) — b]. (3.20)
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Recallingthat y (1), wherel = 0,...,N — 1, is a martingale and observing thdﬁ()_(lij)) is F_;-
measurableye get that

[EU ) (0| = |EU Rt (3:22)
It follows from (3.20) and3.21) that
E U (%™ e j40)| < [EU XD p b )|

i) g ()
+ |Ey(t-j+1) uB (X + 20; 9)[X () — blds

tk—j

+ )Ew(tk e UD XD 4 26; 1 DIX () — b]‘ . (322
Thesecond term on the right-hand side 8f42) is estimated as
t—j+1

Ey(tk_ji1) uD XD + 25; 9)[X(s) — blds

tk—j

< supju®] \/sz(tk i+D)VE[X(s) — b]2ds

tk—j

t—j+1
/ ~T —sds

te—j

K
ST —tejat

K
< ——————Mtk—j+1 — t&k—j).
VT —tk-j+1 . .

Thethird term on the right-hand side B.22) is estimated as lx_j/,/T — tk—j+1. Then

2 (i-1) 2 (D) K
EU (X ™) (-] < |EU Xyt )| + (o1 — by
VT =tk jr
Kl
oK =1,k (3.23)
VT —t-j11

It follows from (3.19), 8.23) and the evident mequalltEUtk(X(k))y/(O)} < K that

(tk J+l_tk J)

Atk Zm* ZJTJH

Recallingthat the number of poin® is equal to the fixed, we getzj=l Ik—j < n. Finally, we obtain

|EUy (X w ()| <

K
) K K

EU, (Xt < t t -

|EUy (X ()] N JT—t Z(k j+1—tk—j) + T—tkjgl k—]

K
Tt
HenceLemma3.1is proved. O

<
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REMARK 3.2. Itis notable that, in the multidimensional cage> 1), the integrand o{3.10) contains
cross-terms in all coordinate pairand j, namely,&{(,l(sl)éd,l(sz) - 5L,0(81)5|i,0(82)- The terms corre-
sponding td = j are estimated in the same way as in the considered one-dimensional case: fFor
the contribution from all stochastic integral terms is zero and the right-hand s{@86.6§ has terms with
(' = X' () (b! — X (t))/(T — t)2, which are martingales (Milstein & Tretyakp2004a, Corollary
A.1), and their further estimation yield8(h3//T — tx) agin. In (3.12) it should be understood that
the term 1/T — tx) only appears foi = j.

4. Integral-type functionals

In this section we consider conditional Wiener integrals of integral-type functionals as follows:

.
FX() = o (x(@),/o f(t, x(t))dt) , 0<0<T, xeClyry (4.1)

Let us introduce the scalar procesg) satisfying the equation
dz = f(t, X(t))dt, Z(0)=0, 4.2)

where X (t) is the solution of (2.3) and (2.4). Clearly, the conditional Wiener integrdtom (1.1) of
the functional (4.1) is equal to the expectation, that is,

J = Ep(X(©), Z(T)). (4.3)

The approximation (2.11) an@.(L0) applied to1.1) and 4.1) results in the following trapezoidal
method forZ:

J ~ J = Ep(X(®), Zn), (4.4)
where
Zo=0,
Zyy1 = Zx + W[ f(tk, X(tk)) + f(tk+1, X(tks1))]), k=0,...,N—1. (4.5)
Recall that the time discretization used here is sodhaf{tg, t1, ..., tn].

If we assume that(x, z) and f (t, x) have bounded derivatives up to a sufficiently high order, then it
follows from the general Theoreth2that the method4.4) and (4.5) for (1.1) and (4.1) has the second
order of accuracy, i.e., the estima12) is valid for it. The other assumptions under which Theorem
2.2 is valid are thaf (t, x) and its derivatives up to a sufficiently high order are boundedgrdz) is
sufficiently smooth. We note that, in the case of integral-type functionals, the convergence theorem can
be proved more simply, exploiting a more standard technique used in the weak-sense approximation of
SDEs (Milstein & Tretyakoy, 2004b) (see its application in the case of conditional Wiener integrals of
exponential-type functionals iMilstein & Tretyakov(2004a) and in the case of usual Wiener integrals
in Ventzelet al. (1984)). It is interesting that no method of the form

3

Zirr = Z+ (a1 — 1) D ai F(t+ Bi, X+ 8)), i €R, i € [0, tipr — tl,
i=1
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hasorder of accuracy higher than two (in the case of usual Wiener integrals, see a similar comment
in Ventzelet al.,1984). At the same time, in the case of integral-type functionals of a particular form,
namely, the exponential-type function&$x(-)) = exp[foT f(t, x(t))dt], a fourth-order Runge—Kutta
method was constructed Milstein & Tretyakov(2004a).

We made a computational comparison betwektB)(and the fourth-order Runge—Kutta method in
computing the ground state energy of one particle in a one-dimensional harmonic oscillator. Despite
being of lower order, the method.b) turns out to be preferable due to its stability properties. These fol-
low from preservation by4.5) of such structural properties of exponential-type functionals as positivity
and monotonicity, which can be broken down in the case of the fourth-order Runge—Kutta method from
Milstein & Tretyakov(2004a) (see similar observations, although in a different conteljlgtein and
Tretyakov 2009). Furthermore, instead of the trapezoidal rdl&), we can use the Simpson rule to
give:

Zop=0,

ko1 — tk
Zyi1 = Zu + %{ f (te, X () + 4F (tk1/2, X(tkr1/2)) + f (tkrss Xtes)],

k=0,...,N—1. (4.6)

Although both methods4(5) and 4.6) are of order two, the method.6) has a much smaller bias in
our experiments than the method (4.5) and thus is computationally more effective. The nfethod (
and (4.5) and the method (4.4) and (4.6) extend the arsenal of numerical tools considéilstein &
Tretyakov(2004a,b) for computing exponential-type functionals (1.2).

5. Extension to the case of pinned diffusions
In this section we extend the Euler meth@dl@) and 2.13) to the case of paths 8F-diffusions
dX = a(t, X)dt + dw(t), X(tp) =a, (5.1)

thatare conditioned to pass through a pdint RY attime T, wherety < t < T. Conditioned diffusions

are used, for example, in parameter estimation problems (seeDelgon & Hu, 2006). We note that

the Brownian bridge case considered in the previous seciiefisorresponds to5(.1) witha = 0.
Analogously to Sectiod, we will be interested here in simulating the expectations of integral-type

functionals

.
F(X(-) =9 (/t f(t, x(t))dt) . xeCl 1 (5.2)

but now with respect to the measure on paths corresponding to the conditioned diffudiptit §s clear
that this expectation is equal to

J = Ep(Z(T)), (5.3)
where the scalar procegst) satisfies the equation
dZ = f(t,X(t))dt, Z(tg) =0, (5.4)

and X(t) is the solution of §.1). In what follows we assume that the functiang, x) and f (t, x)
are bounded and have bounded derivatives up to a sufficiently high order andzh& sufficiently
smooth.
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Theexpectation§.3) can be rewritten a€{ark, 1990;Delyon & Hu, 2006)

_ Ep(Z(T))Y(T)
J = EV(T) (5.5)
whereZy, a 7 (t) andYy, 4,y (1), with t > to, satisfy the equations
dzZ = f(t, X(t))dt, Z(tg) =0, (5.6)
- X
dY =a'(t, X)t_l)_—_tYdt +a'(t, X)Ydw(t), Y(to) =1, (5.7)

with X(t) = Xi,.a(t) beingthe Brownian bridge froma at the timet = to to b atthe timet = T (cf.
(2.3) and 2.4)), that is,

dX:t_:__—_Tdt +dw(t), X(to) =a. (5.8)
We note that
Y(T) = exp(Q(T)), (5.9)
where
T b—X 1, T
dQ = [a (t, X)ﬁ -5 (t, X)} dt+ o' (t, X)dw(t), Q(tg) =0. (5.10)

We remark that, forr = 0 (the Brownian bridge case}, from (5.5) coincides withy7 from (4.3).

We introduce a discretization of the time interval, [T] given byty < t; < --- <ty = T, which,
for simplicity is equidistant with the time stdp = tx;1 — tx. To construct the numerical method we
simulate the Brownian bridg¥ (t) at the nodes exactly (see 2.9)), that is,

b— —
Xk+1 = Xk + h k4 x/_ I(Jrlé‘kﬂ, Xo=a, (5.11)

—tk

andwe approximateq.6) and 5.10) as follows:

Zis1 = Zx + hf(te, Xo), Zo=0 (5.12)
and
Q= Qe+h [aTak, X031k - e Xk)} + VR [T 4 X,
Qo=0, (5.13)
wheregyy1, fork =0, ..., N — 1, ared-dimensional random vectors whose components are mutually

independent random variables with standard normal distributi¢, 1).

We remark that we choose to approximabedf and 5.10) rather thany.7) since it has been ob-
served (see, e.gMilstein and Tretyakoy2009, and also Sectioh here) that positivity preservation
automatically guaranteed b§.(.3) has computational advantages, while an explicit scheme applied di-
rectly to 6.13) does not possess this property. We also emphasiz&Xthgt = X, i.e., there is no
numerical error introduced in (5.11).
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Now we define the approximation of the path integfafrom (5.3) as follows:

Eo(Z(T))Y(T - Ep(Z
7 = Eoery = =PET NI » 7 - SV BRSO (5.14)
Let us introduce the function
u(t, x,2)y = E[p(Zt,x,2(T) Ye.x,y(T)] (5.15)
and let
Yk = exp(Qx). (5.16)

Underthe assumptions we imposed on the coefficients at the beginning of this section, the function
u(t, x, z) is smooth inx andz, and sufficiently high moments oi(tg, Xt,,a(t), Zt;,a,0(t))Y,a,1(t) and
u(tk, Xk, Zk)Yx andtheir derivatives with respect t® and z are bounded (Gikhman & Skorokhod,
1972). The method itself is applicable more widely and the assumptions can be relaxed in the spirit of
the comment after Assumptions 2.1.

THEOREMS5.1. The method5.11)-(5.13)is of first order of accuracy, i.e.,
|[Ep(Z(T))Y(T) — Ep(Zn) exp(Qn)| < Kh, (5.17)
where the constari is independent of.

This theorem has the following evident corollary.

COROLLARY 5.2. The method5.14) and(5.11)-(5.13) for evaluating the path integréb.3) is of first
order of accuracy, i.e.,

|7 —J| < Kh, (5.18)
where the constarK is independent offi.
REMARK 5.3. We note that, if in(5.14) we substituteQy simulatedby the standard Euler scheme for
(5.10), that is,

Xk a?(tk, X)
tk 2

b—
Qi1 = Qc+h [aT(tk, X T } +vha (t, Xi)dir1, (5.19)

Qo =0,

thenthe method(5.14), (5.11), (5.12) and (5.19) is of orderhInh instead ofO(h) for (5.14) and
(5.11)-(5.13) (also see footnote at the end of this section).

Proof of Theorend.1. Using the standard technique (déstein & Tretyakoy 2004b, p. 100), we can
write the global error in the form

R:=|E[¢ (Zi,a0(T)) Yig,a1(T)] = Elp (Zn) YN]|

N—1
= Z (EU (tkg1, X1, Zte, Xe, Zk k1)) Yoo Xie, Ve (k1) — B2, Xier 1, Zk1) Yier 1)
k=0
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Z EYic [u (tier s Xir1s Zoe, xu,zi Wt 1)) Vi xio, 1 (kb)) = U1, Xk 1, Zir1) Yo x,1 (et 1) ]

<> R (5.20)

where
Re = |EYk [U (tkr 1 X1 Zte, X, 2 ter1)) Yoo i1 (k1) — Utk 1, Xt Zia1) Yo, X, 1tk 1) ]|
= |EYKE [U (tkg1, Xks15 Zoy, x4, Zic (k1)) Yo, X, 1 (ks 1)

— U(tkr 1, Xk Zkr1) Yoo, xi 1 (o) 1P | - (5.21)

Above we have exploited the fact that we simulXig,; exactly.
We first analyse the erroi® for k = 0,..., N — 2 and introduce the function

v(X,2) ;= u(t + h, x, 2),
the operators

L=Li+Lo+Lsg,

52

d
0 b—x 1
Li=— - Lo= f(t
1=t yo 2221 e L2 (X)

1, 5 02
Zal(t, X)y?P—, 0<t<T,
5 (,)yay, <

b—
L3=0!T(LX)T Y3y

andthe one-step error far< T — 2h given by
r(t, x,2) '= Eo(Xex(t + h), Ze x 2(t + )Y x,1(t + h)
— Ev(Xex(t + ), Zexz(t + ) Yexa(t + h), (5.22)

whereZ; x z(t + h) andY; x 1(t + h) arethe one-step approximations Bf x ,(t + h) andY; x 1(t + h),
respectely, that correspond to the methdal11)—(5.13) andy.16).
The second term in (5.22) can be rewritten as

ro .= Eo(Xgx(t + h), z'(,x,z(t + h))v’(,x,l(t +h)
= Eo(Xix(t + ), 2)Ye x 1(t + h)
0 _
+hf(t, X)Ea_zv(xt,x(t +h), 2)Ye x 1(t + h) + pa(t, X, 2),

wherep1(t, X, 2) is such thate|p1 (tk, Xk, Zk)| < Kr_12 with a constanK that is independent df andt.
Furthermore, expanding the nonsingular par¥of 1(t + h), that is,

exp( T-t-h a?(t, x)+~/_,/ —h al(t, x)é)
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and

o(Xex(t +h), z)_u(x+h_t|)_— + VL thg z),

and alsoaa—zv(xt,x(t + h), z) in powers ofh, we obtain

b—x a?(t,x) h?
rg(t,x,z)zexp(haT(t,x)T_t— (2 )T—t)

hT—-t—-h , T—t-h 1
xE[|:1—2 — a?(t,x) + vh,/ @ (LX)¢

NT—t—h xR TR p °
+2T—[ t, x)<¢1° + — T— (t, x)¢

6
(b ) T
x [v(x Z2)+h Vo(x,z) +vh —f Vo(x, 2)
v [T h b —x %
— Tt axiaxi(x’ 2)
1 > (B —x"H(b! —x!) i
+§Z[h T 1?2 +nt T_ 5§}ax'ax1(x’z)

ij=1

0
+ hf (t, x) |:a—ZD(X, Z)+\/ﬁ T_t oz

T-t- hz:Tviv(x, z):H} + h2pa(t, X, 2), (5.23)

wherethe remaindepa(t, X, 2) is such that, due to the inequalit$.7) and that (T —t —h) < 1/h
fort < T — 2h, we can estimate it as

K
VA T

After taking the expectation irb(23), we get the following simplified expression:

|Ep2(t, Xk, Zk)| < (5.24)

b— 2(t h2
ra(t, X, 2) = exp(haT(t,x)T ); _¢ (2’ X) -

t) X {u(x, Z) +h(L1+ La)ov(x, 2)

(b —xHl —xl) &%
Z

T
+ ha' (t, X)Vo(X, Z)+ T —1)2 oxioxi

x,2)

I,J'=1

h2 1 & % h2 . )
- ST Z(ax)z( 2) = = (L) V(X 2) t +h2ps(t, X, 2),
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wherepz satisfiesan inequality of the form&.24). Furthermore, expanding the exponent in powers of
h, we have

ra(t, X, 2) = v(X, 2) + h(L1 + L2)o(X, 2) + ha' (t, X) [_?_:)Ev(x, 2) + Vo(x, z)}

h2 (T ¢ b—x7% «?(t, x)
+7([a (t,x)T_t] T v(X, 2)

_ _ 2
+ h? (aT(t, x)b X) (b—_):Vv(x, z)) — h_taT(t, X)Vo (X, 2)

T-t)\T T

2 & (b —x)bi —xi) 82 o1 <
S e ey el Z(ax)Z(XZ)

h2pa(t, X, 2),

wherep, satisfiesan inequality of the form&.24).
Now consider the first term in5(22). Using the Taylor expansion of the expectations of SDE
solutions (Milstein & Tretyakoy2004b, Lemma 2.1.9, p. 99), we obtain

ri(t, X, 2) := Eo(Xe x(t + h), Ze x 2(t + h)Yex1(t + h)

=0(X,2) +h(L1+ Lo)o(x,2) + ha'(t, x) v(X 2) + ha ' (t, X)Vo(X, 2)

t+h(t+h—S)

5 EL0 (Xx(9). Ztx.2(9) Yex 1(8)]ds. (5.25)

h2
+ 2L, Dyl + /t

Denotethe last term in%.25) ash?ps(t, X, z). Using the inequality (3.7) and thaf@ —t —h) < 1/h
fort < T — 2h, one can show thats satisfiesan inequality of the form¥.24). Furthermore, we have

b—x\ (b—x 2a7 b—x\?2 a?
2 T T
L [v(X,Z)y]y_1:2<a T—t)(T—tV0>_T—tV0+(a T—t) v—T_tv

(' —xH(l —x)) 6% 1 0%
2 (T-1)2  oxioxi T-—t é (6x1)2

+

i,j=1

d i i\2 i i
(b —x" 1 oo (b—x)(bl—xl)aa
+§|:(T—t)2 _T—t}a?’”’% T-12 oxl’

+ p6(t7 X) Z))

wherepg satisfiesan inequality of the form&.24).
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Hence

rt,x,z) =ri(t, x,2) —rat, X, 2)

RI[H-x)2 1 ]ad
T2 & [ T-02 T —tj| aw (L0002
h? « (b' —x")(bl —x)) ad' 9
7 (T — t)z a?(t’ X)D(X’ Z) + h P?(t, X, Z)’ (526)

i#]

wherep7 satisfiesan inequality of the form%.24).
We recall Milstein & Tretyakoy 2004a, Corollary A.1) that

V= E 22 Itf)kz))z - and g = CEEEWIG 0D
k=0,...,N—1,
are martingales.
It follows from (5.21) and%.26) that, folk = 0, ..., N — 2, we havé
2 N Lt e Kh?
R« < h®|EYk [; y (109 (te, Xk, Zi) + ; y ()9 (k. Xk, Zk):| + Nag= s

whereg' andg’! arethe corresponding functions appearing3m26). Using arguments similar to those

in Milstein & Tretyakov(2004a, Lemma B.1), one can show that,Kee O0,..., N — 2, we have
a o K h?
E Yk ; y' ()9 (t, Xk, Zk) + ; ' (9" (e, Xk, Zi) || < NS
Finally, we note that it is not difficult to obtain that
Rn-1 < Kh.
ThusR < Kh+ Kh >N 2h/ /T =1 < Kh, as required. O

The Monte Carlo estimator for the path integral (5.3) based on the meihibg) @nd 5.11)—(5.13)
has the form

. Ep(Z ~ M z
T~ 7o Er@nenQn) | 5 Zmzlchoﬂ(m N) EXPmQN) (5.27)
E exp(Qn) 2 m=1XP(mQN)
wheremZny andQn, form = 1, ..., M, are independent realizations of the corresponding random

variables. Note that the second approximate equalit$.i27) is related to the statistical error.

Lif one were to use5(19) instead 0ff.13), thenRy < Kh2/(T — ty41) (cf. Remarks.3).
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TABLE 1 Squae integral of the Brownian bridge. Errors in evaluating the conditional Wiener
integral (1.1) and (6.1) with p = 1 and p = 4 and for various time steps h. Here M is the
number of Monte Carlouns

h M p=1 p=4

0.20 1x 10° 6.66x 1073+ 0.01x 1073 —13x1034+0.012x 1073
0.10 1x 10° 167 x 103 +0.009% 103 —032x 103+0.011x 1073
0.05 5 x 1010 0417 x 103+ 0.001x 1073 —0.080x 103+ 0.002x 1073
0.02 5 x 1010 0.067 x 103+ 0.001x 1073 —0.015x 103+ 0.002x 1073

REMARK 5.4. It is possible to consider further generalizations. One may look at the possibility of
higher-order methods for pinned diffusio(®1) as we did in the previous sectioBsand4 in the case

of a Brownian bridge. Furthermore, the meth&dL1)-(5.13) and Theorend.1are not difficult to adapt

to a slightly more general additive noise situation tt{&rl), in that we could consider conditioned
diffusions with any constant diffusion matrix, rather than particularly a unit diffusion matrix. At the
same time, we note that the case of pinned diffusions with multiplicative noise (i.e., when the diffusion
coefficients are state dependent) requires further development, and, in connection with this topic, we
also refer to the related worldilstein et al. (2004),Haireret al. (2009) and the references therein.

6. Numerical examples

ExXAMPLE 6.1. We consider the square integral of the Brownian bridge that has applications in statistics.
To test the proposed method we compute moments of this integral, i.e., we deal with the functionals

1 p
F(x() = ( /0 xz(t)dt) , p=0, xeCoo1p0. (6.1)

Theresults of our simulation are presented in Tahl&he values beforet’ are the differences between
the exact value of the Wiener integrdl (see (1.1)) withF (x(-)) from (6.1) and its sampled approxi-
mations. The reference values {@rare 16 for p = 1 and 00166799 forp = 4 (Tolmatz 2002). The
values after ‘£ reflect the Monte Carlo error only. They correspond to the confidence interval for the
corresponding estimator with probabilityd®. One can observe convergence with order two that is in
good agreement with our theoretical results.

ExAMPLE 6.2. Consider the following correlation functiafi(9), where 0< 0 < T (see (1.3)):

@) = (x(0)x(@))

1 o T T 250 YTL(y)dy

= 0)x(0 -/ V dt) dug )y (x)dy = =2————

5 / ) /C xox >exp( /O (L, x() t) i3y 0dy = 22
(6.2)
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where
T
A= [ xo) exp(— | ve x(t))dt) Ay ). (6.3)
0.y;T.y 0
T
= [ e [— / V<x<t)>dt] dl Y (%) (6.4)
0.y;T.y 0
We evaluate®.2)—(6.4) for the harmonic potential
w2
V(X) = ?xz (6.5)
andfor the anharmonic potential
2
V(x) = %x“. (6.6)

We recall (see, e.gKleinert, 1995; Lobanoy 1996) thatT has the meaning of inverse temperature
here. In the case of the harmonic potent&b] the correlation function is equal t&lginert, 1995,
Chapter 3)

1 coshw (@ — T/2)

re)=-—

————, 0<OKLT. 6.7
20w sinh(wT/2) ° (6.7)

We rewrite the integrals irb(2) as

G = / yJ1(y)dy = ZHUfE{mJl(m)eXD(%)}
= :

Z= /_Oo Ja(y)dy = \/2n02E [Jz(ﬂz) EXP(%)} , (6.8)

2

wherezn1 and#, are Gaussian random variables, thatAé(0, 012) andN(O,azz), with zero mean and
variancess? and a2, respectively. The parametes§ ands2 arechosen so that the variances of the
random variables under the expectations6i8) are small.

The following estimators fo§ and Z are used in our simulation:

R 27{012 M T _ m1
g= M Z mi7imJ1(71) exP(T‘lz):| ,
m=1L
,/27[022 M T
= = n2
Z= Z mJ2(m#2) eXp(m—z)i| s (6.9)
M =1l 205

wheremn1 andmn2 aresampled fromV (0, 012) andA/ (0, 022), respectively, so that the paits,1, m#2)
areindependent, whilg,n1 and 72 in the same pair are dependent, that,ig, = oom#n1/01. Here
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0.5

the exact solution —
the approximation -e-

0.3 1
0.4

0.3 |
0.2 4

0.2

0.1 4
0.1

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

FIG. 1. The dependence of the correlation functio@) from (6.2) ond simulated withh = 0.2 andM = 108 for T = 10. Part
(a) corresponds to the harmonic potent&b) and part (b) to the anharmonic potent&b), both withw = 1.

TABLE 2 Correlation function. The error in evaluating the
correlation function/”(9) from (6.2) in the case of the har-
monic potential6.5) withw =1, T = 10andd = 1

h M Error

0.250 10 978x 104 +0.72x 10°*
0.200 10 6.18x 1074+ 0.72x 10~*
0.125 100 245x 1004+ 0.23x 10°*
0.100 5x 1010 146x 1074 +0.10x 10~%

mJ1(mn1) andmJ2(my2) are values of the corresponding functionals evaluated along a path according
to the method (2.10). The paitsJ1(m#71), mJ2(m#2)) are simulated along independent paths, while
mJ1(m#n1) andmJ2(m#2) in the same pair are evaluated along the same path. Recall (see QeRYitvat

a discretization of the time interval [0'] should be so that the poiéitbelongs to the set of discretization
points{tp, t1, ..., tn}.

The results of the experiment are presented in Tablasd 3 and in Fig.1. The parameters;
ando» are taken as 2.and 08, respectively. As before, in these tables the values befprare es-
timates of the bias, computed as the difference between the &xagtand its sampled approxima-
tions, while the values aftert”’ give half of the size of the confidence interval for the correspond-
ing estimator with probability @5. To compute the bias the exact valugégl) = 0.1840098 and
I'(8) = 0.0678385 obtained fron6(7) are used. The number of Monte Carlo riviss chosen here
so that the Monte Carlo error is small in comparison with the bias. It is not difficult to see that the ex-
periment illustrates second-order convergence of the method. We note thatdittirtg, for example,
the data of Tabl@ yieldsC = 0.015, with the maximum absolute value of the residuals being equal to
3x 1075

In Fig. 1(a) the results of the simulation &f(#) with h = 0.2 are compared with the exact curve
from (6.7). Due to the second order of accuracy of the proposed numerical method, these curves visually
coincide even for this relatively large time step. Figlifie) demonstrates the behaviour of the correlation
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TaBLE 3 Correlation function. The error in
evaluating the correlation functiof’ (9) from
(6.2) in the case of the harmonic potential
(65)withw = 1, T = 10,6 = 8 and when
the number of Monte Carlo runs is M 10!

h Error

0.250 1688x 1074+ 0.079x 104
0.200 1.134x 1074+ 0.079x 10~
0.125 0.331x 1004+ 0.080x 10~4
0.100 0.231x 104+ 0.080x 10~4

functionin the case of the anharmonic potenti&l). The presented curve is obtained with the time step
h = 0.2 and it visually coincides with the one simulated wlith= 0.05. These experiments give further

confirmation of our theoretical results.
We note that, in Examples 6.1 and 6.2, the second-order methdd) (and 2.10) and the Euler

method (2.14) and?(13) coincide since in these examples the starting and ending points of Brownian
bridge paths coincide. In the next example we deal with a system of bosons and the advantage of th
method (2.11) and2(10) in comparison with the Euler method (which is, in general, of order one—see

Theorem?2.4) is clearly seen.

EXAMPLE 6.3. Consider a system ofidenticaln-dimensional boson particles of massThe patrtition
function for this system has the forrRdynman1972)

_ 2
Z =/ > @aT/m)~ 2 exp _x=mx uTt (X,  X)dx, (6.10)
RN aell: 2T/m
whereT is the inverse temperaturex means a permutation of thetuplex = (xa, ..., %), II; isthe
set of all such permutations and
T
ur (X, TX) = Eexp(—/ V(XCT,’X"X(t))dt) (6.11)
0 ,
with Xg’fx(t) solvingthern-dimensional system of SDEs
X — X 1
dX = ——dt + —dw(t 0<t<T, X(0)=x. 6.12
Tt e, <T. X(©=x (6.12)

The kinetic energy of the system of particles can be found as (seeFeygunan1972; Takahashi &
Imada,1984;Ceperley 1995)

m 62
Ek = ——.
TZom
DifferentiatingZ from (6.10), one can obtain
m K
Ek = ==, (6.13)

TZ
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where

— —rn/2 _w (_ T T,wX )
/c_/Rm > (@2aT/m) exp( 5T /m )E|:exp /OV(XO’X (t))dt

melly

2m 2T

rn  |x—mx|?
T

1 T T,xX T,wX X X
+ ﬁ/o VV(Xpy ") - (xo’X t) - ?(T —t)— _t) dtﬂ dx.
(6.14)

HereVV is anrn-dimensional vector. We note that this expression for the kinetic energy is different
from the ones exploited ifakahashi & Imadgq1984) andCeperley(1995). As was pointed out in
Ceperley(1995), it is desirable for computational purposes to have various representations of the kinetic
energy.

For our numerical example here, we consider one-dimensional 1) bosons with mass = 1 in
the harmonic potential

x2 X2
V(xl,...,xr)=?1+---+3r. (6.15)

It is known (see, e.gTakahashi & Imadal984) that, in this case, the kinetic energy is equal to

1« IT\ r(r-1
Exn=- > lcoth(—=) — .
kin 42 Cco (2) 8

In the experiment we use a system of four bosans-(4) with inverse temperaturé = 1.2. The
exact value of the kinetic energy &, = 1.3740081.

As with Example 6.2, correlated estimates of both the inteffraind the partition functiorf in
(6.13) are produced simultaneously, and the ratio is then taken. Specifically, as before, we may write the
integralsiC and Z with n = 1 in the form

K= /Rr T1(X)dx = V270 2E [Il(n) exp(%)] )
Z= /Rr Tr(x)dx = v 270 2E [Iz(n) exp(iz)] :

20

wherey is anr-dimensional Gaussian random variable whose components are mutually independent
with zero mean and variane#, i.e., n ~ N(Q, 021y «r) With I, beingther x r unit matrix, and

71 andZ, arethe corresponding integrands i6.10) and 6.14), respectively. Furthermore, since the
particles are noninteracting, we can decompbsandZ; to permanents as follows (see a similar idea
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TABLE 4 Kinetic energy of bosons. The errors in evaluating the kinetic
energy kin ofthe system of four bosof®.13) in the case of the harmonic
potential (6.15)with T = 1.2, r = 4and m= 1. The number of Monte
Carlo runs is M= 10°

h Eulermethod Method (2.11) andZ.10

0.20 0.236+ 055x%x 10~ 0533x 1072+0.75x 104
0.15 0175+ 061 x 10°* 0.300x 1072+ 0.75%x 10~4
0.10 0.116+ 0.66 x 104 0.128x 102+ 0.76 x 10°*
0.05 0.057+0.71x 104 0.035x 1072+ 0.75x 104

in Takahashi & Imadal984). LetU: R — R be such thaV (x) = Z{:l U (x) andlet

jl(xi,xn:(zfrT/m)—l/zexp( (;_/X‘)) [exp( / U(X”'a))dt)

1 ('—XJ)2 T,X Tx
x(2m o /U(X J(t))( ’(t)——(T t)——)dt)i|

_ (X — xj)? T,X
LX) = @rT/m~Pexpl -——= )E (—/ U (X (t dt)
J2(Xi, Xj) = (2zT/m) eXIO( 2T/m ) exp A ( (t)

It is not difficult to show that

Ty = D > A @) [ Jew @, Taop= D [ J0x @nw.

zell =1 ke{d,...,r )\ {1} welly k=1
(6.16)
Consequentlythe following estimators fokC and Z are used in the simulation:
. Vore2 M _ my 2710 Mo m?
K= M le [mzl(mﬂ) exP(ﬁ)] , mZ [mIZ(m'?) exP(ﬁ)] ,

where 7 are sampled independently frotv' (0, o2l ;) andmZ1 and mZ» are approximate sample
values ofZ; andZ,, calculated as pe6(16) from the approximate sample values of functiogalaind
J» evaluated along the same Brownian bridge paths using the method (2.112.40 ¢r the Euler
method (2.14) and(13).

We note that the value ef> maybe chosen to make the variancekodndZ small. In the presented

experimentsg is taken equal to 2. We remark that, although we illustrate the above decomposition into
permanents in order to computeand Z for the case of one-dimensional particles, its generalization

for n-dimensional noninteracting particles is straightforward.
We analyse two methods, namely, the methdd 1) and 2.10) and the Euler metho@.(4) and

(2.13). The results are presented in Tahlevhich gives the errors of the two methods. As in the previous
examples, the Monte Carlo error is made relatively small in order to be able to analyse the bias. It is
clearly seen from the data that the methad.{) and 2.10) converges with order two, while the Euler

method exhibits the first-order convergence as expected (see Thehzansl2.4).
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