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A numerical method of second order of accuracy for computing conditional Wiener integrals of smooth
functionals of a general form is proposed. The method is based on the simulation of a Brownian bridge
via the corresponding stochastic differential equations (SDEs) and on ideas of the weak-sense numer-
ical integration of SDEs. A convergence theorem is proved. Special attention is paid to integral-type
functionals. A generalization to the case of pinned diffusions is considered. Results of some numerical
experiments are presented.
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1. Introduction

Let Cd
0,a;T,b bethe set of alld-dimensional continuous vector functionsx(t) over [0, T ] satisfying the

conditionsx(0)= a andx(T) = b. Consider the conditional Wiener integral

J =
∫

Cd
0,a;T,b

F(x(∙))dμT,b
0,a (x), (1.1)

whereF is a functional onCd
0,a;T,b andμT,b

0,a (x) is the conditional Wiener measure, corresponding to

the Brownian pathsXT,b
0,a (t) with fixed initial and final points, i.e., it corresponds to thed-dimensional

Brownian bridge froma at the timet = 0 to b at the timet = T . The integral (1.1) is to be understood
in the sense of a Lebesgue integral with respect to the measureμT,b

0,a (x) andis taken over the setCd
0,a;T,b

(see,e.g.,Gelfand & Yaglom, 1960;Simon,2005).
The importance of path integrals (1.1) for computing various quantities in quantum statistical me-

chanics is well known (Gelfand & Yaglom,1960; Feynman & Hibbs, 1965; Egorov et al., 1993;
Roepstorff, 1994;Kleinert,1995;Simon,2005). For instance, the Feynman path integral of the form

J = 〈a|e−T H |b〉

=
∫

exp

(∫ T

0

[
mẋ2(t)

2
− V(x(t))

]

dt

)

Dx(t), H = −
1

2
Δ+ V,

is equivalent to the conditional Wiener integral (1.1) with the exponential-type functional

F(x(∙)) = exp

[
−
∫ T

0
V(x(t))dt

]
. (1.2)

c© Theauthor 2010. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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1218 W. M. DUMAS AND M. V. TRETYAKOV

Suchquantities as the free energy of the system, the ground state energy, the wave function, etc., can be
written in terms of the integral given in (1.1) and (1.2) (Gelfand & Yaglom, 1960;Feynman & Hibbs,
1965;Roepstorff, 1994;Kleinert,1995;Lobanov, 1996;Simon,2005).

A wider class of functionals than (1.2) is also of interest. For example, correlation functions are
expressed via the conditional Wiener integral (1.1) with a more general functional than (1.2) (see, e.g.,
Roepstorff, 1994;Kleinert,1995;Lobanov, 1996, and references therein). They are written as the func-
tional averages of products of path positions at different times. For instance, ford = 1, a two-point
correlation functionΓ (θ), where 06 θ 6 T , has the form

Γ (θ) = 〈x(0)x(θ)〉

=
1

Z(T)

∫ ∞

−∞

∫

C0,y;T,y

x(0)ϕ

(
x(θ),

∫ T

0
V(t, x(t))dt

)
dμT,y

0,y (x)dy

=
1

Z(T)

∫ ∞

−∞

∫

C0,y;T,y

yϕ

(
x(θ),

∫ T

0
V(t, x(t))dt

)
dμT,y

0,y (x)dy, (1.3)

wherewe have

ϕ(x, z) = x exp(−z),

the partition function

Z(T) = Tr e−T H =
∫ ∞

−∞

∫

C0,y;T,y

exp

[
−
∫ T

0
V(x(t))dt

]
dμT,y

0,y (x)dy

and C0,y;T,y meansC1
0,y;T,y. Correlation functions contain important information about quantum

mechanical systems and they are observable in scattering experiments (see, e.g.,Kleinert,1995).
Other important examples of more general functionals than (1.2) are those corresponding to in-

ternal and kinetic energies (see, e.g.,Feynman,1972;Takahashi & Imada, 1984;Ceperley, 1995). In
Example 6.3 we simulate the kinetic energy of a bosonic system.

We propose a probabilistic numerical method of second order of accuracy for computing conditional
Wiener integrals of sufficiently smooth functionals. This method exploits a Markovian representation of
the Brownian bridge. Together with the Monte Carlo technique, it gives an effective algorithm for com-
puting the conditional Wiener integral (1.1). A virtue of the approach is that the infinite-dimensional in-
tegral is expressed as an expectation with respect to a system of stochastic differential equations (SDEs)
before any discretization takes place, rather than beginning by using a finite-dimensional approxima-
tion to the integral as is usually done (Creutz & Freedman,1981;Wagner, 1988;Egorovet al., 1993;
Ceperley, 1995;Lobanov, 1996). The proposed algorithm is very simple to realize in practice.

In Gladyshev & Milstein(1984) andVentzelet al.(1984) (see alsoMilstein & Tretyakov, 2004b) the
probabilistic approach was used for computing Wiener integrals with respect to the usual (unconditional)
Wiener measure. InMilstein & Tretyakov(2004a) (see alsoMilstein & Tretyakov, 2004b) this approach
was exploited to compute conditional Wiener integrals of exponential-type functionals. Here, on the one
hand, we deal with a more complicated system than inGladyshev & Milstein(1984) andVentzelet al.
(1984) since the SDEs involved in the method are singular. This leads to a rather sophisticated proof
of the method’s convergence, requiring some new ideas. On the other hand, we consider a much wider
class of functionals than inMilstein & Tretyakov(2004a). The proposed method is new in comparison

 at U
niversity of N

ottingham
 on A

pril 19, 2013
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


COMPUTINGCONDITIONAL WIENER INTEGRALS OF FUNCTIONALS OF A GENERAL FORM 1219

with the ones available inMilstein & Tretyakov (2004a) and it is analogous to the one used in the
case of the usual Wiener measure (Ventzelet al.,1984). We also note that there are a large number of
methods and results (see, e.g.,Milstein & Tretyakov, 2004b, and references therein) for approximating
simple functionalsf (X(T)), where f is a function from a sufficiently wide class andX(t), wheret0 <
t < T , is a solution of SDEs. But not much attention (except, e.g.,Ventzelet al., 1984;Mackevicius,
1997;Milstein & Tretyakov, 2004b) has been paid to approximating general functionals depending on
trajectories of the SDE solution. Other approaches to computing Wiener integrals can be found, for
example, inCreutz & Freedman(1981),Wagner(1988),Egorovet al. (1993),Ceperley(1995) and
Lobanov(1996) (see also references therein).

In Section2 we specify the class of functionals considered, together with some examples, propose
the numerical methods (analogues of the trapezoidal rule and of an Euler-type scheme) and formulate
convergence theorems for them. In Section3 we prove the convergence theorem for the second-order
method, using the Taylor formula for functionals. Section4 deals with conditional Wiener integrals
of integral-type functionals. In Section5 we consider a generalization to the case of path integrals
with respect to nonlinear diffusion bridges (with additive noise). We exploit the results ofClark (1990)
andDelyon & Hu (2006) to express path integrals of integral-type functionals over pinned diffusions
as expectations with respect to a Markovian process that solves a system of SDEs. In this case we
propose an Euler-type method and prove its first-order convergence. See, for exampleHairer et al.
(2009) (and references therein) for other approaches to simulating diffusion bridges. Some results of
numerical experiments are presented in Section6.

2. Functionals of a general form

We start this section by specifying the class of functionals for which the corresponding convergence
theorem shall be proved. This is done via the formal assumptions listed below. Then, in Section2.1, we
give some examples from this class of functionals.

Let us consider functionalsF(x) defined on the spaceA[0, T ] of right-continuousd-dimensional
vector functionsx(t) on the interval [0, T ] without discontinuities of the second kind, i.e., consider
functionals on a larger space thanCd

0,a;T,b.

ASSUMPTIONS2.1. We make the following assumptions onF .

(i) Let 0 < θ1 < ∙ ∙ ∙ < θi < ∙ ∙ ∙ < θn < T . Introduce the measureνr on [0, T ]r , which is the sum
of ther -dimensional Lebesgue measure on [0,T ]r , of the(r −1)-dimensional Lebesgue measure
on the hyperplanes{(s1, . . . , sr ) ∈ [0, T ]r : sj = θi },wherei = 1, . . . , n, and j = 1, . . . ,r ,
and on the diagonal hyperplanes{(s1, . . . , sr ) ∈ [0, T ]r : si = sj }, of the (r − 2)-dimensional
Lebesgue measure on the(r − 2)-dimensional hyperplanes{(s1, . . . , sr ) ∈ [0, T ]r : sk = θi
andsl = θ j , k 6= l } and {(s1, . . . , sr ) ∈ [0, T ]r : si = sj andsk = sl } andso on, including
the one-dimensional Lebesgue measure on the lines

{
s1 = θi1, . . . , sr −1 = θi r −1

}
,wherei j ∈

{1, . . . , n}, and on the diagonal{s1 = s2 = ∙ ∙ ∙ = sr } plusthe unit measures concentrated on the
points

(
θi1, . . . , θi r

)
, wherei j ∈ {1, . . . ,n}.

(ii) We assume that the functionalF(x) is six times Fŕechet differentiable and that itsr th derivative
has the following form:

F (r )(x)(δ1, . . . , δr ) =
∫

[0,T ]r
v(r )(x; s1, . . . , sr )δ1(s1) ∙ ∙ ∙ δr (sr )νr (ds1 ∙ ∙ ∙ dsr ),

r = 1, . . . , 6, (2.1)
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1220 W. M. DUMAS AND M. V. TRETYAKOV

whereδi ∈ A[0, T ] and the vector functionsv(r )(x; s1, . . . , sr ) aresymmetric in the arguments
s1, . . . , sr anduniformly bounded forx ∈ A[0, T ] andsi ∈ [0, T ].

(iii) For any functionx ∈ A[0, T ] that is constant on a semi-interval [c0, c0) ⊂ [0, T ], there are the
following continuous derivatives:

d

ds
v(1)(x; s);

∂

∂s1
v(2)(x; s1, s2), s1 6= s2, sj 6= θi ;

d

ds
v(2)(x; s, s);

d

ds
v(2)(x; s, θi ), i = 1, . . . , n,

which are bounded by a constant that is independent of [c0, c0) andx ∈ A[0, T ].

We recall (see, e.g.,Kolmogorov & Fomin,1999) thatF (r )(x)(δ1, . . . , δr ) arer -linear functionals.
Under Assumptions2.1, we will prove a convergence theorem (Theorem2.2) for the method proposed
in Section2.2. We emphasize that the method is applicable much more widely.

Roughly speaking, one might say that we consider functionals of the general form onA[0, T ] that
satisfy some conditions on smoothness and boundedness. As is usual for any numerical methods, if we
weaken the assumptions about the smoothness, then, as a rule, the convergence order of the considered
method becomes lower than the optimal one. In physical applications the smoothness part of Assump-
tions2.1is not particularly restrictive since it is usually satisfied. The assumption on the boundedness of
derivatives of functionals can be, to some extent, weakened without loss of convergence order, but this
would significantly complicate the proof of the convergence theorem. At the same time, the common
computational practice in quantum statistical mechanics is to curtail potentials so that they and their
derivatives remain bounded, which usually implies the boundedness of derivatives of functionals. Al-
ternatively, the concept of rejecting exploding trajectories fromMilstein & Tretyakov(2005) could be
exploited here, that is, we might choose not to take into account those trajectories that leave a bounded
domainS during the timeT . The domainS is chosen so that the boundedness condition is satisfied
whenx(∙) ∈ S.

2.1 Examples of functionals

To illustrate the class of functionals satisfying Assumptions2.1, we give two particular examples here,
although many more can be immediately constructed.

1. We start with the integral-type functionals (see the functional needed to compute the correlation
function (1.3))

F(x(∙)) = ϕ

(
x(θ),

∫ T

0
f (t, x(t))dt

)
, 06 θ 6 T, x ∈ Cd

0,a;T,b. (2.2)

Onecan check that, if the functionsf (t, x) andϕ(x, z) have continuous and bounded derivatives up to
a sufficiently high order, then Assumptions2.1hold. In particular, the Fréchet derivatives (2.1) have the
following form:

F (1)(x)(δ1) =
∫

[0,T ]
v(1)(x; s1)δ1(s1)ν1(ds1)
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COMPUTINGCONDITIONAL WIENER INTEGRALS OF FUNCTIONALS OF A GENERAL FORM 1221

with

v(1)(x; s1)δ1(s1) =
∂ϕ

∂z
∇x f (s1, x(s1)) ∙ δ1(s1), s1 6= θ,

v(1)(x; θ)δ1(θ) = ∇xϕ ∙ δ1(θ)

and the measureν1 beingthe sum of the Lebesgue measure on [0, T ] and the unit measure concentrated
at the pointθ;

F (2)(x)(δ1, δ2) =
∫

[0,T ]2
v(2)(x; s1, s2)δ1(s1)δ2(s2)ν2(ds1 ds2)

with

v(2)(x; s1, s2)δ1(s1)δ2(s2) =
∂2ϕ

∂z2
∇x f (s1, x(s1)) ∙ δ1(s1)∇x f (s2, x(s2)) ∙ δ2(s2), s1 6= s2, si 6= θ,

v(2)(x; s, θ)δ1(s)δ2(θ) =
d∑

i =1

∂2ϕ

∂z∂xi
∇x f (s, x(s)) ∙ δ1(s)δ

i
2(θ), s 6= θ,

v(2)(x; s, s)δ1(s)δ2(s) =
∂ϕ

∂z

d∑

i, j =1

∂2 f

∂xi ∂x j
(s, x(s))δi

1(s)δ
j
2(s), s 6= θ,

v(2)(x; θ, θ)δ1(θ)δ2(θ) =
d∑

i, j =1

∂2ϕ

∂xi ∂x j
δi

1(θ)δ
j
2(θ)

and the measureν2 being the sum of the two-dimensional Lebesgue measure on [0, T ]2, the one-
dimensional Lebesgue measures on the lines{s1 = θ} and {s2 = θ} andon the diagonal{s1 = s2}
andthe unit measure concentrated at the point(θ, θ); the other derivatives can be written analogously.
In the above formulas the derivatives of the functionϕ are taken at the point

(
x(θ),

∫ T
0 f (t, x(t))dt

)
and

thedot ‘∙’ means the usual scalar product of vectors.

2. Let the functions f (t, x), g(t, x) and ϕ(z) have continuous and bounded derivatives up to a
sufficiently high order. Then the functional

F(x(∙)) = ϕ

(∫ T

0

∫ t

0
f (s, x(s))g(t, x(t))dsdt

)

satisfiesAssumptions .

2.2 Numerical method

Let (Ω,F ,Ft , P), where 06 t 6 T , be a filtered probability space andw(t) = (w1(t), . . . , wd(t))T

bea d-dimensional{Ft }t>0-adaptedstandard Wiener process. As is known (Ikeda & Watanabe,1981;
Karatzas & Shreve,1988), thed-dimensional Brownian bridgeX(t) = XT,b

0,a (t), where 06 t 6 T ,
from a to b can be characterized as the pathwise unique solution of the system of SDEs

dX =
b − X

T − t
dt + dw(t), 06 t < T, X(0)= a, (2.3)
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1222 W. M. DUMAS AND M. V. TRETYAKOV

with

X(T) = b. (2.4)

Clearly, the conditional Wiener integralJ from (1.1) is equal to the expectation of the functional taken
over all realizations ofX(t), where 06 t 6 T , that is,

J = E F(X). (2.5)

We introduce a discretization of the time interval [0, T ] as follows:

0 = t0 < t1 < ∙ ∙ ∙ < tN = T,

sothat the pointsθi , wherei = 1, . . . ,n, belong to the set{t0, t1, . . . , tN}. Let

h := max
06k6N−1

(tk+1 − tk)

andtk+1/2 := (tk+1 + tk)/2, wherek = 0, . . . ,N − 1.
The solution of (2.3) is

X(t) = a
T − t

T
+ b

t

T
+ (T − t)

∫ t

0

dw(s)

T − s
. (2.6)

Hence,for any 06 Δ < T − t we have

X(t +Δ) = X(t)+Δ
b − X(t)

T − t
+ (T − t −Δ)

∫ t+Δ

t

dw(s)

T − s
. (2.7)

We also have

E

[
(T − t −Δ)

∫ t+Δ

t

dw(s)

T − s

∣
∣
∣
∣ X(t)

]
= 0,

E

[(

(T − t −Δ)

∫ t+Δ

t

dw(s)

T − s

)2 ∣∣
∣
∣
∣

X(t)

]

=
(

1 −
Δ

T − t

)
Δ. (2.8)

We can exactly simulate the solution of (2.3) by a simple recurrent procedure based on the formula

X(t +Δ) = X(t)+Δ
b − X(t)

T − t
+Δ1/2

√
T − t −Δ

T − t
ξ, t < T, (2.9)

whereξ is a random vector whose components are independent Gaussian random variables with zero
mean and unit variance and are also independent ofX(t).

We also introduce a piecewise constant functionXh(t), wheret ∈ [0, T ], given by

Xh(t) := a, t ∈ [0, t1/2),

Xh(t) := X(tk), t ∈ [tk−1/2, tk+1/2), k = 1, . . . , N − 1,

Xh(t) := b, t ∈ [tN−1/2, T ]. (2.10)

Clearly, the trajectoriesXh(t) belongto the spaceA[0, T ].
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COMPUTINGCONDITIONAL WIENER INTEGRALS OF FUNCTIONALS OF A GENERAL FORM 1223

We define the approximation of the conditional Wiener integralJ as follows:

J = E F(X) ≈ J̄ = E F(Xh). (2.11)

This method is analogous to the one used in the case of the usual (unconditional) Wiener measure
(Ventzelet al.,1984; see alsoMilstein & Tretyakov, 2004b). We will prove the following convergence
theorem.

THEOREM 2.2. Assume that Assumptions2.1hold. The method(2.11)and(2.10)applied to the eval-
uation of the Wiener integral(1.1) is of second order of accuracy, i.e.,

|J − J̄ | = |E F(X)− E F(Xh)| 6 K h2, (2.12)

wherethe constantK is independent ofh.

The proof of the theorem is given in Section3.

REMARK 2.3. The method(2.11) and(2.10) is exact(i.e., there is no integration error)on the class
of functionals that depend only on the value of the functionx(t) at a finite number of pointsθi , where
i = 1, . . . ,n.

The method (2.11) and (2.10) together with the Monte Carlo technique gives an effective algorithm
for computing conditional Wiener integrals that is very simple to realize in practice. The method (2.11)
and (2.10) can be interpreted as a trapezoidal scheme. This interpretation becomes obvious in the case
of integral-type functionals (see (4.4) and (4.5)).

Now consider the Euler method, i.e., introduce the following piecewise constant functionXh
E(t),

wheret ∈ [0, T ]:

Xh
E(t) := X(tk), t ∈ [tk, tk+1), k = 0, . . . , N − 1, Xh

E(T) := b. (2.13)

THEOREM 2.4. Assume that Assumptions2.1(i) and2.1(iii) hold and2.1(ii) holds withr = 1,2,3,4
in (2.1). Then

J̃ = E F(Xh
E) (2.14)

approximatesJ with the first order of accuracy.

The proof of this theorem is easier than that of Theorem2.2 and it is omitted here. In numerical
Example 6.3 we compare the method (2.11) and (2.10) and the Euler method (2.14) and (2.13). The
experimental results confirm our theoretical predictions.

3. Proof of the convergence theorem

Here we exploit some constructions fromVentzel et al. (1984), although the singularity of the drift
in (2.3) ast approachesT causes additional difficulties, which are overcome by adopting ideas from
Milstein & Tretyakov (2004a). For simplicity and legibility, let us prove the theorem in the one-
dimensional cased = 1. No additional ideas are required to carry it over to an arbitrary dimension
d (see, however, Remark3.2at the end of this section). Note that, in this section, we shall use the letter
K to denote various constants that are independent ofk andh.
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1224 W. M. DUMAS AND M. V. TRETYAKOV

In addition to the processesX(t) and Xh(t), we shall also introduce the following two auxiliary
processesXk(t), wherek = 0, . . . ,N, andX̄k(t), wherek = 0, . . . ,N − 1:

Xk(t) := X(t)χ[0,tk)(t)+ X(tk)χ[tk,T ](t)+
N−1∑

j =k

Δ j Xχ[t j +1/2,T ](t),

Δ j X := X(t j +1)− X(t j ) (3.1)

and

X̄k(t) := X(t)χ[0,tk)(t)+ X(tk)χ[tk,T ](t)

+
N−1∑

j =k+1

(
Δ j X + (t j +1 − t j )

∫ tk+1

tk

dw(s′)

T − s′

)
χ[t j +1/2,T ](t). (3.2)

We note thatX̄k(t) = X(tk) for t ∈ [tk, tk+3/2) ∩ [0, T ], i.e., the random function̄Xk(t) is constant on
the interval [tk, tk+3/2) ∩ [0, T ].

Onecan see thatXN(t) = X(t) andX0(t) = Xh(t). We rewrite the global error in the form

E F(X)− E F(Xh) = EF(XN)− EF(X0)

=
N−1∑

k=0

[EF(Xk+1)− EF(Xk)]. (3.3)

Thuswe need to analyse the difference

ρk := EF(Xk+1)− EF(Xk). (3.4)

Recallthe following Taylor formula for functionals (see, e.g.,Kolmogorov & Fomin, 1999):

F(x + δ)= F(x)+ F (1)(x)(δ)+ ∙ ∙ ∙ +
1

5!
F (5)(x)(δ, . . . , δ)

+
1

6!
F (6)(x + λδ)(δ, . . . , δ), 0< λ < 1.

We expandF(Xk+1) andF(Xk) at X̄k asfollows:

F(Xk+i ) = F(X̄k)+
∫

[0,T ]
v(1)(X̄k; s1)δk,i (s1)ν1(ds1)+ ∙ ∙ ∙

+
1

5!

∫

[0,T ]5
v(5)(X̄k; s1, . . . , s5)δk,i (s1) ∙ ∙ ∙ δk,i (s5)ν5(ds1 ∙ ∙ ∙ ds5)

+
1

6!

∫

[0,T ]6
v(6)(X̄k + λi δk,i ; s1, . . . , s6)δk,i (s1) ∙ ∙ ∙ δk,i (s6)ν6(ds1 ∙ ∙ ∙ ds6),

0< λi < 1, i = 0,1, (3.5)
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COMPUTINGCONDITIONAL WIENER INTEGRALS OF FUNCTIONALS OF A GENERAL FORM 1225

where

δk,0(s)= Xk(s)− X̄k(s) = Δk Xχ[tk+1/2,T ](s)−
∫ tk+1

tk

dw(s′)

T − s′

N−1∑

j =k+1

(t j +1 − t j )χ[t j +1/2,T ](s)

= χ[tk+1/2,T ](s)

[
(tk+1 − tk)

b − X(tk)

T − tk
+ (T − tk+1)

∫ tk+1

tk

dw(s′)

T − s′

]

−
∫ tk+1

tk

dw(s′)

T − s′

N−1∑

j =k+1

(t j +1 − t j )χ[t j +1/2,T ](s), (3.6)

δk,1(s)= Xk+1(s)− X̄k(s) = (X(s)− X(tk))χ[tk,tk+1)(s)+Δk Xχ[tk+1,T ](s)

−
∫ tk+1

tk

dw(s′)

T − s′

N−1∑

j =k+1

(t j +1 − t j )χ[t j +1/2,T ](s)

= χ[tk,tk+1)(s)

[
(s − tk)

b − X(tk)

T − tk
+ (T − s)

∫ s

tk

dw(s′)

T − s′

]

+ χ[tk+1,T ](s)

[
(tk+1 − tk)

b − X(tk)

T − tk
+ (T − tk+1)

∫ tk+1

tk

dw(s′)

T − s′

]

−
∫ tk+1

tk

dw(s′)

T − s′

N−1∑

j =k+1

(t j +1 − t j )χ[t j +1/2,T ](s).

It is clear thatδk,0(s) = δk,1(s) for s /∈ (tk, tk+1). It can also be seen that the measureνr , where
r = 1, . . . ,6, of the setS(r )k onwhich the difference

∏r
j =1 δk,1(sj )−

∏r
j =1 δk,0(sj ) is different from zero

has orderh. Indeed,S(r )k =
⋃r

j =1{(s1, . . . , sr ): sj ∈ (tk, tk+1)} andhenceνr (S
(r )
k ) < r νr ({(s1, . . . , sr ):

s1 ∈ (tk, tk+1)}), which is of orderh. Furthermore, it is not difficult to verify that the integral
∫ s

tk
dw(s′)
T−s′ ,

wheretk 6 s6 tk+1, andX̄k areindependent by showing thatE
[
X̄k(t)

∫ s
tk

dw(s′)
T−s′

]
= 0 for any 06 t 6 T

andtk 6 s 6 tk+1. In what follows these properties are used in the analysis of the parts ofρk. We shall
also exploit the following inequality (see, e.g.,Milstein & Tretyakov, 2004a, Lemma A.4) for anyp > 1:

E|b − X(tk)|
2p 6 K (T − tk)

p. (3.7)

We have from (3.4) and (3.5) that

ρk = E
∫

[0,T ]
v(1)(X̄k; s1)[δk,1(s1)− δk,0(s1)]ν1(ds1)

+
1

2
E
∫

[0,T ]2
v(2)(X̄k; s1, s2)[δk,1(s1)δk,1(s2)− δk,0(s1)δk,0(s2)]ν2(ds1ds2)+ ∙ ∙ ∙

+
1

5!
E
∫

[0,T ]5
v(5)(X̄k; s1, . . . , s5)




5∏

j =1

δk,1(sj )−
5∏

j =1

δk,0(sj )



 ν5(ds1 ∙ ∙ ∙ ds5)
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+
1

6!
E
∫

[0,T ]6



v(6)(X̄k + λ1δk,1; s1, . . . , s6)

6∏

j =1

δk,1(sj )

− v(6)(X̄k + λ0δk,0; s1, . . . , s6)

6∏

j =1

δk,0(sj )



 ν6(ds1 ∙ ∙ ∙ ds6). (3.8)

Beforewe start with the analysis ofρk, we state the lemma that will be used in estimating the second
term of (3.8) and that is proved at the end of this section.

LEMMA 3.1. Let Us(x) := v(2)(x; s, s). Then the following estimate holds:
∣
∣
∣
∣
∣
EUtk(X̄k)

[
(b − X(tk))2

(T − tk)2
−

1

T − tk

]∣∣
∣
∣
∣
6

K
√

T − tk
,

whereK > 0 is a constant that is independent ofk andh.

Now we analyse the terms formingρk in (3.8). Let us introduce the indicatorIk = I{θ1,...,θn}(tk). For
the first term in (3.8) we obtain

r (1)k := E
∫

[0,T ]
v(1)(X̄k; s1)[δk,1(s1)− δk,0(s1)]ν1(ds1)

= E
∫ tk+1

tk
v(1)(X̄k; s1)[δk,1(s1)− δk,0(s1)]ds1

+ v(1)(X̄k; tk)[δk,1(tk)− δk,0(tk)] Ik + v(1)(X̄k; tk+1)[δk,1(tk+1)− δk,0(tk+1)] Ik+1

= E
∫ tk+1

tk
v(1)(X̄k; s1)

[
(s1 − tk)

b − X(tk)

T − tk
+ (T − s1)

∫ s1

tk

dw(s′)

T − s′

]
ds1

− E
∫ tk+1

tk+1/2

v(1)(X̄k; s1)

[
(tk+1 − tk)

b − X(tk)

T − tk
+ (T − tk+1)

∫ tk+1

tk

dw(s′)

T − s′

]
ds1

= E
b − X(tk)

T − tk

[∫ tk+1

tk
v(1)(X̄k; s1)(s1 − tk)ds1 − (tk+1 − tk)

∫ tk+1

tk+1/2

v(1)(X̄k; s1)ds1

]

= E
b − X(tk)

T − tk

[∫ tk+1/2

tk
v(1)(X̄k; s1)(s1 − tk)ds1 −

∫ tk+1

tk+1/2

v(1)(X̄k; s1)(tk+1 − s1)ds1

]

.

Integrating by parts, we get

r (1)k = E
b − X(tk)

T − tk

[

v(1)(X̄k; tk+1/2)
(tk+1 − tk)2

8
−
∫ tk+1/2

tk

d

ds1
v(1)(X̄k; s1)

(s1 − tk)2

2
ds1

− v(1)(X̄k; tk+1/2)
(tk+1 − tk)2

8
−
∫ tk+1

tk+1/2

d

ds1
v(1)(X̄k; s1)

(tk+1 − s1)
2

2
ds1

]
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= −E
b − X(tk)

T − tk

[∫ tk+1/2

tk

d

ds1
v(1)(X̄k; s1)

(s1 − tk)2

2
ds1

+
∫ tk+1

tk+1/2

d

ds1
v(1)(X̄k; s1)

(tk+1 − s1)
2

2
ds1

]

.

It follows from here and the inequality (3.7) that

|r (1)k | 6
K h3

√
T − tk

, k = 0, . . . , N − 1. (3.9)

Now consider the second term in (3.8). We obtain

r (2)k :=
1

2
E
∫

[0,T ]2
v(2)(X̄k; s1, s2)[δk,1(s1)δk,1(s2)− δk,0(s1)δk,0(s2)]ν2(ds1 ds2)

=
1

2
E
∫

[0,T ]2
v(2)(X̄k; s1, s2)

×

{[

(s1 − tk)(s2 − tk)
(b − X(tk))2

(T − tk)2
+ (s1 ∧ s2 − tk)

T − s1 ∨ s2

T − tk

]

× χ[tk,tk+1)(s1)χ[tk,tk+1)(s2)

+ 2

[

(tk+1 − tk)(s1 − tk)
(b − X(tk))2

(T − tk)2
+ (s1 − tk)

T − tk+1

T − tk

]

χ[tk,tk+1)(s1)χ[tk+1,T ](s2)

+

[

(tk+1 − tk)
2 (b − X(tk))2

(T − tk)2
+ (tk+1 − tk)

T − tk+1

T − tk

]

×
(
χ[tk+1,T ](s1)χ[tk+1,T ](s2)− χ[tk+1/2,T ](s1)χ[tk+1/2,T ](s2)

)

−
2

T − tk

N−1∑

j =k+1

(t j +1 − t j )χ[t j +1/2,T ](s2)

×
[
(s1 − tk)χ[tk,tk+1)(s1)− (tk+1 − tk)χ[tk+1/2,tk+1)(s1)

]
}

ν2(ds1 ds2). (3.10)

We decompose the integral from (3.10) and estimate each part separately. We have

A1k := E
∫

[0,T ]2
v(2)(X̄k; s1, s2)

×

[

(s1 − tk)(s2 − tk)
(b − X(tk))2

(T − tk)2
+ (s1 ∧ s2 − tk)

T − s1 ∨ s2

T − tk

]

× χ[tk,tk+1)(s1)χ[tk,tk+1)(s2)ν2(ds1 ds2)
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= E
∫ tk+1

tk
v(2)(X̄k; s, s)

[

(s − tk)
2 (b − X(tk))2

(T − tk)2
+ (s − tk)

T − s

T − tk

]

ds

+ E
∫ tk+1

tk

∫ tk+1

tk
v(2)(X̄k; s1, s2)

×

[

(s1 − tk)(s2 − tk)
(b − X(tk))2

(T − tk)2
+ (s1 ∧ s2 − tk)

T − s1 ∨ s2

T − tk

]

ds1 ds2, (3.11)

wherethe last integral is estimated byK h3 by observing that sup|v(2)| is bounded (see Assumptions
2.1) and using (3.7) to get

E
(b − X(tk))2

(T − tk)2
6

K

T − tk
6

K

h
.

Also note that, in (3.11), we omit the integrals over the measure concentrated on the liness = tk and
s = tk+1 andover the unit measures since it is obvious that they are equal to zero. Furthermore, since
v(2)(X̄k; s, s) = v(2)(X̄k; tk, tk) +

∫ s
tk

d
ds′ v

(2)(X̄k; s′, s′)ds′, the first integral on the right-hand side of
(3.11) can be written as

E
∫ tk+1

tk
v(2)(X̄k; s, s)

[

(s − tk)
2 (b − X(tk))2

(T − tk)2
+ (s − tk)

T − s

T − tk

]

ds

= Ev(2)(X̄k; tk, tk)

[
(b − X(tk))2

(T − tk)2

∫ tk+1

tk
(s − tk)

2 ds+
∫ tk+1

tk
(s − tk)

T − s

T − tk
ds

]

+ E
∫ tk+1

tk

∫ s

tk

d

ds′ v
(2)(X̄k; s′, s′)

[

(s − tk)
2 (b − X(tk))2

(T − tk)2
+ (s − tk)

T − s

T − tk

]

ds′ ds,

wherethe second integral is estimated byK h3 usingthe same arguments as in (3.11). So, we have

A1k = Ev(2)(X̄k; tk, tk)

[
(b − X(tk))2

(T − tk)2
(tk+1 − tk)3

3
+
(tk+1 − tk)2

2

T − tk+1 + (tk+1 − tk)/3

T − tk

]

+O(h3)
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with |O(h3)| 6 K h3. The next part of (3.10) can be written as

A2k := 2E
∫

[0,T ]2
v(2)(X̄k; s1, s2)

[

(tk+1 − tk)(s1 − tk)
(b − X(tk))2

(T − tk)2
+ (s1 − tk)

T − tk+1

T − tk

]

× χ[tk,tk+1)(s1)χ[tk+1,T ](s2)ν2(ds1 ds2)

= 2E
∫ T

tk+1

∫ tk+1

tk
v(2)(X̄k; s1, s2)

[

(tk+1 − tk)(s1 − tk)
(b − X(tk))2

(T − tk)2
+ (s1 − tk)

T − tk+1

T − tk

]

ds1 ds2

+
n∑

i =1

Iθi>tk E
∫ tk+1

tk
v(2)(X̄k; s1, θi )

[

(tk+1 − tk)(s1 − tk)
(b − X(tk))2

(T − tk)2
+ (s1 − tk)

T − tk+1

T − tk

]

ds1

= 2E

[
(tk+1 − tk)3

2

(b − X(tk))2

(T − tk)2
+
(tk+1 − tk)2

2

T − tk+1

T − tk

]

×

[∫ T

tk+1

v(2)(X̄k; tk, s2)ds2 +
n∑

i =1

Iθi>tkv
(2)(X̄k; tk, θi )

]

+O(h3).

Thethird part of (3.10) is

A3k := E

[

(tk+1 − tk)
2 (b − X(tk))2

(T − tk)2
+ (tk+1 − tk)

T − tk+1

T − tk

]∫

[0,T ]2
v(2)(X̄k; s1, s2)

×
[
χ[tk+1,T ](s1)χ[tk+1,T ](s2)− χ[tk+1/2,T ](s1)χ[tk+1/2,T ](s2)

]
ν2(ds1 ds2).

For the integral inA3k wehave
∫

[0,T ]2
v(2)(X̄k; s1, s2)

[
χ[tk+1,T ](s1)χ[tk+1,T ](s2)− χ[tk+1/2,T ](s1)χ[tk+1/2,T ](s2)

]
ν2(ds1 ds2)

=
∫ T

tk+1

v(2)(X̄k; s, s)ds−
∫ T

tk+1/2

v(2)(X̄k; s, s)ds

+ 2
n∑

i =1

Iθi>tk

[∫ T

tk+1

v(2)(X̄k; s, θi )ds−
∫ T

tk+1/2

v(2)(X̄k; s, θi )ds

]

+
∫ T

tk+1

∫ T

tk+1

v(2)(X̄k; s1, s2)ds1 ds2 −
∫ T

tk+1/2

∫ T

tk+1/2

v(2)(X̄k; s1, s2)ds1 ds2

= −
(tk+1 − tk)

2
v(2)(X̄k; tk, tk)− (tk+1 − tk)

n∑

i =1

Iθi>tkv
(2)(X̄k; tk, θi )+O(h2)

− 2
∫ T

tk+1/2

∫ tk+1

tk+1/2

v(2)(X̄k; s1, s2)ds1 ds2 +
∫ tk+1

tk+1/2

∫ tk+1

tk+1/2

v(2)(X̄k; s1, s2)ds1 ds2
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= −
(tk+1 − tk)

2
v(2)(X̄k; tk, tk)− (tk+1 − tk)

n∑

i =1

Iθi>tkv
(2)(X̄k; tk, θi )

− (tk+1 − tk)
∫ T

tk+1

v(2)(X̄k; tk, s2)ds2 +O(h2).

Then

A3k = −E

[(

v(2)(X̄k; tk, tk)+ 2
n∑

i =1

Iθi>tkv
(2)(X̄k; tk, θi )

)

×

(
(tk+1 − tk)3

2

(b − X(tk))2

(T − tk)2
+
(tk+1 − tk)2

2

T − tk+1

T − tk

)]

− E

[

(tk+1 − tk)
3 (b − X(tk))2

(T − tk)2
+ (tk+1 − tk)

2 T − tk+1

T − tk

]∫ T

tk+1

v(2)(X̄k; tk, s2)ds2

+ O(h3).

Thelast part of (3.10) is

A4k := −
2

T − tk
E
∫

[0,T ]2
v(2)(X̄k; s1, s2)

N−1∑

j =k+1

(t j +1 − t j )χ[t j +1/2,T ](s2)

×
[
(s1 − tk)χ[tk,tk+1)(s1)− (tk+1 − tk)χ[tk+1/2,tk+1)(s1)

]
ν2(ds1 ds2)

= −
2

T − tk
E
∫

[0,T ]2
v(2)(X̄k; s1, s2)

N−1∑

j =k+1

(t j +1 − t j )χ[t j +1/2,T ](s2)

×
[
(s1 − tk)χ[tk,tk+1/2)(s1)− (tk+1 − s1)χ[tk+1/2,tk+1)(s1)

]
ν2(ds1 ds2)

= −
2

T − tk
E




∫ T

tk+3/2

N−1∑

j =k+1

(t j +1 − t j )χ[t j +1/2,T ](s2)

×
(∫ tk+1/2

tk
v(2)(X̄k; s1, s2)(s1 − tk)ds1

−
∫ tk+1

tk+1/2

v(2)(X̄k; s1, s2)(tk+1 − s1)ds1

)

ds2 +
n∑

i =1

Iθi>tk+1(θi − tk+1)

×

(∫ tk+1/2

tk
v(2)(X̄k; s1, θi )(s1 − tk)ds1 −

∫ tk+1

tk+1/2

v(2)(X̄k; s1, θi )(tk+1 − s1)ds1

)]

.

Exploiting arguments similar to the ones used before, it is not difficult to get thatA4k = O(h3).
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As a result, we obtain

r (2)k =
1

2
(A1k + A2k + A3k + A4k)

= −
(tk+1 − tk)3

12
Ev(2)(X̄k; tk, tk)

[
(b − X(tk))2

(T − tk)2
−

1

T − tk

]

+O(h3). (3.12)

Applying Lemma3.1, we get

|r (2)k | 6
K h3

√
T − tk

. (3.13)

Now we estimate the remaining terms in (3.8). We obtain from (3.6) that

δk,0(s) = χ[tk+1/2,T ](s)(tk+1 − tk)
b − X(tk)

T − tk
+
∫ tk+1

tk

dw(s′)

T − s′

N−1∑

j =k+1

(t j +1 − t j )χ[tk+1/2,t j +1/2)(s).

Then

Ev(3)(X̄k; s1, s2, s3)

3∏

i =1

δk,0(si )

= Ev(3)(X̄k; s1, s2, s3)

×
3∏

i =1



(tk+1 − tk)
b − X(tk)

T − tk
χ[tk+1/2,T ](si )+

∫ tk+1

tk

dw(s′)

T − s′

N−1∑

j =k+1

(t j +1 − t j )χ[tk+1/2,t j +1/2)(si )





= Ev(3)(X̄k; s1, s2, s3)(tk+1 − tk)
2 b − X(tk)

(T − tk)2



(tk+1 − tk)
(b − X(tk))2

T − tk

3∏

i =1

χ[tk+1/2,T ](si )

+
3∑

i =1

χ[tk+1/2,T ](si )

T − tk+1

∏

l 6=i

N−1∑

j =k+1

(t j +1 − t j )χ[tk+1/2,t j +1/2)(sl )



 .

Fromhere we get the estimate
∣
∣
∣
∣
∣
∣
E



v(3)(X̄k; s1, s2, s3)

3∏

j =1

δk,0(sj )





∣
∣
∣
∣
∣
∣
6

K h2

√
T − tk

.

Analogously, we obtain
∣
∣
∣
∣
∣
∣
E



v(3)(X̄k; s1, s2, s3)

3∏

j =1

δk,1(sj )





∣
∣
∣
∣
∣
∣
6

K h2

√
T − tk

.
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Then,also taking into account that the measureν3 of the setS(3)k onwhich the difference
∏3

j =1δk,1(sj )−∏3
j =1δk,0(sj ) is different from zero has orderO(h), we arrive at

∣
∣
∣
∣
∣
∣

1

6
E
∫

[0,T ]3
v(3)(X̄k; s1, s2, s3)




3∏

j =1

δk,1(sj )−
3∏

j =1

δk,0(sj )



 ν3(ds1 ds2 ds3)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1

6
E
∫

[0,T ]3
I
S(3)k
(s1, s2, s3)v

(3)(X̄k; s1, s2, s3)




3∏

j =1

δk,1(sj )−
3∏

j =1

δk,0(sj )



 ν3(ds1 ds2 ds3)

∣
∣
∣
∣
∣
∣

6
1

6

∫

[0,T ]3
I
S(3)k
(s1, s2, s3)





∣
∣
∣
∣
∣
∣
Ev(3)(X̄k; s1, s2, s3)

3∏

j =1

δk,1(sj )

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
Ev(3)(X̄k; s1, s2, s3)

3∏

j =1

δk,0(sj )

∣
∣
∣
∣
∣
∣



 ν3(ds1 ds2 ds3)

6
K h3

√
T − tk

. (3.14)

Sincewe have for the terms in (3.6) that

E(Δk X)4 6 K h2, E(X(s)− X(tk))
4χ[tk,tk+1)(s) 6 K h2,

E




∫ tk+1

tk

dw(s′)

T − s′

N−1∑

j =k+1

(t j +1 − t j )χ[t j +1/2,T ](s)





4

6 K h2,

andthe measureν4 of the setS(4)k on which the difference
∏4

j =1δk,1(sj ) −
∏4

j =1δk,0(sj ) is different
from zero has orderO(h), we obtain

∣
∣
∣
∣
∣
∣

1

4!
E
∫

[0,T ]4
v(4)(X̄k; s1, . . . , s4)




4∏

j =1

δk,1(sj )−
4∏

j =1

δk,0(sj )



 ν4(ds1 ∙ ∙ ∙ ds4)

∣
∣
∣
∣
∣
∣

6
1

4!
sup|v(4)|

∫

[0,T ]4
I
S(4)k
(s1, . . . , s4)



E

∣
∣
∣
∣
∣
∣

4∏

j =1

δk,1(sj )

∣
∣
∣
∣
∣
∣
+ E

∣
∣
∣
∣
∣
∣

4∏

j =1

δk,0(sj )

∣
∣
∣
∣
∣
∣



 ν4(ds1 ∙ ∙ ∙ ds4)

6 K h3. (3.15)

By analogous arguments, we get
∣
∣
∣
∣
∣
∣

1

5!
E
∫

[0,T ]5
v(5)(X̄k; s1, . . . , s5)




5∏

j =1

δk,1(sj )−
5∏

j =1

δk,0(sj )



 ν5(ds1 ∙ ∙ ∙ ds5)

∣
∣
∣
∣
∣
∣

6
1

5!
sup|v(5)|

∫

[0,T ]5
E

∣
∣
∣
∣
∣
∣

5∏

j =1

δk,1(sj )−
5∏

j =1

δk,0(sj )

∣
∣
∣
∣
∣
∣
ν5(ds1 ∙ ∙ ∙ ds5)

6 K h7/2. (3.16)
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SinceE
∏6

j =1|δk,i (sj )| 6 K h3, the last term in (3.8) is estimated as

∣
∣
∣
∣
∣
∣

1

6!
E
∫

[0,T ]6



v(6)(X̄k + λ1δk,i ; s1, . . . , s6)

6∏

j =1

δk,1(sj )

− v(6)(X̄k + λ0δk,i ; s1, . . . , s6)

6∏

j =1

δk,0(sj )



 ν6(ds1 ∙ ∙ ∙ ds6)

∣
∣
∣
∣
∣
∣

6
1

6!
sup|v(6)|

∣
∣
∣
∣
∣
∣

∫

[0,T ]6
E




6∏

j =1

|δk,1(sj )| +
6∏

j =1

|δk,0(sj )|



 ν6(ds1 ∙ ∙ ∙ ds6)

∣
∣
∣
∣
∣
∣

6 K h3. (3.17)

Substituting(3.9) and (3.13)–(3.17) into (3.8), we get

|ρk| 6
K h3

√
T − tk

, k = 0, . . . , N − 1,

which together with (3.3) and (3.4) implies (2.12). Hence Theorem2.2 is proved.

Proof of Lemma3.1. Assumptions2.1 ensure that, for a fixedτ ∈ [0, T ], the functionalUτ (x) =
v(2)(x; τ, τ ) is Fŕechet differentiable and its derivative has the form

U (1)
τ (x)(δ) =

∫ T

0
u(1)(x; s)δ(s)ds+ u(1)(x; τ)δ(τ )+

n∑

i =1

u(1)(x; θi )δ(θi ),

whereu(1)(x; s) is uniformly bounded forx ∈ A[0, T ] ands ∈ [0, T ].
We also note (Milstein & Tretyakov, 2004a, Corollary A.1) that

ψ(tl ) :=
(b − X(tl ))2

(T − tl )2
−

1

T − tl
, l = 0, . . . , N − 1,

is a martingale.
Let us introduce the auxiliary processesX̄(0)k (t), wherek = 0, . . . ,N − 1, as follows:

X̄(0)k (t) := X̄k(t)χ[0,tk)(t)+ bχ[tk,T ](t).

Usingthe Taylor formula for functionals, we get

Utk(X̄k) = Utk(X̄
(0)
k )+

∫ T

0
u(1)(X̄(0)k + λδ; s)δ(s)ds+ u(1)(X̄(0)k + λδ; tk)δ(tk)

+
n∑

i =1

u(1)(X̄(0)k + λδ; θi )δ(θi ),
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where

δ(s) = X̄k(s)− X̄(0)k (s)

=



X(tk)+
N−1∑

j =k+1

(
Δ j X + (t j +1 − t j )

∫ tk+1

tk

dw(s′)

T − s′

)
χ[t j +1/2,T ](s)− b



χ[tk,T ](s)

and0< λ < 1.
We have

∣
∣EUtk(X̄k)ψ(tk)

∣
∣ 6

∣
∣
∣EUtk(X̄

(0)
k )ψ(tk)

∣
∣
∣+

∣
∣
∣
∣
∣
∣
Eψ(tk)

∫ T

tk
u(1)(X̄(0)k + λδ; s)

×



X(tk)+
N−1∑

j =k+1

(
Δ j X + (t j +1 − t j )

∫ tk+1

tk

dw(s′)

T − s′

)
χ[t j +1/2,T ](s)− b



 ds

∣
∣
∣
∣
∣
∣

+
∣
∣
∣Eψ(tk)u

(1)(X̄(0)k + λδ; tk)(X(tk)− b)
∣
∣
∣

+
n∑

i =1

Iθi>tk

∣
∣
∣Eψ(tk)u

(1)(X̄(0)k + λδ; θi )δ(θi )
∣
∣
∣ . (3.18)

It is not difficult to see that the second term on the right-hand side of (3.18) is bounded by a constant
and the third and fourth terms are bounded byK/

√
T − tk. Thus, we have

∣
∣EUtk(X̄k)ψ(tk)

∣
∣ 6

∣
∣
∣EUtk(X̄

(0)
k )ψ(tk)

∣
∣
∣+

K
√

T − tk
. (3.19)

Now introduce the auxiliary processes̄X( j )
k (t), where j = 1, . . . ,k and k = 0, . . . ,N − 1, as

follows:

X̄( j )
k (t) := X̄( j −1)

k (t)χ[0,tk− j )(t)+ bχ[tk− j ,T ](t).

We have

Utk(X̄
( j −1)
k ) = Utk(X̄

( j )
k )+

∫ T

0
u(1)(X̄( j )

k + λδ; s)δ(s)ds+
n∑

i =1

u(1)(X̄( j )
k + λδ; θi )δ(θi ),

where

δ(s) = X̄( j −1)
k (s)− X̄( j )

k (s) = (X(s)− b)χ[tk− j ,tk− j +1)(s).

Then(as before,Ik = I{θ1,...,θn}(tk))

Utk(X̄
( j −1)
k ) = Utk(X̄

( j )
k )+

∫ tk− j +1

tk− j

u(1)(X̄( j )
k + λδ; s)[X(s)− b]ds

+ Ik− j u
(1)(X̄( j )

k + λδ; tk− j )[X(tk− j )− b]. (3.20)
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Recallingthatψ(tl ), wherel = 0, . . . ,N − 1, is a martingale and observing thatUtk(X̄
( j )
k ) is Ftk− j -

measurable,we get that
∣
∣
∣EUtk(X̄

( j )
k )ψ(tk− j +1)

∣
∣
∣ =

∣
∣
∣EUtk(X̄

( j )
k )ψ(tk− j )

∣
∣
∣ . (3.21)

It follows from (3.20) and (3.21) that
∣
∣
∣EUtk(X̄

( j −1)
k )ψ(tk− j +1)

∣
∣
∣ 6

∣
∣
∣EUtk(X̄

( j )
k )ψ(tk− j )

∣
∣
∣

+

∣
∣
∣
∣
∣
Eψ(tk− j +1)

∫ tk− j +1

tk− j

u(1)(X̄( j )
k + λδ; s)[X(s)− b]ds

∣
∣
∣
∣
∣

+ Ik− j

∣
∣
∣Eψ(tk− j +1)u

(1)(X̄( j )
k + λδ; tk− j )[X(tk− j )− b]

∣
∣
∣ . (3.22)

Thesecond term on the right-hand side of (3.22) is estimated as
∣
∣
∣
∣
∣
Eψ(tk− j +1)

∫ tk− j +1

tk− j

u(1)(X̄( j )
k + λδ; s)[X(s)− b]ds

∣
∣
∣
∣
∣

6 sup|u(1)|
∫ tk− j +1

tk− j

√
Eψ2(tk− j +1)

√
E[X(s)− b]2 ds

6
K

T − tk− j +1

∫ tk− j +1

tk− j

√
T − sds

6
K

√
T − tk− j +1

(tk− j +1 − tk− j ).

Thethird term on the right-hand side of (3.22) is estimated asK Ik− j /
√

T − tk− j +1. Then
∣
∣
∣EUtk(X̄

( j −1)
k )ψ(tk− j +1)

∣
∣
∣ 6

∣
∣
∣EUtk(X̄

( j )
k )ψ(tk− j )

∣
∣
∣+

K
√

T − tk− j +1
(tk− j +1 − tk− j )

+
K Ik− j√

T − tk− j +1
, j = 1, . . . , k. (3.23)

It follows from (3.19), (3.23) and the evident inequality
∣
∣EUtk(X̄

(k)
k )ψ(0)

∣
∣ 6 K that

∣
∣EUtk(X̄k)ψ(tk)

∣
∣ 6

K
√

T − tk
+ K

k∑

j =1

(tk− j +1 − tk− j )√
T − tk− j +1

+ K
k∑

j =1

Ik− j√
T − tk− j +1

.

Recallingthat the number of pointsθi is equal to the fixedn, we get
∑k

j =1 Ik− j 6 n. Finally, we obtain

∣
∣EUtk(X̄k)ψ(tk)

∣
∣ 6

K
√

T − tk
+

K
√

T − tk

k∑

j =1

(tk− j +1 − tk− j )+
K

√
T − tk

k∑

j =1

Ik− j

6
K

√
T − tk

.

HenceLemma3.1 is proved. �
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REMARK 3.2. It is notable that, in the multidimensional case(d > 1), the integrand of(3.10)contains
cross-terms in all coordinate pairsi and j , namely,δi

k,1(s1)δ
j
k,1(s2)− δi

k,0(s1)δ
j
k,0(s2). The terms corre-

sponding toi = j are estimated in the same way as in the considered one-dimensional case. Fori 6= j
the contribution from all stochastic integral terms is zero and the right-hand side of(3.10)has terms with
(bi − Xi (tk))(bj − X j (tk))/(T − tk)2, which are martingales (Milstein & Tretyakov, 2004a, Corollary
A.1), and their further estimation yieldsO(h3/

√
T − tk) again. In (3.12) it should be understood that

the term 1/(T − tk) only appears fori = j .

4. Integral-type functionals

In this section we consider conditional Wiener integrals of integral-type functionals as follows:

F(x(∙)) = ϕ

(
x(θ),

∫ T

0
f (t, x(t))dt

)
, 0< θ < T, x ∈ Cd

0,a;T,b. (4.1)

Let us introduce the scalar processZ(t) satisfying the equation

dZ = f (t, X(t))dt, Z(0)= 0, (4.2)

whereX(t) is the solution of (2.3) and (2.4). Clearly, the conditional Wiener integralJ from (1.1) of
the functional (4.1) is equal to the expectation, that is,

J = Eϕ(X(θ), Z(T)). (4.3)

The approximation (2.11) and (2.10) applied to (1.1) and (4.1) results in the following trapezoidal
method forZ:

J ≈ J̄ = Eϕ(X(θ), ZN), (4.4)

where

Z0 = 0,

Zk+1 = Zk +
tk+1 − tk

2
[ f (tk, X(tk))+ f (tk+1, X(tk+1))], k = 0, . . . , N − 1. (4.5)

Recall that the time discretization used here is so thatθ ∈ {t0, t1, . . . , tN}.
If we assume thatϕ(x, z) and f (t, x) have bounded derivatives up to a sufficiently high order, then it

follows from the general Theorem2.2that the method (4.4) and (4.5) for (1.1) and (4.1) has the second
order of accuracy, i.e., the estimate (2.12) is valid for it. The other assumptions under which Theorem
2.2 is valid are thatf (t, x) and its derivatives up to a sufficiently high order are bounded andϕ(x, z) is
sufficiently smooth. We note that, in the case of integral-type functionals, the convergence theorem can
be proved more simply, exploiting a more standard technique used in the weak-sense approximation of
SDEs (Milstein & Tretyakov, 2004b) (see its application in the case of conditional Wiener integrals of
exponential-type functionals inMilstein & Tretyakov(2004a) and in the case of usual Wiener integrals
in Ventzelet al. (1984)). It is interesting that no method of the form

Zk+1 = Zk + (tk+1 − tk)
3∑

i =1

αi f (tk + βi , X(tk + βi )), αi ∈ R, βi ∈ [0, tk+1 − tk],
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hasorder of accuracy higher than two (in the case of usual Wiener integrals, see a similar comment
in Ventzelet al.,1984). At the same time, in the case of integral-type functionals of a particular form,
namely, the exponential-type functionalsF(x(∙)) = exp

[ ∫ T
0 f (t, x(t))dt

]
, a fourth-order Runge–Kutta

method was constructed inMilstein & Tretyakov(2004a).
We made a computational comparison between (4.5) and the fourth-order Runge–Kutta method in

computing the ground state energy of one particle in a one-dimensional harmonic oscillator. Despite
being of lower order, the method (4.5) turns out to be preferable due to its stability properties. These fol-
low from preservation by (4.5) of such structural properties of exponential-type functionals as positivity
and monotonicity, which can be broken down in the case of the fourth-order Runge–Kutta method from
Milstein & Tretyakov(2004a) (see similar observations, although in a different context, inMilstein and
Tretyakov, 2009). Furthermore, instead of the trapezoidal rule (4.5), we can use the Simpson rule to
give:

Z0 = 0,

Zk+1 = Zk +
tk+1 − tk

6
[ f (tk, X(tk))+ 4 f (tk+1/2, X(tk+1/2))+ f (tk+1, X(tk+1))],

k = 0, . . . , N − 1. (4.6)

Although both methods (4.5) and (4.6) are of order two, the method (4.6) has a much smaller bias in
our experiments than the method (4.5) and thus is computationally more effective. The method (4.4)
and (4.5) and the method (4.4) and (4.6) extend the arsenal of numerical tools considered inMilstein &
Tretyakov(2004a,b) for computing exponential-type functionals (1.2).

5. Extension to the case of pinned diffusions

In this section we extend the Euler method (2.14) and (2.13) to the case of paths ofRd-diffusions

dX= α(t,X)dt + dw(t), X(t0) = a, (5.1)

thatare conditioned to pass through a pointb ∈ Rd attimeT , wheret0 6 t 6 T . Conditioned diffusions
are used, for example, in parameter estimation problems (see, e.g.,Delyon & Hu, 2006). We note that
the Brownian bridge case considered in the previous sections2–4corresponds to (5.1) withα = 0.

Analogously to Section4, we will be interested here in simulating the expectations of integral-type
functionals

F(x(∙)) = ϕ

(∫ T

t0
f (t, x(t))dt

)
, x ∈ Cd

t0,a;T,b, (5.2)

but now with respect to the measure on paths corresponding to the conditioned diffusion (5.1). It is clear
that this expectation is equal to

J = Eϕ(Z(T)), (5.3)

where the scalar processZ(t) satisfies the equation

dZ= f (t,X(t))dt, Z(t0) = 0, (5.4)

andX(t) is the solution of (5.1). In what follows we assume that the functionsα(t, x) and f (t, x)
are bounded and have bounded derivatives up to a sufficiently high order and thatϕ(z) is sufficiently
smooth.
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Theexpectation (5.3) can be rewritten as (Clark,1990;Delyon & Hu,2006)

J =
Eϕ(Z(T))Y(T)

EY(T)
, (5.5)

whereZt0,a,z(t) andYt0,a,y(t), with t > t0, satisfy the equations

dZ = f (t, X(t))dt, Z(t0) = 0, (5.6)

dY = αT(t, X)
b − X

T − t
Ydt + αT(t, X)Ydw(t), Y(t0) = 1, (5.7)

with X(t) = Xt0,a(t) beingthe Brownian bridge froma at the timet = t0 to b at the timet = T (cf.
(2.3) and (2.4)), that is,

dX=
b − X

T − t
dt + dw(t), X(t0) = a. (5.8)

We note that

Y(T) = exp(Q(T)), (5.9)

where

dQ =
[
αT(t, X)

b − X

T − t
−

1

2
α2(t, X)

]
dt + αT(t, X)dw(t), Q(t0) = 0. (5.10)

We remark that, forα = 0 (the Brownian bridge case),J from (5.5) coincides withJ from (4.3).
We introduce a discretization of the time interval [t0, T ] given byt0 < t1 < ∙ ∙ ∙ < tN = T , which,

for simplicity is equidistant with the time steph = tk+1 − tk. To construct the numerical method we
simulate the Brownian bridgeX(t) at the nodestk exactly (see (2.9)), that is,

Xk+1 = Xk + h
b − Xk

T − tk
+

√
h

√
T − tk+1

T − tk
ξk+1, X0 = a, (5.11)

andwe approximate (5.6) and (5.10) as follows:

Zk+1 = Zk + hf (tk, Xk), Z0 = 0 (5.12)

and

Qk+1 = Qk + h

[

αT(tk, Xk)
b − Xk

T − tk
−
α2(tk, Xk)

2

]

+
√

h

√
T − tk+1

T − tk
αT(tk, Xk)ξk+1,

Q0 = 0, (5.13)

whereξk+1, for k = 0, . . . ,N − 1, ared-dimensional random vectors whose components are mutually
independent random variables with standard normal distributionN (0,1).

We remark that we choose to approximate (5.9) and (5.10) rather than (5.7) since it has been ob-
served (see, e.g.,Milstein and Tretyakov, 2009, and also Section4 here) that positivity preservation
automatically guaranteed by (5.13) has computational advantages, while an explicit scheme applied di-
rectly to (5.13) does not possess this property. We also emphasize thatX(tk) = Xk, i.e., there is no
numerical error introduced in (5.11).
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Now we define the approximation of the path integralJ from (5.3) as follows:

J = Eϕ(Z(T)) =
Eϕ(Z(T))Y(T)

EY(T)
≈ J̄ =

Eϕ(ZN) exp(QN)

E exp(QN)
. (5.14)

Let us introduce the function

u(t, x, z)y = E[ϕ(Zt,x,z(T))Yt,x,y(T)] (5.15)

and let

Yk = exp(Qk). (5.16)

Underthe assumptions we imposed on the coefficients at the beginning of this section, the function
u(t, x, z) is smooth inx andz, and sufficiently high moments ofu(t0, Xt0,a(t), Zt0,a,0(t))Yt0,a,1(t) and
u(tk, Xk, Zk)Yk and their derivatives with respect tox and z are bounded (Gikhman & Skorokhod,
1972). The method itself is applicable more widely and the assumptions can be relaxed in the spirit of
the comment after Assumptions 2.1.

THEOREM 5.1. The method(5.11)–(5.13) is of first order of accuracy, i.e.,

|Eϕ(Z(T))Y(T)− Eϕ(ZN) exp(QN)| 6 K h, (5.17)

where the constantK is independent ofh.

This theorem has the following evident corollary.

COROLLARY 5.2. The method(5.14)and(5.11)–(5.13) for evaluating the path integral(5.3) is of first
order of accuracy, i.e.,

|J − J̄ | 6 K h, (5.18)

where the constantK is independent ofh.

REMARK 5.3. We note that, if in(5.14)we substituteQN simulatedby the standard Euler scheme for
(5.10), that is,

Qk+1 = Qk + h

[

αT(tk, Xk)
b − Xk

T − tk
−
α2(tk, Xk)

2

]

+
√

hαT(tk, Xk)ξk+1, (5.19)

Q0 = 0,

then the method(5.14), (5.11), (5.12) and (5.19) is of orderh ln h instead ofO(h) for (5.14) and
(5.11)–(5.13) (also see footnote1 at the end of this section).

Proof of Theorem5.1. Using the standard technique (seeMilstein & Tretyakov, 2004b, p. 100), we can
write the global error in the form

R :=
∣
∣E
[
ϕ
(
Zt0,a,0(T)

)
Yt0,a,1(T)

]
− E[ϕ(ZN)YN ]

∣
∣

=

∣
∣
∣
∣
∣

N−1∑

k=0

(
Eu

(
tk+1, Xk+1, Ztk,Xk,Zk(tk+1)

)
Ytk,Xk,Yk(tk+1)− Eu(tk+1, Xk+1, Zk+1)Yk+1

)
∣
∣
∣
∣
∣
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=

∣
∣
∣
∣
∣

N−1∑

k=0

EYk
[
u
(
tk+1, Xk+1, Ztk,Xk,Zk(tk+1)

)
Ytk,Xk,1(tk+1)− u(tk+1, Xk+1, Zk+1)Ytk,Xk,1(tk+1)

]
∣
∣
∣
∣
∣

6
N−1∑

k=0

Rk, (5.20)

where

Rk =
∣
∣EYk

[
u
(
tk+1, Xk+1, Ztk,Xk,Zk(tk+1)

)
Ytk,Xk,1(tk+1)− u(tk+1, Xk+1, Zk+1)Ytk,Xk,1(tk+1)

]∣∣

=
∣
∣EYkE

[
u
(
tk+1, Xk+1, Ztk,Xk,Zk(tk+1)

)
Ytk,Xk,1(tk+1)

− u(tk+1, Xk+1, Zk+1)Ytk,Xk,1(tk+1)|Ftk

]∣∣ . (5.21)

Above we have exploited the fact that we simulateXk+1 exactly.
We first analyse the errorsRk for k = 0, . . . , N − 2 and introduce the function

v(x, z) := u(t + h, x, z),

the operators

L = L1 + L2 + L3,

L1 =
∂

∂t
+

b − x

T − t
∇ +

1

2

d∑

i =1

∂2

(∂xi )2
, L2 = f (t, x)

∂

∂z
,

L3 = αT(t, x)
b − x

T − t
y
∂

∂y
+

d∑

i =1

αi (t, x)y
∂2

∂xi ∂y
+

1

2
α2(t, x)y2 ∂

2

∂y2
, 06 t < T,

andthe one-step error fort 6 T − 2h given by

r (t, x, z) := Ev(Xt,x(t + h), Zt,x,z(t + h))Yt,x,1(t + h)

− Ev(Xt,x(t + h), Z̄t,x,z(t + h))Ȳt,x,1(t + h), (5.22)

whereZ̄t,x,z(t + h) andȲt,x,1(t + h) arethe one-step approximations ofZt,x,z(t + h) andYt,x,1(t + h),
respectively, that correspond to the method (5.11)–(5.13) and (5.16).

The second term in (5.22) can be rewritten as

r2 := Ev(Xt,x(t + h), Z̄t,x,z(t + h))Ȳt,x,1(t + h)

= Ev(Xt,x(t + h), z)Ȳt,x,1(t + h)

+ hf (t, x)E
∂

∂z
v(Xt,x(t + h), z)Ȳt,x,1(t + h)+ ρ1(t, x, z),

whereρ1(t, x, z) is such thatE|ρ1(tk, Xk, Zk)| 6 K h2 with a constantK that is independent ofh andt .
Furthermore, expanding the nonsingular part ofȲt,x,1(t + h), that is,

exp

(

−
h

2

T − t − h

T − t
α2(t, x)+

√
h

√
T − t − h

T − t
αT(t, x)ξ

)
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and

v(Xt,x(t + h), z) = v

(

x + h
b − x

T − t
+

√
h

√
T − t − h

T − t
ξ, z

)

,

and also∂∂zv(Xt,x(t + h), z) in powers ofh, we obtain

r2(t, x, z) = exp

(

hαT(t, x)
b − x

T − t
−
α2(t, x)

2

h2

T − t

)

× E

{[

1 −
h

2

T − t − h

T − t
α2(t, x)+

√
h

√
T − t − h

T − t
αT(t, x)ξ

+
h

2

T − t − h

T − t
[αT(t, x)ξ ]2 +

h3/2

6

[√
T − t − h

T − t
αT(t, x)ξ

]3




×

[

v(x, z)+ h
(b − x)T

T − t
∇v(x, z)+

√
h

√
T − t − h

T − t
ξT∇v(x, z)

+ h3/2

√
T − t − h

T − t

d∑

i, j =1

bi − xi

T − t
ξ j ∂2v

∂xi ∂x j
(x, z)

+
1

2

d∑

i, j =1

[
h2 (b

i − xi )(bj − x j )

(T − t)2
+ h

T − t − h

T − t
ξ i ξ j

]
∂2v

∂xi ∂x j
(x, z)

+ hf (t, x)

[
∂

∂z
v(x, z)+

√
h

√
T − t − h

T − t
ξT∇

∂

∂z
v(x, z)

]]}

+ h2ρ2(t, x, z), (5.23)

wherethe remainderρ2(t, x, z) is such that, due to the inequality (3.7) and that 1/(T − t − h) 6 1/h
for t 6 T − 2h, we can estimate it as

|Eρ2(tk, Xk, Zk)| 6
K

√
T − tk+1

. (5.24)

After taking the expectation in (5.23), we get the following simplified expression:

r2(t, x, z) = exp

(

hαT(t, x)
b − x

T − t
−
α2(t, x)

2

h2

T − t

)

×

{

v(x, z)+ h(L1 + L2)v(x, z)

+ hαT(t, x)∇v(x, z)+
h2

2

d∑

i, j =1

(bi − xi )(bj − x j )

(T − t)2
∂2v

∂xi ∂x j
(x, z)

−
h2

2

1

T − t

d∑

i =1

∂2v

(∂xi )2
(x, z)−

h2

T − t
αT(t, x)∇v(x, z)

}

+ h2ρ3(t, x, z),
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whereρ3 satisfiesan inequality of the form (5.24). Furthermore, expanding the exponent in powers of
h, we have

r2(t, x, z) = v(x, z)+ h(L1 + L2)v(x, z)+ hαT(t, x)

[
b − x

T − t
v(x, z)+ ∇v(x, z)

]

+
h2

2

([
αT(t, x)

b − x

T − t

]2

−
α2(t, x)

T − t

)

v(x, z)

+ h2
(
αT(t, x)

b − x

T − t

)(
b − x

T − t
∇v(x, z)

)
−

h2

T − t
αT(t, x)∇v(x, z)

+
h2

2

d∑

i, j =1

(bi − xi )(bj − x j )

(T − t)2
∂2v

∂xi ∂x j
(x, z)−

h2

2

1

T − t

d∑

i =1

∂2v

(∂xi )2
(x, z)

+ h2ρ4(t, x, z),

whereρ4 satisfiesan inequality of the form (5.24).
Now consider the first term in (5.22). Using the Taylor expansion of the expectations of SDE

solutions (Milstein & Tretyakov, 2004b, Lemma 2.1.9, p. 99), we obtain

r1(t, x, z) := Ev(Xt,x(t + h), Zt,x,z(t + h))Yt,x,1(t + h)

= v(x, z)+ h(L1 + L2)v(x, z)+ hαT(t, x)
b − x

T − t
v(x, z)+ hαT(t, x)∇v(x, z)

+
h2

2
L2[v(x, z)y]y=1 +

∫ t+h

t

(t + h − s)2

2
EL3[v(Xt,x(s), Zt,x,z(s))Yt,x,1(s)]ds. (5.25)

Denotethe last term in (5.25) ash2ρ5(t, x, z). Using the inequality (3.7) and that 1/(T − t − h) 6 1/h
for t 6 T − 2h, one can show thatρ5 satisfiesan inequality of the form (5.24). Furthermore, we have

L2[v(x, z)y]y=1 = 2

(
αT b − x

T − t

)(
b − x

T − t
∇v
)

−
2αT

T − t
∇v +

(
αT b − x

T − t

)2

v −
α2

T − t
v

+
d∑

i, j =1

(bi − xi )(bj − x j )

(T − t)2
∂2v

∂xi ∂x j
−

1

T − t

d∑

i =1

∂2v

(∂xi )2

+
d∑

i =1

[
(bi − xi )2

(T − t)2
−

1

T − t

]
∂αi

∂xi
v +

∑

i 6= j

(bi − xi )(bj − x j )

(T − t)2
∂αi

∂x j
v

+ ρ6(t, x, z),

whereρ6 satisfiesan inequality of the form (5.24).
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Hence

r (t, x, z) = r1(t, x, z)− r2(t, x, z)

=
h2

2

d∑

i =1

[
(bi − xi )2

(T − t)2
−

1

T − t

]
∂αi

∂xi
(t, x)v(x, z)

+
h2

2

∑

i 6= j

(bi − xi )(bj − x j )

(T − t)2
∂αi

∂x j
(t, x)v(x, z)+ h2ρ7(t, x, z), (5.26)

whereρ7 satisfiesan inequality of the form (5.24).
We recall (Milstein & Tretyakov, 2004a, Corollary A.1) that

ψ i (tk) :=
(bi − Xi (tk))2

(T − tk)2
−

1

T − tk
and ψ i, j (tk) :=

(bi − Xi (tk))(bj − X j (tk))

(T − tk)2
, i 6= j,

k = 0, . . . , N − 1,

are martingales.
It follows from (5.21) and (5.26) that, fork = 0, . . . ,N − 2, we have1

Rk 6 h2

∣
∣
∣
∣
∣
∣
EYk




d∑

i =1

ψ i (tk)g
i (tk, Xk, Zk)+

∑

i 6= j

ψ i, j (tk)g
i, j (tk, Xk, Zk)





∣
∣
∣
∣
∣
∣
+

K h2

√
T − tk+1

,

wheregi andgi, j arethe corresponding functions appearing in (5.26). Using arguments similar to those
in Milstein & Tretyakov(2004a, Lemma B.1), one can show that, fork = 0, . . . ,N − 2, we have

∣
∣
∣
∣
∣
∣
EYk




d∑

i =1

ψ i (tk)g
i (tk, Xk, Zk)+

∑

i 6= j

ψ i, j (tk)g
i, j (tk, Xk, Zk)





∣
∣
∣
∣
∣
∣
6

K h2

√
T − tk+1

.

Finally, we note that it is not difficult to obtain that

RN−1 6 K h.

ThusR6 K h + K h
∑N−2

k=0 h/
√

T − tk+1 6 K h, as required. �
The Monte Carlo estimator for the path integral (5.3) based on the method (5.14) and (5.11)–(5.13)

has the form

J ≈ J̄ =
Eϕ(ZN) exp(QN)

E exp(QN)
≈ Ĵ =

∑M
m=1 ϕ(mZN) exp(mQN)
∑M

m=1 exp(mQN)
, (5.27)

wheremZN andmQN , for m = 1, . . . ,M , are independent realizations of the corresponding random
variables. Note that the second approximate equality in (5.27) is related to the statistical error.

1If one were to use (5.19) instead of (5.13), thenRk 6 K h2/(T − tk+1) (cf. Remark5.3).
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TABLE 1 Square integral of the Brownian bridge. Errors in evaluating the conditional Wiener
integral (1.1) and (6.1) with p = 1 and p = 4 and for various time steps h. Here M is the
number of Monte Carloruns

h M p = 1 p = 4

0.20 1 × 109 6.66× 10−3 ± 0.01× 10−3 −1.3 × 10−3 ± 0.012× 10−3

0.10 1 × 109 1.67× 10−3 ± 0.009× 10−3 −0.32× 10−3 ± 0.011× 10−3

0.05 5 × 1010 0.417× 10−3 ± 0.001× 10−3 −0.080× 10−3 ± 0.002× 10−3

0.02 5 × 1010 0.067× 10−3 ± 0.001× 10−3 −0.015× 10−3 ± 0.002× 10−3

REMARK 5.4. It is possible to consider further generalizations. One may look at the possibility of
higher-order methods for pinned diffusions(5.1) as we did in the previous sections2 and4 in the case
of a Brownian bridge. Furthermore, the method(5.11)–(5.13)and Theorem5.1are not difficult to adapt
to a slightly more general additive noise situation than(5.1), in that we could consider conditioned
diffusions with any constant diffusion matrix, rather than particularly a unit diffusion matrix. At the
same time, we note that the case of pinned diffusions with multiplicative noise (i.e., when the diffusion
coefficients are state dependent) requires further development, and, in connection with this topic, we
also refer to the related worksMilstein et al. (2004),Haireret al. (2009) and the references therein.

6. Numerical examples

EXAMPLE 6.1. We consider the square integral of the Brownian bridge that has applications in statistics.
To test the proposed method we compute moments of this integral, i.e., we deal with the functionals

F(x(∙)) =

(∫ 1

0
x2(t)dt

)p

, p > 0, x ∈ C0,0;1,0. (6.1)

Theresults of our simulation are presented in Table1. The values before ‘±’ are the differences between
the exact value of the Wiener integralJ (see (1.1)) withF(x(∙)) from (6.1) and its sampled approxi-
mations. The reference values forJ are 1/6 for p = 1 and 0.0166799 forp = 4 (Tolmatz, 2002). The
values after ‘±’ reflect the Monte Carlo error only. They correspond to the confidence interval for the
corresponding estimator with probability 0.95. One can observe convergence with order two that is in
good agreement with our theoretical results.

EXAMPLE 6.2. Consider the following correlation functionΓ (θ), where 06 θ 6 T (see (1.3)):

Γ (θ) = 〈x(0)x(θ)〉

=
1

Z(T)

∫ ∞

−∞

∫

C0,y;T,y

x(0)x(θ) exp

(
−
∫ T

0
V(t, x(t))dt

)
dμT,y

0,y (x)dy =

∫∞
−∞ yJ1(y)dy
∫∞
−∞ J2(y)dy

,

(6.2)
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where

J1(y) =
∫

C0,y;T,y

x(θ) exp

(
−
∫ T

0
V(t, x(t))dt

)
dμT,y

0,y (x), (6.3)

J2(y) =
∫

C0,y;T,y

exp

[
−
∫ T

0
V(x(t))dt

]
dμT,y

0,y (x). (6.4)

We evaluate (6.2)–(6.4) for the harmonic potential

V(x) =
ω2

2
x2 (6.5)

andfor the anharmonic potential

V(x) =
ω2

2
x4. (6.6)

We recall (see, e.g.,Kleinert, 1995; Lobanov, 1996) thatT has the meaning of inverse temperature
here. In the case of the harmonic potential (6.5) the correlation function is equal to (Kleinert, 1995,
Chapter 3)

Γ (θ) =
1

2ω

coshω(θ − T/2)

sinh(ωT/2)
, 06 θ 6 T. (6.7)

We rewrite the integrals in (6.2) as

G =
∫ ∞

−∞
yJ1(y)dy =

√
2πσ 2

1 E

[

η1J1(η1) exp

(
η1

2σ2
1

)]

,

Z =
∫ ∞

−∞
J2(y)dy =

√
2πσ 2

2 E

[

J2(η2) exp

(
η2

2σ2
2

)]

, (6.8)

whereη1 andη2 areGaussian random variables, that is,N (0, σ2
1 ) andN (0,σ 2

2 ), with zero mean and
variancesσ 2

1 andσ 2
2 , respectively. The parametersσ 2

1 andσ 2
2 arechosen so that the variances of the

random variables under the expectations in (6.8) are small.
The following estimators forG andZ are used in our simulation:

Ĝ =

√
2πσ 2

1

M

M∑

m=1

[

mη1mJ̄1(η1) exp

(
mη1

2σ2
1

)]

,

Ẑ =

√
2πσ 2

2

M

M∑

m=1

[

mJ̄2(mη2) exp

(
mη2

2σ2
2

)]

, (6.9)

wheremη1 andmη2 aresampled fromN (0, σ2
1 ) andN (0,σ 2

2 ), respectively, so that the pairs(mη1,mη2)
areindependent, whilemη1 andmη2 in the same pair are dependent, that is,mη2 = σ2mη1/σ1. Here
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FIG. 1. The dependence of the correlation functionΓ (θ) from (6.2) onθ simulated withh = 0.2 andM = 108 for T = 10. Part
(a) corresponds to the harmonic potential (6.5) and part (b) to the anharmonic potential (6.6), both withω = 1.

TABLE 2 Correlation function. The error in evaluating the
correlation functionΓ (θ) from (6.2) in the case of the har-
monic potential(6.5)withω = 1, T = 10andθ = 1

h M Error

0.250 109 9.78× 10−4 ± 0.72× 10−4

0.200 109 6.18× 10−4 ± 0.72× 10−4

0.125 1010 2.45× 10−4 ± 0.23× 10−4

0.100 5× 1010 1.46× 10−4 ± 0.10× 10−4

mJ̄1(mη1) andmJ̄2(mη2) are values of the corresponding functionals evaluated along a path according
to the method (2.10). The pairs(mJ̄1(mη1), mJ̄2(mη2)) are simulated along independent paths, while
mJ̄1(mη1) andmJ̄2(mη2) in the same pair are evaluated along the same path. Recall (see Section2.2) that
a discretization of the time interval [0, T ] should be so that the pointθ belongs to the set of discretization
points{t0, t1, . . . , tN}.

The results of the experiment are presented in Tables2 and 3 and in Fig.1. The parametersσ1
andσ2 are taken as 1.2 and 0.8, respectively. As before, in these tables the values before ‘±’ are es-
timates of the bias, computed as the difference between the exactΓ (θ) and its sampled approxima-
tions, while the values after ‘±’ give half of the size of the confidence interval for the correspond-
ing estimator with probability 0.95. To compute the bias the exact valuesΓ (1)

.
= 0.1840098 and

Γ (8)
.
= 0.0678385 obtained from (6.7) are used. The number of Monte Carlo runsM is chosen here

so that the Monte Carlo error is small in comparison with the bias. It is not difficult to see that the ex-
periment illustrates second-order convergence of the method. We note that fittingCh2 to, for example,
the data of Table2 yieldsC

.
= 0.015, with the maximum absolute value of the residuals being equal to

3 × 10−5.
In Fig. 1(a) the results of the simulation ofΓ (θ) with h = 0.2 are compared with the exact curve

from (6.7). Due to the second order of accuracy of the proposed numerical method, these curves visually
coincide even for this relatively large time step. Figure1(b) demonstrates the behaviour of the correlation
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TABLE 3 Correlation function. The error in
evaluating the correlation functionΓ (θ) from
(6.2) in the case of the harmonic potential
(6.5) with ω = 1, T = 10, θ = 8 and when
the number of Monte Carlo runs is M= 1011

h Error

0.250 1.688× 10−4 ± 0.079× 10−4

0.200 1.134× 10−4 ± 0.079× 10−4

0.125 0.331× 10−4 ± 0.080× 10−4

0.100 0.231× 10−4 ± 0.080× 10−4

functionin the case of the anharmonic potential (6.6). The presented curve is obtained with the time step
h = 0.2 and it visually coincides with the one simulated withh = 0.05. These experiments give further
confirmation of our theoretical results.

We note that, in Examples 6.1 and 6.2, the second-order method (2.11) and (2.10) and the Euler
method (2.14) and (2.13) coincide since in these examples the starting and ending points of Brownian
bridge paths coincide. In the next example we deal with a system of bosons and the advantage of the
method (2.11) and (2.10) in comparison with the Euler method (which is, in general, of order one—see
Theorem2.4) is clearly seen.

EXAMPLE 6.3. Consider a system ofr identicaln-dimensional boson particles of massm. The partition
function for this system has the form (Feynman,1972)

Z =
∫

Rr n

∑

πππ∈Π r

(2πT/m)−r n/2 exp

(

−
|x − πππx|

2T/m

2
)

uT (x, πππx)dx, (6.10)

whereT is the inverse temperature,πππx means a permutation of ther -tuplex = (x1, . . . , xr ),Π r is the
set of all such permutations and

uT (x, πππx) = E exp

(
−
∫ T

0
V(XT,πππx

0,x (t))dt

)
(6.11)

with XT,πππx
0,x (t) solvingthern-dimensional system of SDEs

dX =
πππx − X

T − t
dt +

1
√

m
dw(t), 06 t < T, X(0)= x. (6.12)

The kinetic energy of the system of particles can be found as (see, e.g.,Feynman,1972;Takahashi &
Imada,1984;Ceperley, 1995)

EK =
m

TZ

∂Z

∂m
.

DifferentiatingZ from (6.10), one can obtain

EK =
m

T

K

Z
, (6.13)
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where

K =
∫

Rr n






∑

πππ∈Π r

(2πT/m)−r n/2 exp

(

−
|x − πππx|2

2T/m

)

E

[

exp

(
−
∫ T

0
V(XT,πππx

0,x (t))dt

)

×

[
r n

2m
−

|x − πππx|2

2T
+

1

2m

∫ T

0
∇V(XT,πππx

0,x (t)) ∙
(

XT,πππx
0,x (t)−

x

T
(T − t)−

πππx

T
t
)

dt

]]


dx.

(6.14)

Here∇V is an rn-dimensional vector. We note that this expression for the kinetic energy is different
from the ones exploited inTakahashi & Imada(1984) andCeperley(1995). As was pointed out in
Ceperley(1995), it is desirable for computational purposes to have various representations of the kinetic
energy.

For our numerical example here, we consider one-dimensional(n = 1) bosons with massm = 1 in
the harmonic potential

V(x1, . . . , xr ) =
x2

1

2
+ ∙ ∙ ∙ +

x2
r

2
. (6.15)

It is known (see, e.g.,Takahashi & Imada, 1984) that, in this case, the kinetic energy is equal to

Ekin =
1

4

r∑

l=1

l coth

(
l T

2

)
−

r (r − 1)

8
.

In the experiment we use a system of four bosons (r = 4) with inverse temperatureT = 1.2. The
exact value of the kinetic energy isEkin

.
= 1.3740081.

As with Example 6.2, correlated estimates of both the integralK and the partition functionZ in
(6.13) are produced simultaneously, and the ratio is then taken. Specifically, as before, we may write the
integralsK andZ with n = 1 in the form

K =
∫

Rr
I1(x)dx =

√
2πσ 2E

[
I1(η) exp

( η

2σ2

)]
,

Z =
∫

Rr
I2(x)dx =

√
2πσ 2E

[
I2(η) exp

( η

2σ2

)]
,

whereη is an r -dimensional Gaussian random variable whose components are mutually independent
with zero mean and varianceσ 2, i.e., η ∼ N (0, σ2Ir ×r ) with Ir ×r beingthe r × r unit matrix, and
I1 andI2 arethe corresponding integrands in (6.10) and (6.14), respectively. Furthermore, since the
particles are noninteracting, we can decomposeI1 andI2 to permanents as follows (see a similar idea
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TABLE 4 Kinetic energy of bosons. The errors in evaluating the kinetic
energy Ekin of the system of four bosons(6.13) in the case of the harmonic
potential(6.15)with T = 1.2, r = 4 and m= 1. The number of Monte
Carlo runs is M= 109

h Eulermethod Method (2.11) and (2.10)

0.20 0.236± 0.55× 10−4 0.533× 10−2 ± 0.75× 10−4

0.15 0.175± 0.61× 10−4 0.300× 10−2 ± 0.75× 10−4

0.10 0.116± 0.66× 10−4 0.128× 10−2 ± 0.76× 10−4

0.05 0.057± 0.71× 10−4 0.035× 10−2 ± 0.75× 10−4

in Takahashi & Imada, 1984). LetU : R → R be such thatV(x) =
∑r

i =1 U (xi ) andlet

J1(xi , xj ) = (2πT/m)−1/2 exp

(

−
(xi − xj )

2

2T/m

)

E

[

exp

(
−
∫ T

0
U (X

T,x j
0,xi

(t))dt

)

×

(
1

2m
−
(xi − xj )

2

2T
+

1

2m

∫ T

0
U ′(X

T,x j
0,xi

(t))
(

X
T,x j
0,xi

(t)−
xi

T
(T − t)−

xj

T
t
)

dt

)]

,

J2(xi , xj ) = (2πT/m)−1/2 exp

(

−
(xi − xj )

2

2T/m

)

E exp

(
−
∫ T

0
U (X

T,x j
0,xi

(t))dt

)
.

It is not difficult to show that

I1(η) =
∑

πππ∈Π r

r∑

l=1

J1(ηl , (πππη)l )
∏

k∈{1,...,r }\{l }

J2(ηk, (πππη)k), I2(η) =
∑

πππ∈Π r

r∏

k=1

J2(ηk, (πππη)k).

(6.16)
Consequently, the following estimators forK andZ are used in the simulation:

K̂ =

√
2πσ 2

M

M∑

m=1

[
mI1(mη) exp

(
mη

2σ2

)]
, Ẑ =

√
2πσ 2

M

M∑

m=1

[
mI2(mη) exp

(
mη

2σ2

)]
,

wheremη aresampled independently fromN (0, σ2Ir ×r ) and mI1 and mI2 areapproximate sample
values ofI1 andI2, calculated as per (6.16) from the approximate sample values of functionalsJ1 and
J2 evaluated along the same Brownian bridge paths using the method (2.11) and (2.10) or the Euler
method (2.14) and (2.13).

We note that the value ofσ 2 maybe chosen to make the variances ofK̂ andẐ small. In the presented
experiments,σ is taken equal to 2. We remark that, although we illustrate the above decomposition into
permanents in order to computeK andZ for the case of one-dimensional particles, its generalization
for n-dimensional noninteracting particles is straightforward.

We analyse two methods, namely, the method (2.11) and (2.10) and the Euler method (2.14) and
(2.13). The results are presented in Table4, which gives the errors of the two methods. As in the previous
examples, the Monte Carlo error is made relatively small in order to be able to analyse the bias. It is
clearly seen from the data that the method (2.11) and (2.10) converges with order two, while the Euler
method exhibits the first-order convergence as expected (see Theorems2.2and2.4).
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