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Abstract
We propose new semi-implicit numerical methods for the integration of the stochastic
Landau–Lifshitz equation with built-in angular momentum conservation. The performance of
the proposed integrators is tested on the 1D Heisenberg chain. For this system, our schemes
show better stability properties and allow us to use considerably larger time steps than standard
explicit methods. At the same time, these semi-implicit schemes are also of comparable
accuracy to and computationally much cheaper than the standard midpoint implicit method.
The results are of key importance for atomistic spin dynamics simulations and the study of spin
dynamics beyond the macro spin approximation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dynamics of magnetic materials have been theoretically
studied for many years starting from the seminal work
by Landau and Lifshitz [1] (see, for example, the
monographs [2–4]). The current interest in this area is rapidly
growing due to new important fields of application such as
spintronics [5] and laser-induced ultrafast spin dynamics [6–9].
In many situations, such as the interaction of domain walls with
pinning centers [10], there are atomic-scale inhomogeneities
which require multiscale simulations bridging macroscopic
and microscopic lengths [11]. In [12, 13] a method of
ab initio spin dynamics was suggested relating first-principles
electronic structure calculations with Landau–Lifshitz-type
dynamics of classical spins within the framework of the rigid-
spin approximation.

Thus, atomistic spin dynamics (ASD) simulations are
important from many points of view. To do calculations
at finite temperatures, there are two main approaches: a
generalized Nose–Hoover (Bulgac–Kuznecov) thermal bath
or Langevin (stochastic) dynamics [13]. The first method
has fictitious dynamics, and hence it can be used to
simulate equilibrium properties only. Langevin spin dynamics
with first-principles magnetic interaction parameters has
recently been implemented [14] and applied for simulating

dilute magnetic semiconductors [15] and spin glasses [16].
Langevin spin dynamics are also used as a phenomenological
simulation tool, not connected with first-principles theory. An
implementation of this type was reported in [17] and applied to
laser-induced magnetization dynamics [18].

The heart of Langevin spin dynamics simulations is
integration of the stochastic Landau–Lifshitz (SLL) equation
for each atomic spin. This equation is nonlinear, and analytical
solutions for interacting systems exist for two spins only. In
systems of interest for applications the number n of spins is
typically of the order of 106 and the integration should be done
numerically. Due to the interactions, one has to solve a system
of 3n coupled nonlinear equations. To compute quantities in
equilibrium, this very large system should be simulated over
long time intervals, usually from 10 fs to 1 ns. This is a
challenging computational task.

Thus, ASD requires effective numerical integrators for the
SLL equation. Due to the large system size and long simulation
time, such numerical methods should be on the one hand
sufficiently stable and on the other hand very fast. The latter
rules out the use of fully implicit integrators such as the implicit
midpoint (IMP) scheme (see its application for Langevin spin
dynamics, for example, in [19]). Despite its superior stability
properties which allows large step sizes, typically 10 fs, IMP
is slow in practice since the implicitness requires solution of
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3n nonlinear coupled equations at every time step. Langevin
spin dynamics simulations have often been based on the Heun
method [14, 17], which has the advantage of being fast in
terms of the number of operations per time step. However,
this method has poor stability properties, requiring a relatively
small step size typically ranging from 0.01 to 1 fs, depending
on the implementation. We also note that since the accuracy of
the first-principles magnetic interaction parameters is limited
to 10%, the accuracy of numerical methods is, to some extent,
less important here than their stability (in the sense of the
ability to use larger step sizes for long time simulations).
Hence, both the standard implicit and explicit numerical
integrators are not optimal for ASD and it is desirable to
develop a numerical method that is both stable and fast.
Also, ASD simulations are often used to study systems with
different interactions and/or different symmetries. Therefore,
in addition we should require numerical integrators for ASD
to be universal in their implementation. Such a method is
proposed in this paper.

As is known from the deterministic ([20–22] and
the references therein) and stochastic [23–25] numerical
approaches, to numerically integrate dynamical systems
over long time intervals with relatively large step sizes
it is advisable to preserve geometrical properties of the
continuous dynamics. Therefore, one should construct and use
geometrical integrators for ASD.

In the case of the deterministic Landau–Lifshitz (LL)
equation, there are geometric integrators [21, 22, 26, 27]
that are both stable and fast. Usually, these schemes are
semi-implicit. Unlike IMP, a semi-implicit method requires
only the solution of three linear coupled equations for each
spin individually. However, implementation of these methods
depends on symmetry and interactions in a system under
consideration, which makes it difficult to use them for models
with arbitrary lattice structures.

Further, semi-implicit methods for the deterministic LL
equation are also considered in the review in [28]. Being based
on IMP, they have the potential to combine stability and low
computational costs like the geometric integrators but with the
advantage of a universal implementation. In this paper we use
the idea of semi-implicitness to derive new numerical methods
for Langevin spin dynamics simulations which are both stable
and fast and allow universal implementation. In particular,
we show that, due to the enhanced stability, our semi-implicit
integrator (named SIB) allows time steps a factor of 10–103

larger than the standard Heun method.
This paper is organized as follows. In section 2, we

formulate the problem in mathematical terms, introduce the
necessary notation and examine the conservation properties of
the SLL equation. In section 3, we propose two new semi-
implicit methods (SIA and SIB) and recall the Heun scheme
and IMP. Both SIA and SIB intrinsically preserve the length
of individual spins while SIB (like IMP) also possesses other
conservation properties in the deterministic case. The latter
is apparently the reason for the superiority of SIB which is
our numerical method of choice for ASD. In section 4, we
present some results of numerical experiments. We first test
the considered numerical methods in the deterministic case

without damping, using a simple system of two interacting
spins. Then the 1D Heisenberg chain is used as a test system
for the stochastic case. In section 5, we draw conclusions
and recommendations for future work. Two appendices are
included to provide some auxiliary knowledge of stochastic
numerics and about ergodicity of the SLL equation.

2. Mathematical model

In this section we formulate the problem in mathematical terms
and introduce the necessary notation. In addition, we discuss
why we use the Stratonovich interpretation for the stochastic
LL equation. Finally, we examine the properties of the solution
of the equations under study.

The (deterministic) Landau–Lifshitz equation in dimen-
sionless variables can be written in the form

dXi

dt
= −Xi×Bi(X)−αXi ×[Xi×Bi(X)], i = 1, . . . , n,

(1)
where n is the number of spins, Xi = (Xi

x, Xi
y, Xi

z)
� are three-

dimensional column-vectors representing unit spin vectors3

and X = (X1�
, . . . , Xn�

)� is a 3n-dimensional column-
vector formed by the Xi ; Bi is the effective field acting on
spin i ; α � 0 is the damping parameter. In (1) the time is
normalized by the precession frequency ωB̂ = γ B̂, where B̂ is
some reference magnetic field strength, and the effective field
B = (B1�

, . . . , Bn�
)� is also normalized by B̂ and is given by

B(x) = −∇H (x), (2)

where H is the Hamiltonian of the problem. Then

Bi(x) = −∇i H (x),

where ∇i is the gradient with respect to the Cartesian
components of the effective magnetic field acting on spin i .

For atomistic spin dynamics, the most important
contributions to the Hamiltonian are the Heisenberg exchange
for the interaction between the spins Hex, the Zeeman energy
for the interaction with an external field Hext, and the uniaxial
anisotropy Hani defining a preferential direction of the spins.
Therefore we consider here the following Hamiltonian for our
problem:

H = Hex + Hext + Hani, (3)

where

Hex(x) = −
∑

i �= j

Ji j x i x j , Hext(x) = −B0

∑

i

x i ,

Hani(x) = K
∑

i

(x i eK )2.

Here Ji j are the exchange parameters, B0 is the uniform
external field, K is the strength of the anisotropy, and eK is a
unit vector that defines the anisotropy axis. Note that with these
contributions to the Hamiltonian the effective fields Bi are
3 In the paper, we follow the standard notation of the theory of stochastic
differential equations and use capital letters to denote solutions of differential
equations while we use small letters for the initial data and for corresponding
‘dummy’ variables.
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linear in x . In realistic materials usually |Ji j | � |B0| � |K |.
For the exchange parameters themselves, typically Ji(i+1) �
Ji(i+ j), j > 1, i.e. all spins interact with each other but
the nearest-neighbor interactions dominate. Since all the
spins interact, equation (1) involves simultaneous solution of
a 3n system of nonlinear equations. Due to the interactions
between the spins, each effective field Bi is time-dependent
and equation (1) has in general no analytical solution. As a
result, efficient numerical methods are required to study spin
systems. In turn, the time-dependence of the effective field
is usually considered as the main source of instability in the
numerical integration.

In order to perform spin dynamics at finite temperature,
fluctuations are included according to the Brownian motion
approach for spins by adding fluctuating torques to equa-
tion (1) [29, 30]. The stochastic Landau–Lifshitz (SLL)
equation is then given by

dXi

dt
= −Xi × (Bi(X) + bi) − αXi × [Xi × (Bi(X) + bi)],

i = 1, . . . , n, (4)

where the fluctuating magnetic fields bi are uncorrelated
Gaussian white noises interpreted in the sense of Stratonovich
and

〈bi
l (t)〉 = 0,

〈bi
l (t)b

j
k (0)〉 = 2Dδi jδlkδ(t), i = 1, . . . , n,

(5)

with 〈·〉 denoting ensemble averages and l, k = x, y, z labeling
the Cartesian coordinates, while D is the strength of the
fluctuations. According to the fluctuation dissipation theorem,
we choose

D = α

(1 + α2)

kbT

X̂ B̂
, (6)

where X̂ is the (non-normalized) magnetization of each spin.
Note that (4) is a differential equation with multiplicative

noise which requires us to specify in which sense we interpret
the stochastic equation [31]. As said above, we use here
the Stratonovich interpretation following [29]. This choice
is be motivated as follows. First of all, the Stratonovich
interpretation (contrary to any other one and, in particular, to
the Ito interpretation) leads to preservation of the individual
spin length (see (10) below) by (4), which is very important for
modeling spin systems (see also a similar discussion in [19]).
Further, it is natural to model a perturbation of the Landau–
Lifshitz dynamics by Gaussian noise with a finite bandwidth
spectrum (i.e. by a colored noise [31]), possibly with a very
short correlation time. The white noise b(t) in (4) has
zero correlation radius (see (5)) and a spectrum with infinite
bandwidth. This noise is a convenient idealization which
can be viewed as an approximation of the colored noise with
short correlation time. Indeed, if we consider a sequence of
solutions Xn(t) of the equations Ẋ i

n = −Xi
n × (Bi(Xn) +

bi
n) − αXi

n × [Xi
n × (Bi(Xn) + bi

n)], where bn(t) is a sequence
of Gaussian processes with correlation functions that go to
the δ-function as n → ∞, then Xn tends to the solution X
of (4) if it is interpreted in the Stratonovich sense [32, chapter
2], [33, chapter 5]. We also note in passing that one can

model a Gaussian colored noise by the Ornstein–Uhlenbeck
process [31] which can be substituted in (4) instead of the white
noise b(t). It could be of interest to study the influence of the
correlation radius on the stochastic Landau–Lifshitz dynamics.
We do not pursue such questions in this paper but remark
that effective numerical methods for differential equations with
colored noise are available in [24, 34] which can be adapted to
the SLL equation with colored noise.

Since we will exploit some results from stochastic
numerics [24], which in turn follows the standard theory of
stochastic differential equations, it is convenient to rewrite the
SLL equation (4) in differential form [31]:

dXi = Xi × ai(X) dt + Xi × σ(Xi ) ◦ dW i (t),

Xi (0) = x i
0, |x i

0| = 1, i = 1, . . . , n,
(7)

where W i (t) = (W i
x(t), W i

y(t), W i
z (t))

�, i = 1, . . . , n;
W i

x(t), W i
y(t), W i

z (t), i = 1, . . . , n, are independent standard
Wiener processes; ai(x), x ∈ R

3n , are three-dimensional
column-vectors defined by

ai(x) = −Bi(x) − αx i × Bi(x); (8)

and σ(x), x ∈ R
3, is a 3 × 3-matrix such that

σ(x)y = −√
2Dy − α

√
2Dx × y (9)

for any y ∈ R
3. Note that the symbol ‘◦’ in equations (7)

means that the corresponding stochastic integral is interpreted
in the Stratonovich sense [31]. We recall [32] (see
also [31, 33]) that the Stratonovich stochastic integral can be
defined as the mean-square limit of the middle Riemann sums,
which, in particular, makes it evident why the midpoint scheme
(see (15) below) satisfies the Stratonovich calculus.

Let us consider some properties of the solution to (7)–(9).
First, the length of each individual spin is a constant of motion,
i.e.

|Xi (t)| = 1, i = 1, . . . , n, t � 0. (10)

Indeed, we have

d 1
2 |Xi |2 = Xi dXi = Xi [Xi × ai(X)] dt

+ Xi [Xi × σ(Xi ) ◦ dWi (t)] = 0.

Other general conservation laws of (7)–(9) and also of (1)
do not exist. However, when we restrict ourselves to realistic
systems, we have the damping coefficient α 
 1. This means
that, in practice, solutions of (7)–(9) are, in a sense, close to
the deterministic solutions of (1) with α = 0. Hence the
precessional motion can usually be considered as dominant. In
turn, the largest contribution to the precessional motion is due
to the exchange interaction. Therefore, it is relevant to examine
the conservation laws for α = 0. Since the Hamiltonian has
no explicit time-dependence, energy is conserved for this case.
Further, when only Heisenberg exchange is included we have
for the total spin:
∑

i

dXi

dt
=

∑

i �= j

Ji j X i × X j

=
∑

i> j

Ji j(Xi × X j + X j × Xi ) = 0 (11)

3
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since Ji j = J ji . We recall that the orientation of individual
spins is time-dependent, which makes the effective field acting
on each spin time-dependent due to the exchange interaction.
However, at the same time, the symmetry of the exchange
interaction ensures that the total spin is time-independent.
Therefore the conservation of total spin is an important
property for stable numerical integration of the exchange
interaction. By the same arguments, when an external field
is added, the total spin will precess in the external field:

∑

i

dXi

dt
= B0 ×

∑

i

X i . (12)

For this case, the length of the total spin is a constant of motion,
as well as the component of the total spin along B0. Hence the
energy is also conserved but the transverse components of the
total spin with respect to B0 oscillate in time. When anisotropy
is included, there are no conservation properties associated
with the total spin. Finally, ergodicity of the solution to (7)–
(9) is a relevant property. This is discussed in appendix A.

3. Numerical methods

In this section we consider numerical integrators for the
stochastic Landau–Lifshitz equations (7)–(9). We first recall
two existing numerical methods, one of which is explicit (the
projected Heun scheme) and the other implicit (the midpoint
scheme). Both are unsatisfactory since either they violate
conservation laws (HeunP) or they are computationally very
expensive (IMP). Therefore, in the main part of this section
we present the two newly developed numerical methods (SIA
and SIB). These methods are called semi-implicit and aim at
combining the advantages of the existing explicit and implicit
schemes.

As it is known from the deterministic ([20–22]
and references therein) and stochastic ([23–25]) numerical
approaches, to achieve accuracy in long time simulations
(e.g. for computing ergodic limits) it is advisable to preserve
the structural properties of the continuous dynamics by
the approximating discrete ones. Then it is important to
consider not only orders of convergence but also structural
properties of numerical integrators for the SSL equation. Both
convergence and structural properties of the schemes presented
are discussed in section 3.3.

Throughout we use (for simplicity) a uniform discretiza-
tion of a time interval [0, t�] with step size h = t�/N . The
value at the initial step is Xi

0 = x i
0, i = 1, . . . , n, and

Xi
k , i = 1, . . . , n, denotes the approximate solution Xi (tk),

i = 1, . . . , n, to the SLL equation at time tk , k = 1, . . . , N .

3.1. Existing explicit and implicit numerical methods

3.1.1. Heun + projection (HeunP). The Heun method can
be seen as a predictor–corrector method. Its prediction step,
which we denote by Xk , is the Euler approximation. The
standard Heun method should be adjusted by an additional
projection step which is needed to ensure that the length of each

individual spin remains constant. For the SLL equations (7)–
(9), the HeunP method reads

X i
k = Xi

k + h Xi
k × ai(Xk) + h1/2 Xi

k × σ(Xi
k)ξ

i
k+1,

i = 1, . . . , n,

X∗i
k+1 = Xi

k + h

2
[Xi

k × ai(Xk) + X i
k × ai(Xk)]

+ h1/2

2
[Xi

k × σ(Xi
k)ξ

i
k+1 + X i

k × σ(X i
k )ξ

i
k+1],

Xi
k+1 = X∗i

k+1/|X∗i
k+1|, i = 1, . . . , n,

k = 1, . . . , N,

(13)

where Xk = (X 1�
k , . . . ,X n�

k )�; ξ i
k+1 = (ξ

i,1
k+1, ξ

i,2
k+1, ξ

i,3
k+1)

�;

ξ
i, j
k , j = 1, 2, 3, i = 1, . . . , n, k = 1, . . . , N , are independent

identically distributed (i.i.d.) random variables which can be
distributed, e.g., as

P(ξ
i, j
k = ±1) = 1/2 (14)

or ξ
i, j
l ∼ N (0, 1). This indicates that the ξ

i, j
l , are i.i.d.

Gaussian random variables with zero mean and unit variance.
In equations (13) we explicitly added i = 1, . . . , n to
emphasize that Xk has to be calculated first for all spins, before
Xk+1 is computed. We come back to this point in the numerical
experiments (section 4).

3.1.2. Implicit midpoint (IMP). Contrary to the HeunP
method, IMP (see, e.g. [24, p 45]) is implicit. For the SLL
equations (7)–(9), IMP reads:

Xi
k+1 = Xi

k + h
Xi

k + Xi
k+1

2
× ai

(
Xk + Xk+1

2

)

+ h1/2 Xi
k + Xi

k+1

2
× σ

(
Xi

k + Xi
k+1

2

)
ξ i

k+1,

i = 1, . . . , n, k = 1, . . . , N, (15)

where ξ i
k+1 = (ξ

i,1
k+1, ξ

i,2
k+1, ξ

i,3
k+1)

�; ξ
i, j
k , j = 1, 2, 3, i =

1, . . . , n, k = 1, . . . , N , are i.i.d. random variables which can
be distributed according to (14), for example. Alternatively,
we can choose ξ

i, j
k being distributed as the ξh defined below

(see [23, 24]). Let ζ ∼ N (0, 1) be a Gaussian random variable
with zero mean and unit variance. We define

ξh =

⎧
⎪⎨

⎪⎩

ζ, |ζ | � Ah ,

Ah, ζ > Ah ,

−Ah, ζ < −Ah ,

(16)

where Ah = √
2| ln h|. We note that if one takes ξ

i, j
k ∼

N (0, 1), IMP can, in general, diverge (see a counter-example
in [23, 24]).

3.2. New semi-implicit numerical methods

Here we propose two new semi-implicit integration schemes,
simply called semi-implicit A (SIA) and semi-implicit B (SIB).
In the spirit of the review [28], they are called semi-implicit
since they require only to solve n, or 2n in the case of the

4
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SIB scheme, linear 3 × 3 systems at each time step, which
can be done analytically. The starting point for derivation
of the semi-implicit methods is the IMP scheme. To reduce
the degree of implicitness, we replace Xk+1 in the argument
of ai and σ in IMP by a predictor Xk . As a consequence,
resolving the implicitness at each time step is simplified (in
comparison to IMP) to solving a linear 3 × 3 system per spin
that is independent of the interactions between the spins. The
difference between SIA and SIB is the choice for Xk . Both
semi-implicit methods have effectively the same computational
cost as explicit schemes.

3.2.1. Semi-implicit scheme A (SIA). Similar to the HeunP
method, for the SIA scheme we take the Euler approximation
for the predictor Xk . The SIA method for the SLL equation
reads

X i
k = Xi

k + h Xi
k × ai(Xk) + h1/2 Xi

k × σ(Xi
k)ξ

i
k+1,

i = 1, . . . , n,

Xi
k+1 = Xi

k + h
Xi

k + Xi
k+1

2
× ai

(
Xk + Xk

2

)

+ h1/2 Xi
k + Xi

k+1

2
× σ

(
Xi

k + X i
k

2

)
ξ i

k+1,

i = 1, . . . , n, k = 1, . . . , N,

(17)

where ξ i
k+1 = (ξ

i,1
k+1, ξ

i,2
k+1, ξ

i,3
k+1)

�; ξ
i, j
l are i.i.d. random

variables as in IMP (15) (the same two possibilities).

3.2.2. Semi-implicit scheme B (SIB). SIA can be viewed
as a second iteration for the implicit equation due to IMP.
As the zero approximation of Xk+1, we took Xk and then the
second iteration was constructed so that the length of individual
spins is preserved. One can see that the first iteration (or
in other words the prediction step) of SIA does not preserve
the spin length. We are therefore proposing the SIB method
which keeps the spin length conserving IMP structure at both
iterations and, according to our numerical tests (see section 4),
this modification is crucial for the performance of the semi-
implicit schemes.

The SIB method for the SLL equation reads

X i
k = Xi

k + h
Xi

k + X i
k

2
× ai(Xk)

+ h1/2 Xi
k + X i

k

2
× σ(Xi

k)ξ
i
k+1, i = 1, . . . , n,

Xi
k+1 = Xi

k + h
Xi

k + Xi
k+1

2
× ai

(
Xk + Xk

2

)

+ h1/2 Xi
k + Xi

k+1

2
× σ

(
Xi

k + X i
k

2

)
ξ i

k+1,

i = 1, . . . , n, k = 1, . . . , N,

(18)

where ξ i
k+1 = (ξ

i,1
k+1, ξ

i,2
k+1, ξ

i,3
k+1)

�; ξ
i, j
l are i.i.d. random

variables as in IMP (15) (the same two possibilities).

Remark. One can continue the process and make several
iterations for the implicit equation due to IMP; for example,

in our tests about ten iterations were sufficient to resolve the
implicitness up to the machine accuracy. However, in practice
the use of several iterations would be too computationally
expensive while SIB already demonstrates stability and
accuracy comparable with IMP.

3.3. Properties of the methods

We start by examining convergence of the methods presented
in this section and then discuss some conservation properties.
For completeness, in appendix B we recall some generic facts
about stochastic numerics [24].

All four methods considered in this section are of weak
order 1 for both choices of the distributions of ξ

i, j
k (discrete

and continuous). If ξ
i, j
l ∼ N (0, 1), then HeunP is also of

mean-square order 1/2. IMP, SIA, and SIB are of mean-square
order 1/2 if ξ

i, j
k have the cut-off Gaussian distribution (16).

These convergence properties are proved using the standard
results [24, chapters 1 and 2]. In the deterministic case
(i.e. D = 0) all four methods are of order 2.

Note that in this paper we limit ourselves to methods of
weak order 1 and of mean-square order 1/2. The system (7)–
(9) has noncommutative noise (see the definition in, e.g., [24,
p. 28]). Then mean-square methods of orders higher than
1/2 require simulation of multiple Ito integrals which is
computationally expensive. It is possible to construct higher
order weak methods for (7)–(9) but, due to the multiplicative,
noncommutative nature of the noise, they would be too
complicated and they are not considered here. We also note
that the problem with multiplicative noise can be circumvented
by rewriting the SLL equation in spherical coordinates, for
which the system is Hamiltonian and the noise becomes
additive, but then numerical difficulties arise when the polar
angle is close to 0 or π .

When α is small, the SLL equations (7)–(9) is a system
with small multiplicative noise. In this case the weak sense
errors of all the methods considered in this section are of order
O(h2 + α2h) [35], [24, chapter 3]. The smallness of the noise
can be further exploited to construct high accuracy but low
order efficient methods following the recipe from [35, 24].

We now discuss conservation properties of the schemes.
The HeunP method (13) has only one conservation property—
norm-preservation which is due to the projection step. Heun
without the projection step would conserve the total spin but
then violates norm-preservation. Omitting the projection step
also gives very poor results for the interaction with an external
magnetic field. In practice the projection step can be exploited
for error control. Energy is not conserved by HeunP when
α = 0. HeunP has the advantage of being very flexible, its
implementation is independent of the symmetry of the system
and types of interactions used. The method is also fast since
integration can be done for each spin separately.

Due to the structure of IMP, the difference Xi
k+1 − Xi

k
is always perpendicular to Xi

k + Xi
k+1. Therefore (Xi

k +
Xi

k+1)(Xi
k+1 − Xi

k) = 0 and hence |Xi
k+1|2 = |Xi

k |2, i.e. the
length of each spin is exactly preserved by IMP without any
need of projection. In the deterministic case with α = 0 and
under only the Heisenberg exchange, IMP conserves the total

5
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spin. The proof follows directly from equation (11), replacing
dXi/dt by Xi

k+1 − Xi
k and Xi by (Xi

k + Xi
k+1)/2. The total

energy conservation for the case of α = 0 can be proven
similarly. Preservation of all the main structural properties
of the SLL equation by IMP comes at a cost. Since all spins
are coupled, a system of 3n nonlinear algebraic equations has
to be solved at each time step. This is a major limitation
for application of IMP to atomistic spin dynamics, where the
number of spins is typically of order n = 106. Some further
remarks on conservation properties of both HeunP and IMP in
the deterministic case are given in [21].

The SIA method is very close to the HeunP method.
However, unlike the HeunP method SIA preserves the
constraint |Xi(t)| = 1 exactly, without the need for projection.
This follows directly from the observation that the norm
conservation of each spin is independent of the point at which
ai and σ are evaluated. Let us now look at SIA in the
deterministic case with α = 0. Regarding total spin, the
relevant symmetry property is

Xi
k + Xi

k+1

2
× X j

k + X j
k

2
+ X j

k + X j
k+1

2
× Xi

k + X i
k

2
�= 0,

which is violated since the Euler approximation for X i
k depends

only on the orientation of the spins at the current time step
(Xk) but not on X i

k , whereas Xi
k+1 is also determined by the

value Xi
k+1 itself. Owing to this difference, for α = 0 the

total spin cannot be preserved by SIA. Also, the energy is
not a conserved quantity by SIA and the scheme introduces
numerical damping. Hence SIA has the same conservation
properties as HeunP, and it is of interest to investigate whether
the built-in norm conservation is sufficient to improve stability
properties.

Unlike SIA, SIB has the norm-conserving midpoint
structure for both Xi

k and X i
k . In the case of a two-spin

deterministic system with α = 0 we proved analytically
that both energy and total spin are conserved quantities of
SIB. Hence for this system SIB has the same conservation
properties as IMP. At the same time, implementation-wise
very little additional computational effort is required by SIB
compared to HeunP and SIA. Hence it is of interest to
compare the performance of SIB with SIA, in particular to
investigate the influence of preservation of norm conservation
and preservation of deterministic conservation laws on the
stability properties of the methods. As our numerical
experiments (see section 4) suggest, SIB outperforms SIA
while SIA is only slightly better than HeunP. This observation
implies, in particular, that built-in norm conservation alone
is not sufficient to obtain superior numerical integrators for
ASD and preservation of other structural properties of the SLL
equation should guide one in constructing effective numerical
methods.

4. Numerical experiments

In this section, we compare performance of the integrators
introduced in the previous section using two model problems.
In section 4.1, we present some results of the experiments
in the deterministic case without damping (i.e. α = 0), to

Figure 1. Comparison of the explicit HeunP, implicit IMP and
semi-implicit methods SIA and SIB for the deterministic case α = 0.
The trajectory of two interacting spins is shown by plotting the x
components of the two spins and one z-component. Solid lines
indicate the analytical solution. The upper panel shows that without
simultaneous update of the effective field the integration is very
unstable. IMP demonstrates the best performance. All methods
introduce errors in the precession period tJ = 2π/J corresponding to
the initial condition. For the purpose of illustration, a large step size
h = 1/16 is used.

illustrate the conservation properties of the numerical methods.
In section 4.2, we consider the stochastic case using the 1D
Heisenberg chain as a test system. We show that the methods
that preserve the deterministic integration laws give rise to a
more stable integration for the stochastic spin dynamics.

4.1. Two interacting spins

In order to illustrate the conservation properties of the
numerical schemes related to the deterministic precessional
motion, we choose the simple case of two interacting spins
with equal length |X1| = |X2| = 1. As a result of the exchange
interaction, the spins rotate around a common axis, where
the precession frequency is given by ωJ = 2J cos θ/2 with
the angle θ between the spins and the Heisenberg exchange
parameter J .

First, we emphasize the relevance of simultaneously
updating the effective field. Due to the interaction, the
effective field acting on each spin is determined by the other
spin. Therefore, when using a predictor–corrector method
like HeunP, it is highly relevant to simultaneously update
the effective fields after the prediction step before calculating
the correction step. Hence, the correction step is computed
taking into account that ai(Xk) depends on X j �=i

k and not on
X i

k alone. Therefore, at each time step the effective field
must be computed twice. By its design, a predictor–corrector
method must be implemented in this way, otherwise it will, as
a rule, become a scheme of lower order. Figure 1 shows the
computed trajectory with and without simultaneous update for
the HeunP method. To achieve a comparable accuracy without
a simultaneous update of the effective field, the step size should
be decreased by a factor of 102–103.

6
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Figure 2. Conservation of total spin for HeunP, IMP, SIA, and SIB.
The figure shows the error in the total spin for the same system as in
figure 1. Both IMP and SIB preserve the total spin up to machine
precision, whereas SIA and HeunP introduce a numerical damping.
Here tJ = 2π/J is the precession period.

In the four lowest panels of figure 1 we compare the
considered integrators implemented with simultaneous update
of the effective fields. For illustration purposes, a large step
size is used (h = 1/16). For small times, all methods show
reasonable agreement with the analytical solution, but IMP
clearly has the best performance for this system. However,
even IMP, which preserves the conservation laws intrinsically,
introduces errors in the precession frequency. Since these
errors do not affect the conservation properties of the methods,
we do not consider them in detail.

Next, we compare the conservation properties of the
considered methods for the two-spin system. To this end,
figure 2 shows the error in the total spin as a function of
integration time. Both SIB and IMP exactly conserve the total
spin, whereas HeunP and SIA have numerical dissipation. For
clarity, only the z-component of the total spin is plotted. The
errors in the x- and y-components of the total spin are much
smaller since the numerical errors in the x, y motion of the
individual spins cancel each other due to the symmetry.

Despite the fact that SIA conserves the norm of each
spin exactly, the numerical damping is slightly larger than for
HeunP. Both their errors are strongly dependent on the initial
condition. When the spins are almost parallel, HeunP has
a larger numerical error than SIA since the projection step
transforms a larger amount of transverse motion to longitudinal
motion. In the case of figure 2 an initial condition with
θ0 = 120◦ is used, which is closer to anti-parallel motion and,
therefore, HeunP has a smaller error than SIA.

For this simple two-spin system, the energy and total spin
are directly related: (X1

k + X2
k)

2 = (X1
k)

2 + (X2
k)

2 + 2X1
k X2

k =
2 + Ek/J . Hence both SIB and IMP conserve energy, whereas
both HeunP and SIA dissipate energy. For larger systems with
only nearest-neighbor interactions, SIB conserves total spin
and energy like IMP as well, while obviously SIB requires
much less computational effort than IMP. The conservation

Figure 3. Temperature check of the semi-implicit methods SIA and
SIB compared with the explicit HeunP method. Shown is the mean
energy per spin of the 1D Heisenberg chain, as a function of
temperature, computed with the parameter values shown at the
bottom. All the schemes demonstrate reasonable agreement with the
analytical result (19).

properties of SIB can be proven analytically but this is beyond
the scope of the present paper.

In conclusion, the results of the numerical experiments
with two interacting spins and α = 0 show that both HeunP
and SIA introduce numerical errors in the conserved quantities
whereas SIB and IMP preserve the total spin and energy of the
test system.

4.2. 1D Heisenberg chain

In this section we compare the semi-implicit integration
schemes with the explicit and implicit methods in the stochastic
case. The simplest model of classical interacting spins is the
1D Heisenberg chain with nearest-neighbor interactions. For
this system, an analytical expression for the mean energy per
spin is available [36, 37]:

H̄analytic ≡ 〈Hex〉
2n J

=
(

1 − 1

n

)(
kbT

2J
− coth

(
2J

kbT

))
. (19)

This expression gives us a convenient way to check how
accurately the temperature of the system is reproduced in
simulations using the numerical methods from section 3. Note
that H̄ → −1 + 1/n as the temperature T → 0 since we
have normalized the energy with the number of spins n and the
interaction energy of two spins 2J X1 X2 tends to 2J when the
temperature goes to zero.

The comparison of the HeunP method with the semi-
implicit schemes for the temperature is shown in figure 3 for
step size h = 1/32, damping α = 0.1, exchange parameter
J = 1, spin length |Xi | = 1, and number of spins n =
100. The random variables used in the numerical schemes are
simulated according to the cut-off Gaussian distribution (16).
At a time step k the sample average Ĥk for the energy H per
spin is computed as

Ĥk = 1

M

M∑

m=1

Hex(X
(m)
k )

2n J
, (20)
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Figure 4. Stability of the semi-implicit methods SIA and SIB
compared with the explicit HeunP method. The figure shows the
error in the mean energy as a function of the step size h for the
lowest temperature considered in figure 3, kbT/(2J ) = 0.1. It is
found that SIB remains stable up to four steps per precession period
tJ = 2π/(2J ), while SIA and HeunP become unstable and produce
unreliable results.

where X(m)
k are independent realizations of Xk obtained by a

numerical scheme (see also appendix B). The corresponding
standard deviation σHk is also computed. In the experiment
an ensemble of M = 20 independent trajectories was used.
The values plotted in figure 3, with the 95% confidence
intervals determined by the standard deviation, were obtained
after equilibrating the system for a time ta = 1024tJ long
enough for the system to be sufficiently close to equilibrium.
Here tJ = 2π/(2J ) is the reference precession period for
(almost) parallel spins. We find that both HeunP and the
semi-implicit schemes show reasonable agreement with the
analytical results, indicating that they obey the Stratonovich
interpretation rule as expected.

The next question is which method is more accurate.
Figure 3 shows that SIB is consistent with the analytical
solution at all data points. On the contrary, HeunP and SIA
show slight discrepancies. To investigate this more accurately,
we study the numerical error by varying the step size. For
illustration we used the lowest temperature kbT/(2J ) = 0.1.
The results are shown in figure 4.

It is found that SIB outperforms both SIA and HeunP,
and SIB remains stable down to only four steps per precession
period. At such a large step size, SIA and HeunP are unstable
though SIA performs slightly better than HeunP. Note that in
physical units, with the exchange energy J X̂2 = 1 mRyd,
X̂ = 1μBohr, four steps per precession period corresponds to
a step size of about 20 fs. Hence, for SIB the step size is
only limited by the precession period of the spins, and there is
no need to decrease the step size to preserve the conservation
laws accurately enough. This should be compared with the
step size of 10 as, which was reported in [14], resulting in an
enormous improvement of a factor of 2 × 103 in the allowed
step size. However, the mentioned implementation of ASD
in [14] is based on HeunP without the simultaneous update of
the effective field. As follows from figures 1 and 4, when the

Figure 5. Comparison of the semi-implicit methods SIA and SIB
with the fully implicit IMP. The figure shows the weak order
convergence of SIA, SIB, and IMP schemes for the mean energy per
spin. Both axes are logarithmic with base 2. For small enough step
size, the slope gives the order of convergence. Surprisingly, both SIA
and SIB are more accurate than IMP. Moreover, SIB shows a higher
order convergence than IMP. Here tJ = 2π/(2J ) indicates the
reference precession period.

effective field is properly updated, HeunP also allows a larger
step size. However, the increase is limited to about 2 fs for
the system studied here. Compared to HeunP, SIA has only
slightly better stability properties, which we attribute to the
intrinsic norm conservation. The superior stability properties
of SIB can apparently be explained by its built-in deterministic
conservation properties. For the system studied here, SIB
allows step sizes by about a factor of 10 larger than HeunP
and by about a factor of 5 larger than SIA.

Let us now compare the performance of the semi-implicit
methods with the fully implicit IMP. The 1D Heisenberg chain
is not convenient for this purpose, unless we choose a very
small number of spins. In addition, for this comparison
stability is not the major issue since we already know that
the step size of SIB is limited only by the precession period.
Therefore we are more interested in the intrinsic properties
of the integrators that are independent of the system under
study. Hence the relevant property here is the convergence of
the semi-implicit and IMP schemes. To reduce computational
costs of the experiment, we again use a system with only
two spins.

To experimentally observe the order of convergence, a
small statistical error is needed. To this end, a combination
of ensemble and time averaging was used. As before, for an
ensemble with M trajectories, we let the system equilibrate for
a time ta = 2048tJ . Subsequently, the equilibrated sample
mean Ĥk (see (20)) is calculated for a time tb = 6144tJ . The
calculated values of Ĥk are then divided in P = 8 subsets of
length L = tb/P = 768tJ and in each subset the time mean
Ȟp is computed. Eventually, the total mean Ȟ is the average
of the time means over the P subsets and its statistical error �

is estimated by two standard deviations of Ȟp divided by
√

P ,
which gives half of the length of the 95% confidence intervals
for Ȟ . The results are presented in figure 5.

8
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Table 1. The values of error in the mean energy ε = Ȟ − H̄analytic and the corresponding statistical error � for the considered schemes. In
each consecutive row the step size is smaller by a factor of 2.

HeunP SIA SIB IMP

h M ε � ε � ε � ε �

1.251 × 10−1 24 4.23 × 10−1 1.1 × 10−3 5.87 × 10−2 1.1 × 10−3 −1.55 × 10−2 4.1 × 10−4 −3.46 × 10−2 1.3 × 10−4

6.255 × 10−2 25 2.71 × 10−2 6.0 × 10−4 −4.92 × 10−5 3.3 × 10−4 −4.76 × 10−3 3.3 × 10−4 −1.38 × 10−2 2.3 × 10−4

3.128 × 10−2 27 1.84 × 10−3 4.5 × 10−4 −1.02 × 10−3 3.7 × 10−4 −1.18 × 10−3 3.6 × 10−4 −5.77 × 10−3 1.4 × 10−4

1.564 × 10−2 212 −9.74 × 10−6 8.1 × 10−5 −4.43 × 10−4 7.9 × 10−5 −2.92 × 10−4 5.9 × 10−5 −2.31 × 10−3 4.0 × 10−5

7.819 × 10−3 216 −9.55 × 10−5 3.9 × 10−5 −1.68 × 10−4 4.0 × 10−5 −8.20 × 10−5 1.4 × 10−5

3.909 × 10−3 217 −8.24 × 10−5 3.0 × 10−5 −9.62 × 10−5 3.0 × 10−5 −2.79 × 10−5 1.1 × 10−5

Note that for this small system no instabilities appear in
SIA, and this method shows the first weak order convergence
as expected. Surprisingly, SIB demonstrates a second order
convergence, which might be related to the fact that the energy
is a conserved quantity for α = 0. This means that for the
energy only numerical errors from the damping term show up,
hence the convergence for the energy in the stochastic case
might be better than the convergence for a general quantity.
The small error for SIA at the smallest time step but one in
figure 5 is caused by the change in sign of the error. The error
values are given in table 1. Here also the data for HeunP are
provided. HeunP is not shown in figure 5 since it appears to
be in the asymptotic regime only for the smallest time steps.
We note that there is a sign change of the HeunP error, which
is the reason for its small error at h = 1.564 × 10−2. IMP
is very costly for a large ensemble, therefore the two smallest
step sizes were not computed.

In general, the performance of SIB in the experiments
has been better than SIA. Interestingly, despite the excellent
stability of IMP, the accuracy of IMP in the stochastic case
lags behind SIB and SIA. This is a good example of a situation
when a method with better stability does not necessarily have
a better accuracy. It was also observed in the deterministic
case with damping that SIB sometimes shows better accuracy
than IMP. This implies that in the case of damped motion
the numerical integration error of IMP can be larger than for
SIB, as is observed in the stochastic case. These results show
that at least for the systems considered here, SIB has the
same stability properties as IMP, but at considerably lower
computational costs.

In conclusion, we find that in the stochastic case the SIB
method, with built-in deterministic conservation laws, is more
stable and has smaller numerical errors than both the SIA and
the HeunP methods. Surprisingly, in the stochastic case SIB
is even better than IMP in terms of accuracy and convergence.
SIA performs only slightly better than HeunP in the stochastic
case, and from this we find that norm conservation is not the
most important criterion for stable numerical integration of
the SLL equation. Hence, SIB combines the advantages of
both HeunP and IMP, being both fast and stable as well as
universal. For systems with only nearest-neighbor interactions,
SIB allows step sizes a factor of 10 larger than the popular
HeunP scheme, and a factor of 2 × 103 larger than the HeunP
method without simultaneous update of the effective field.
Since in practice nearest-neighbor interactions dominate, SIB
is expected to also be advantageous for systems with more than
nearest-neighbor interactions.

5. Conclusions and outlook

In this paper we introduced two new semi-implicit integrators
(SIA and SIB) for stochastic atomistic spin dynamics (ASD)
simulations. These schemes combine the advantages of
the standard explicit projected Heun method (HeunP) and
the fully implicit midpoint method (IMP). The semi-implicit
methods are as fast as explicit schemes since they require only
the solution of three linear coupled equations for each spin
individually and therefore they are effectively explicit. For
stability, the most important conservation law is apparently the
preservation of the total spin for the case without damping.
Like IMP, SIB preserves this conservation law for the dominant
interactions in the system and the stability properties of SIB
are comparable with IMP. SIA, which has norm conservation
built in but not the deterministic conservation laws, shows
only slightly better stability than HeunP in the stochastic case.
Therefore, we recommend the use of SIB for ASD simulations.

Owing to the enhanced stability, larger step sizes can
be used with SIB. From our numerical experiments we can
conclude that the step size can be increased by a factor of
about 10 compared to the explicit HeunP. For SIB, the step size
is only limited by the precession frequency of the individual
atomic spins in the exchange field, which allows for step sizes
of about one-quarter of the precession period which can be as
large as 20 fs. This value of the step size has to be compared
with the 10 as that was reported for a standard implementation
of ASD simulations [14], which is based on the HeunP method
without the simultaneous update of the effective field. Hence,
the factor of 2 × 103 improvement can be attributed to a
proper update of the effective field and built-in conservation
of the total spin for SIB. Interestingly, numerical experiments
indicate that SIB can also be more accurate than IMP in
the stochastic case. Further checks for the stochastic case,
including larger systems, more complicated interactions, and
correlations, will be discussed in a subsequent paper.

Future work should study the conservation properties of
SIB in more detail in order to give a further explanation
of its excellent behavior. It would also be of interest to
obtain a method obeying conservation laws for systems with
more complicated interactions (e.g. next-nearest-neighbor,
anisotropy). In addition, one might exploit the fact that
the damping motion and the precessional motion are always
perpendicular, which can potentially be used to design an
integrator that exactly dissipates energy as in continuous
dynamics. Another direction which we can pursue in
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future is to derive stochastic counterparts of the geometric
integrators proposed in [21, 22] for deterministic Landau–
Lifshitz equations. Although they lack flexibility to deal
with models with arbitrary lattice structures, such geometric
integrators are expected to be highly efficient when it is
sufficient to include only nearest-neighbor interaction in
the stochastic model. Our method can also be of value
for micromagnetic simulations, and we expect that similar
techniques can be exploited for other physical systems where
interactions between particles are governed by a global
conservation law, e.g. systems based on diffusion equations
such as the Schrödinger equation.
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Appendix A

In this appendix we discuss the ergodicity of the solution X(t)
to (7)–(9). For the solution X(t) of (7)–(9) we will also use the
notation Xx(t) to reflect the dependence on the initial condition
Xx(0) = x. Taking into account (2) and (3), we observe that
the coefficients of (7)–(9) are smooth functions and due to (10)
they remain bounded for all t � 0.

One can show [33, 38] that for D > 0 and α > 0 the
process X(t) is ergodic, i.e. there exists a unique invariant
measure μ of X and independently of x ∈ R

3n there exists
the limit

lim
t→∞〈ϕ(Xx(t))〉 =

∫
ϕ(x) dμ(x) ≡ ϕerg (A.1)

for any function ϕ(x) with polynomial growth at infinity.
Indeed, the solution X(t) of (7)–(9) belongs to the compact
space due to (10). Then to prove ergodicity, it is enough
to show that there is sufficient mixing. When α = 0, the
stochastic perturbation is only precessional and, in general
(e.g. for constant B), the process X(t) is not ergodic. When
α > 0, the stochastic perturbation acts in all directions on the
spheres |x i | = 1 and so ensures a mixing sufficient for the
ergodicity.

We also recall the ergodic theorem, which gives the
equivalence between the ensemble and time averaging:

lim
t→∞

1

t

∫ t

0
ϕ(Xx(s)) ds = ϕerg almost surely, (A.2)

where the limit does not depend on x.
Further, the invariant measure associated with the solution

X(t) of (7)–(9) is Gibbsian with the density

ρ(x) ∝ exp(−β H (x)), (A.3)

where β = X̂ B̂/(kBT ) > 0 is the inverse temperature if we
choose the noise intensity D as in (6). To check that (A.3) is

the density of the invariant measure for (7)–(9) and (6), one
needs to verify that this ρ(x) is the solution of the stationary
Fokker–Planck equation for (7)–(9), (6). Such calculations are
available, e.g. in [39].

Appendix B

In this appendix we recall some generic facts from stochastic
numerics [24]. In particular, we define the weak order of
convergence of numerical methods for stochastic differential
equations (SDEs) and discuss errors arising in computing
ergodic limits.

Let us introduce a system of SDEs of a general form

dX = α(X) dt +
r∑

l=1

βl(X) dWl(t), X (0) = x, (B.1)

where X , α, βl are d-dimensional column-vectors and Wl(t),
l = 1, . . . , r , are independent standard Wiener processes.
Consider a numerical method for (B.1) based on the one-step
approximation:

Xt,x(t + h) � X̄ t,x(t + h) = x + A(t, x, h; ξ),

0 � t < t + h � t�, (B.2)

where ξ is a random vector with moments of a sufficiently high
order and A is a d-dimensional vector function. We introduce
(for simplicity) the equidistant partition of the time interval
[0, t�] into N parts with the step h = t�/N : 0 = t0 < t1 <

· · · < tN = t�, tk+1 − tk = h. According to (B.2), we construct
the sequence

X0 = x, Xk+1 = Xk + A(tk, Xk, h; ξk+1),

k = 0, . . . , N − 1,
(B.3)

where ξ1 is independent of X0 and ξk+1 for k > 0 is
independent of X0, . . . , Xk , ξ1, . . . , ξk .

We note that (B.3) contains both explicit and implicit one-
step schemes. In explicit integration schemes the approximate
solution at the next time step, Xk+1, can be computed explicitly
from the previous time step value Xk . For implicit methods,
A(t, x, h; ξ) is a solution of an implicit relation with respect to
x , i.e. implicit schemes in general require additional work.

We usually distinguish two types of convergence of
numerical methods for SDEs: mean-square (also called strong)
and weak [24]. Mean-square methods are used for direct
simulation of SDE trajectories which, for example, can give
information on the general behavior of a stochastic model.
Weak methods are sufficient for evaluation of mean values
and are simpler than mean-square ones. We say that the
method (B.3) is weakly convergent with order p > 0 if

|〈ϕ(X N )〉 − 〈ϕ(X (t�))〉| � Ch p (B.4)

for functions ϕ which, together with their derivatives of a
sufficiently high order, have growth at infinity no faster than
polynomial. If a method converges with an order p in the
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mean-square sense, it also converges in the weak sense with
order equal to or larger than p. The opposite is not true.
Since weak methods suffice for computing averages, they are
appropriate for the purposes of this paper.

To evaluate the expectation 〈ϕ(X N )〉 on a computer, one
can apply the Monte Carlo technique:

u ≡ 〈ϕ(X (t�))〉 � ū ≡ 〈ϕ(X N )〉 � û ≡ 1

M

M∑

m=1

ϕ(X (m)
N ),

(B.5)
where X (m)

N , m = 1, . . . , M , are independent realizations of
the random variable X N . In (B.5) the first approximate equality
involves the numerical integration error (cf (B.4)) and the error
in the second approximate equality (the statistical error) comes
from the Monte Carlo technique.

The error of the Monte Carlo method in (B.5) is evaluated
by

�̄ = c
[Var{ϕ(XN)}]1/2

M1/2
,

where, for example, the values c = 1, 2, 3 correspond to the
fiducial probabilities 0.68, 0.95, 0.997, respectively, with the
practical implication that

ū ∈
(

û − c√
M

√
v̂, û + c√

M

√
v̂

)
,

v̂ ≡ 1

M

M∑

m=1

[ϕ(m X N )]2 − û2,

(B.6)

with probability 0.68 for c = 1, 0.95 for c = 2, and 0.997 for
c = 3.

Now we assume that the solution of (B.1) is ergodic. In
computing ergodic limits an additional error arises. We note
that ergodic limits can be computed using ensemble averaging
or time averaging. In the former case it follows from a relation
of the form (A.1) for the solution X (t) of (B.1) that for any
ε > 0 there exists ta > 0 such that for all t� � ta

|〈ϕ(Xx(t�))〉 − ϕerg| � ε. (B.7)

Then we can use the following estimator for the ergodic limit
ϕerg:

ϕerg ≈ 〈ϕ(Xx(t�))〉 ≈ 〈ϕ(X N )〉 ≈ ϕ̂erg ≡ 1

M

M∑

m=1

ϕ(X (m)

N ),

(B.8)
where the first approximate equality corresponds to the
time cut-off while the second one relates to the numerical
integration error, and the third to the statistical error as before.
In this ensemble averaging approach each of the errors is
controlled by its own parameter (see [40]).

The time averaging approach to computing ergodic limits
is based on a relation of the form (A.2). By approximating a
single trajectory, one gets for a sufficiently large t̃�

ϕerg ∼ 1

t̃�

∫ t̃�

0
ϕ(Xx(s)) ds ∼ ϕ̌erg ≡ 1

L

L∑

k=1

ϕ(Xk), (B.9)

where Lh = t̃�. Let us emphasize that t̃� in (B.9) is much
larger than t� in (B.8) because t̃� should be such that it does
not just ensure the distribution of X (t) to be close to the
invariant distribution (as is required from t�) but it should also
guarantee smallness of the variance of ϕ̌erg (see further details
about computing ergodic limits in, for example, [40–42] and
references therein).
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