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Numerical solution of the Dirichlet problem for nonlinear
parabolic equations by a probabilistic approach
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A number of new layer methods for solving the Dirichlet problem for semilinear parabolic
equations are constructed by using probabilistic representations of their solutions. The
methods exploit the ideas of weak sense numerical integration of stochastic differential
equations in a bounded domain. Despite their probabilistic nature these methods are
nevertheless deterministic. Some convergence theorems are proved. Numerical tests are
presented.
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1. Introduction

Numerical analysis of nonlinear partial differential equations (nonlinear PDEs) is generally
based on deterministic approaches (see, for example, Strikwerda, 1989; Vreugdenhil &
Koren, 1993; Quarteroni & Valli, 1994 and Samarskii, 1977). A probabilistic approach to
constructing new layer methods for solving nonlinear PDEs of parabolic type is proposed
in Milstein (1997) (see also Milstein & Tretyakov, 2000). It is based on making use of the
well known probabilistic representations of solutions to linear parabolic equations (see,
for example, Dynkin, 1965 and Freidlin, 1985) and the ideas of weak sense numerical
integration of stochastic differential equations (SDEs) (Milstein, 1995a; Kloeden & Platen,
1992; Pardoux & Talay, 1985). Despite their probabilistic nature these methods are
nevertheless deterministic. The probabilistic approach takes into account a coefficient
dependence on the space variables and a relationship between diffusion and advection
in an intrinsic manner. In particular, the layer methods allow us to avoid difficulties
stemming from essentially changing coefficients and strong advection. Other probabilistic
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applications to numerically solving nonlinear PDEs are available, for example, in Kushner
(1977) and Talay & Tubaro (1996).

The papers of Milstein (1997) and Milstein & Tretyakov (2000) are devoted to layer
methods for the nonlinear Cauchy problem. The aim of this paper is to develop such
methods for nonlinear problems with Dirichlet boundary conditions. Some probability
methods for solving boundary value problems for linear parabolic equations are proposed
in Milstein (1995b,c, 1996) and Milstein & Tretyakov (2001).

Let G be a bounded domain in Rd , Q = [t0, T ) × G be a cylinder in Rd+1, Γ =
Q \ Q. The set Γ is a part of the boundary of the cylinder Q consisting of the upper base
and the lateral surface.

Consider the Dirichlet problem for the semilinear parabolic equation

∂u

∂t
+ 1

2

d∑
i, j=1

ai j (t, x, u)
∂2u

∂xi∂x j
+

d∑
i=1

bi (t, x, u)
∂u

∂xi
+ g(t, x, u) = 0, (t, x) ∈ Q,

(1.1)

u(t, x)|Γ = ϕ(t, x). (1.2)

The form of (1.1) is relevant to a probabilistic approach, i.e. the equation is considered
under t < T , and the ‘initial’ conditions are prescribed at t = T . Using the well known
probabilistic representation of the solution to (1.1), (1.2) (see Dynkin (1965) and Freidlin
(1985)), we get

u(t, x) = E(ϕ(τ, Xt,x (τ ))+ Zt,x,0(τ )). (1.3)

In (1.3) Xt,x (s), Zt,x,z(s), (t, x) ∈ Q, s � t , is the solution of the Cauchy problem
for the Ito system of stochastic differential equations

dX = b(s, X, u(s, X)) ds + σ(s, X, u(s, X)) dw(s), X (t) = x,

dZ = g(s, X, u(s, X)) ds, Z(t) = z, (1.4)

where w(s) = (w1(s), . . . , wd(s))	 is a standard Wiener process, b(s, x, u) =
(b1(s, x, u), . . . , bd(s, x, u))	 is a column vector, the matrix σ = σ(s, x, u) is obtained
from the equation

σσ	 = a, σ = {σ i j (s, x, u)}, a = {ai j (s, x, u)},
and τ = τt,x is the first exit time of the trajectory (s, Xt,x (s)) from the domain Q.

If (1.1) is linear, the system (1.4) does not contain the unknown function u(s, x) and
therefore one can use weak approximation schemes for solving (1.4) with the Monte Carlo
realization of representation (1.3). The representation involves the point (τ, Xt,x (τ )). To
get a sufficiently effective approximation of this point is rather a hard problem. Some
constructive schemes solving this problem in the case of linear parabolic equations are
presented in Milstein (1995b,c). The procedures of Milstein (1995b,c) together with the
Monte Carlo approach allow us to find a value u(t, x) at a single point even when the
domain G has high dimension.

Of course, the nonlinear case is much more complicated. But we aim to construct
layer methods and due to this fact it becomes possible to use a one-step (local) version



NONLINEAR DIRICHLET PROBLEM BY PROBABILISTIC APPROACH 889

of the representation (1.3) (see (2.3) below). We will introduce a time discretization, for
definiteness the equidistant one:

T = tN > tN−1 > · · · > t0, h := T − t0
N

.

The methods proposed here give an approximation ū(tk, x) of the solution
u(tk, x), k = N , . . . , 0, x ∈ G, i.e. step by step everywhere in the domain G. This is
feasible if the dimension of the domain G is comparatively small (d � 3). To construct
the layer methods, we exploit the ideas of weak sense numerical integration of SDE in a
bounded domain and obtain some approximate relations on the basis of (2.3), (1.4). The
relations allow us to express ū(tk, x), k = N−1, . . . , 0, recurrently in terms of ū(tk+1, x).
Despite their probabilistic nature these methods turn out to be deterministic as in Milstein
(1997) and Milstein & Tretyakov (2000).

In Section 2, we derive a layer method for nonlinear parabolic equations relying on
the numerical integration of ordinary SDEs. In Section 3, we prove a convergence theorem
for this method using deterministic-type arguments. We propose a second layer method
in Section 4. A convergence theorem for it is proved by probabilistic-type arguments. To
realize layer methods in practice, we need a discretization in the variable x with some kind
of interpolation at every step to turn an applied method into an algorithm. Such numerical
algorithms are constructed in Section 5. A majority of ideas can be demonstrated for d = 1,
and we restrict ourselves to this case in Sections 2–5. The case d � 2 is briefly discussed
in Section 6. Numerical tests are presented in the last section.

2. Construction of a layer method with one-step error O(h2)

The boundary value problem (1.1), (1.2) in the one-dimensional case has the following
form:

∂u

∂t
+ 1

2
σ 2(t, x, u)

∂2u

∂x2
+ b(t, x, u)

∂u

∂x
+ g(t, x, u) = 0, (t, x) ∈ Q, (2.1)

u(t, x)|Γ = ϕ(t, x). (2.2)

In this case Q is the partly open rectangle: Q = [t0, T ) × (α, β), and Γ consists of
the upper base {T } × [α, β] and two vertical intervals: [t0, T )× {α} and [t0, T )× {β}. We
assume that σ(t, x, u) � σ∗ > 0 for (t, x) ∈ Q, −∞ < u <∞.

Let u = u(t, x) be the solution to problem (2.1), (2.2), which is supposed to exist, to be
unique, and to be sufficiently smooth. One can find many theoretical results on this topic
in Ladyzhenskaya (1988); Smoller (1983); Samarskii et al. (1995); Grindrod (1996) and
Taylor (1996) (see also references therein).

Analogously to (1.3), we have

u(tk, x) = E(u(ϑtk ,x , Xtk ,x (ϑtk ,x ))+ Ztk ,x,0(ϑtk ,x )), (2.3)

where ϑtk ,x = ϑtk ,x (tk+1) := τtk ,x ∧ tk+1, and X, Z satisfy system (1.4).
Let us suppose for a while that it is possible to extend the coefficients of (2.1) so that

the new equation has a solution u(t, x) on [t0, T )×R which is an extension of the solution
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to the boundary value problem (2.1), (2.2). Then, instead of (2.3), we obtain (we suppose
the layer u(tk+1, x) to be known)

u(tk, x) = E(u(tk+1, Xtk ,x (tk+1))+ Ztk ,x,0(tk+1)). (2.4)

Applying the explicit weak Euler scheme with the simplest simulation of noise to
system (1.4), we get

X̄tk ,x (tk+1) = x + b(tk, x, u(tk, x))h + σ(tk, x, u(tk, x))
√

hξ, (2.5)

Z̄tk ,x,0(tk+1) = g(tk, x, u(tk, x))h, (2.6)

where the ξ is distributed by the law: P(ξ = ±1) = 1
2 .

Using (2.4), we get to within O(h2):

u(tk, x) � E(u(tk+1, X̄tk ,x (tk+1))+ Z̄tk ,x,0(tk+1))

= 1
2 u

(
tk+1, x + b(tk, x, u(tk, x))h − σ(tk, x, u(tk, x))

√
h
)

+ 1
2 u

(
tk+1, x + b(tk, x, u(tk, x))h + σ(tk, x, u(tk, x))

√
h
)+ g(tk, x, u(tk, x))h· (2.7)

Now we can obtain an implicit relation for an approximation of u(tk, x). Applying the
method of simple iteration to the implicit relation and taking u(tk+1, x) as a null iteration,
we get the following explicit one-step approximation v(tk, x) of u(tk, x):

v(tk, x) = 1
2 u

(
tk+1, x + bk · h − σk ·

√
h
)+ 1

2 u
(
tk+1, x + bk · h + σk ·

√
h
)+ gk · h,

(2.8)

where bk, σk, gk are the coefficients b(t, x, u), σ (t, x, u), g(t, x, u) calculated at the
point (tk, x, u(tk+1, x)).

But in reality we know the layer u(tk+1, x) for α � x � β only. At the same time the
argument x+bkh−σk

√
h for x close to α is less than α and the argument x+bkh+σk

√
h for

x close to β is more than β. Thus, we need to extend the layer u(tk+1, x) in a constructive
manner.

Using the explicit weak Euler scheme for the initial point (t, α) with tk � t � tk+1, we
put (cf. (2.5), (2.6))

X̄t,α(tk+1) = x + b(t, α, u(t, α)) · (tk+1 − t)+ σ(t, α, u(t, α)) ·√tk+1 − t · ξ,

Z̄t,α,0(tk+1) = g(t, α, u(t, α)) · (tk+1 − t). (2.9)

Analogously, we define X̄t,β(tk+1), Z̄t,β,0(tk+1).
We have (see (2.7) and (2.9)) for tk � t � tk+1

u(t, α) � E(u(tk+1, X̄t,α(tk+1))+ Z̄t,α,0(tk+1))

= 1
2 u

(
tk+1, α + b(t, α, u(t, α)) · (tk+1 − t)− σ(t, α, u(t, α)) ·√tk+1 − t

)
+ 1

2 u
(
tk+1, α + b(t, α, u(t, α)) · (tk+1 − t)+ σ(t, α, u(t, α)) ·√tk+1 − t

)
+g(t, α, u(t, α)) · (tk+1 − t). (2.10)



NONLINEAR DIRICHLET PROBLEM BY PROBABILISTIC APPROACH 891

If we replace (remember, u(t, α) = ϕ(t, α) due to (2.2)) the argument (t, α, u(t, α)) =
(t, α, ϕ(t, α)) by (tk, α, ϕ(tk+1, α)), the right-hand side of (2.10) is changed by a quantity
of order O(h2). Since the approximation in (2.10) is also O(h2), we get

1
2 u

(
tk+1, α + b(tk, α, ϕ(tk+1, α)) · (tk+1 − t)− σ(tk, α, ϕ(tk+1, α)) ·√tk+1 − t

)
= ϕ(t, α)− 1

2 u
(
tk+1, α + b(tk, α, ϕ(tk+1, α)) · (tk+1 − t)

+σ(tk, α, ϕ(tk+1, α)) ·√tk+1 − t
)

−g(tk, α, ϕ(tk+1, α)) · (tk+1 − t)+ O(h2). (2.11)

Introduce

α0 := α + b(tk, α, ϕ(tk+1, α)) · h − σ(tk, α, ϕ(tk+1, α)) · √h.

Clearly α0 < α and α0 � α + b(tk, α, ϕ(tk+1, α)) · (tk+1 − t)− σ(tk, α, ϕ(tk+1, α)) ·√
tk+1 − t � α for tk � t � tk+1 under a sufficiently small h.

Analogously

1
2 u

(
tk+1, β + b(tk, β, ϕ(tk+1, β)) · (tk+1 − t)+ σ(tk, β, ϕ(tk+1, β)) ·√tk+1 − t

)
= ϕ(t, β)− 1

2 u
(
tk+1, β + b(tk, β, ϕ(tk+1, β)) · (tk+1 − t)

−σ(tk, β, ϕ(tk+1, β)) ·√tk+1 − t
)

−g(tk, β, ϕ(tk+1, β)) · (tk+1 − t)+ O(h2), (2.12)

β0 := β + b(tk, β, ϕ(tk+1, β)) · h + σ(tk, β, ϕ(tk+1, β)) · √h.

The relations (2.11), (2.12) give the desired extension of the function u(tk+1, x) on the
interval [α0, β0].

Let us return to (2.8) now. The arguments x + bk · h− σk ·
√

h and x + bk · h+ σk ·
√

h
are monotone increasing functions in x ∈ [α, β] for a sufficiently small h. Their values
belong to [α0, β0], and x + bk · h + σk ·

√
h is always (for x ∈ [α, β]) more than α while

x + bk · h − σk ·
√

h is less than β. Let x + bk · h − σk ·
√

h < α (clearly it is possible for
x close to α). Due to the above, there exists a unique root γk(x), 0 < γk(x) � 1, of the
quadratic equation

α + b(tk, α, ϕ(tk+1, α)) · γkh − σ(tk, α, ϕ(tk+1, α)) ·√γkh

= x + bk · h − σk ·
√

h. (2.13)

Analogously, if x + bk · h + σk ·
√

h > β, then there exists a unique root δk(x), 0 <

δk(x) � 1, of the quadratic equation

β + b(tk, β, ϕ(tk+1, β)) · δkh + σ(tk, β, ϕ(tk+1, β)) ·√δkh

= x + bk · h + σk ·
√

h. (2.14)

If, for instance, x + bk · h − σk ·
√

h < α, then one can replace the value u(tk+1, x +
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bk · h − σk ·
√

h)/2 in (2.8) by the value due to (2.13) and (2.11):

1
2 u

(
tk+1, x + bk · h − σk ·

√
h
)

= 1
2 u

(
tk+1, α + b(tk, α, ϕ(tk+1, α)) · γkh − σ(tk, α, ϕ(tk+1, α)) ·√γkh

)
≈ ϕ(tk+1−γk , α)− 1

2 u
(
tk+1, α + b(tk, α, ϕ(tk+1, α)) · γkh + σ(tk, α, ϕ(tk+1, α))

√
γkh

)
−g(tk, α, ϕ(tk+1, α)) · γkh,

where tk+1−γk = tk + (1− γk) · h.
As a result, we obtain the following one-step approximation v(tk, x) for u(tk, x):

v(tk, x) = 1
2 u

(
tk+1, x + bk · h − σk ·

√
h
)+ 1

2 u
(
tk+1, x + bk · h + σk ·

√
h
)

(2.15)

+gk · h, if x + bk · h ± σk ·
√

h ∈ [α, β];
v(tk, x) = ϕ(tk+1−γk , α)− g(tk, α, ϕ(tk+1, α)) · γkh

− 1
2 u

(
tk+1, α + b(tk, α, ϕ(tk+1, α)) · γkh + σ(tk, α, ϕ(tk+1, α)) · √γkh

)
+ 1

2 u(tk+1, x + bk · h + σk ·
√

h)+ gk · h, if x + bk · h − σk ·
√

h < α;
v(tk, x) = 1

2 u
(
tk+1, x + bk · h − σk ·

√
h
)+ ϕ(tk+1−δk , β)− g(tk, β, ϕ(tk+1, β)) · δkh

− 1
2 u

(
tk+1, β + b(tk, β, ϕ(tk+1, β)) · δkh − σ(tk, β, ϕ(tk+1, β)) · √δkh

)
+gk · h, if x + bk · h + σk ·

√
h > β, k = N − 1, . . . , 1, 0,

where (let us recall) bk , σk , gk are the coefficients b(t, x, u), σ(t, x, u), g(t, x, u)

calculated at the point (tk, x, u(tk+1, x)) and γk , δk are the corresponding roots of (2.13)
and (2.14).

Thus the layer method acquires the form

ū(tN , x) = ϕ(tN , x), x ∈ [α, β], (2.16)

ū(tk, x) = 1
2 ū

(
tk+1, x + b̄k · h − σ̄k ·

√
h
)+ 1

2 ū
(
tk+1, x + b̄k · h + σ̄k ·

√
h
)

+ḡk · h, if x + b̄k · h ± σ̄k ·
√

h ∈ [α, β];
ū(tk, x) = ϕ(tk+1−γ̄k , α)− g(tk, α, ϕ(tk+1, α)) · γ̄kh

− 1
2 ū

(
tk+1, α + b(tk, α, ϕ(tk+1, α)) · γ̄kh + σ(tk, α, ϕ(tk+1, α)) ·√γ̄kh

)
+ 1

2 ū
(
tk+1, x + b̄k · h + σ̄k ·

√
h
)+ ḡk · h, if x + b̄k · h − σ̄k ·

√
h < α;

ū(tk, x) = 1
2 ū

(
tk+1, x + b̄k · h − σ̄k ·

√
h
)+ ϕ(tk+1−δ̄k

, β)− g(tk, β, ϕ(tk+1, β)) · δ̄kh

− 1
2 ū

(
tk+1, β + b(tk, β, ϕ(tk+1, β)) · δ̄kh − σ(tk, β, ϕ(tk+1, β)) ·

√
δ̄kh

)
+ḡk · h, if x + b̄k · h + σ̄k ·

√
h > β;

k = N − 1, . . . , 1, 0,

where b̄k , σ̄k , ḡk are the coefficients b(t, x, u), σ(t, x, u), g(t, x, u) calculated at the point
(tk, x, ū(tk+1, x)) and γ̄k , δ̄k are the corresponding roots of (2.13) and (2.14) with the right
sides x + b̄k · h − σ̄k ·

√
h and x + b̄k · h + σ̄k ·

√
h.

The method (2.16) is an explicit layer method for solving the Dirichlet problem (2.1),
(2.2). This method is deterministic, even though it is constructed by a probabilistic
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approach. The method is of the first order of convergence with respect to h (see
Theorem 3.1).

REMARK 2.1 Let us briefly discuss some differences between the layer methods obtained
here and the well known finite-difference methods (see a more detailed discussion in
Milstein (1997)). Finite-difference methods also allow us to express an approximate
solution on the layer t = tk recurrently in terms of the solution on the layer t = tk+1.
For their construction, both the time step ∆t and the space step ∆x are used. Moreover,
the knots of the layer t = tk+1 used to evaluate ū(tk, x j ) are definitely prescribed. In our
methods we use the time step h only, and the points from the layer t = tk+1 to evaluate
ū(tk, x) arise automatically. A location of these points depends on the coefficients of the
problem considered and on the weak scheme chosen. As a result, the probabilistic approach
takes into account a coefficient dependence on the space variables and a relationship
between diffusion and advection in an intrinsic manner. In particular, the layer methods
allow us to avoid difficulties stemming from essentially changing coefficients and strong
advection. We should also note that the probabilistic approach gives a natural way to derive
many new methods.

3. Convergence theorem

We shall make the following assumptions.
(i) There exists a unique solution u(t, x) to problem (2.1), (2.2) such that

u◦ < u∗ � u(t, x) � u∗ < u◦, t0 � t � T, x ∈ [α, β], (3.1)

where u◦, u∗, u∗, u◦ are some constants, and there exist uniformly bounded derivatives:∣∣∣∣ ∂ i+ j u

∂t i∂x j

∣∣∣∣ � K , i = 0, j = 1, 2, 3, 4; i = 1, j = 0, 1, 2; i = 2, j = 0;
t0 � t � T, x ∈ [α, β]. (3.2)

(ii) The coefficients b(t, x, u), σ(t, x, u), g(t, x, u) and their first and second
derivatives in x and u are uniformly bounded:∣∣∣∣ ∂ i+ j b

∂xi∂u j

∣∣∣∣ � K ,

∣∣∣∣ ∂ i+ jσ

∂xi∂u j

∣∣∣∣ � K ,

∣∣∣∣ ∂ i+ j g

∂xi∂u j

∣∣∣∣ � K , 0 � i + j � 2,

t0 � t � T, x ∈ [α, β], u◦ < u < u◦. (3.3)

Below we use the letters K and C without any index for various constants which do
not depend on h, k, x .

First of all let us evaluate the one-step error ρ(tk, x) of method (2.16).

LEMMA 3.1 Under assumptions (i) and (ii), the one-step error ρ(tk, x) of method (2.16)
has the second order of smallness with respect to h, i.e.

|ρ(tk, x)| = |v(tk, x)− u(tk, x)| � Ch2,

where v(tk, x) is defined by (2.16), C does not depend on h, k, x .
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Proof. If both points x + bk · h ± σk ·
√

h belong to [α, β], the statement of this lemma
follows directly from Lemma 4.1 of Milstein (1997).

Let us consider the case when the point x+bk ·h−σk ·
√

h < α. Introduce the notation
bα , σα , gα for the coefficients b, σ , g calculated at the point (tk, α, ϕ(tk+1, α)). We get
from (2.13) that

α − x = bkh − σk
√

h − bαγkh + σα

√
γkh = (

σα
√

γk − σk
)√

h + O(h) = O(
√

h).
(3.4)

Expand the terms of (2.16) at the point (tk, x):

ϕ(tk+1−γk , α) = u(tk + (1− γk)h, x + (α − x)) = u + ∂u

∂t
· (1− γk)h

+∂u

∂x
· (α − x)+ ∂2u

∂t∂x
· (1− γk)(α − x)h

+1

2

∂2u

∂x2
· (α − x)2 + 1

6

∂3u

∂x3
· (α − x)3 + O(h2), (3.5)

u
(
tk+1, α + bαγkh + σα

√
γkh

) = u
(
tk + h, x + (

α − x + bαγkh + σα

√
γkh

))
= u + ∂u

∂t
h + ∂u

∂x
· (α − x + bαγkh + σα

√
γkh

)+ ∂2u

∂t∂x
· (α − x + σα

√
γkh

)
h

+1

2

∂2u

∂x2
· ((α − x + σα

√
γkh

)2 + 2(α − x + σα

√
γkh)bαγkh

)
+1

6

∂3u

∂x3
· (α − x + σα

√
γkh

)3 + O(h2), (3.6)

and

u
(
tk+1, x + bkh + σk

√
h
) = u + ∂u

∂t
h + ∂u

∂x
· (bkh + σk

√
h
)+ ∂2u

∂t∂x
· σkh3/2

+1

2

∂2u

∂x2
· (σ 2

k h + 2bkσkh3/2)+ 1

6

∂3u

∂x3
· σ 3

k h3/2 + O(h2). (3.7)

Here the function u and its derivatives are calculated at the point (tk, x).
Substituting (3.5)–(3.7) in the corresponding expression for v(tk, x) of (2.16) and

using (3.4), we obtain

v(tk, x) = u + h(1− γk) ·
(

∂u

∂t
+ σ 2

k

2

∂2u

∂x2
+ bk

∂u

∂x
+ gk

)
+ ∂u

∂x
· (bk − bα)γkh

+ ∂2u

∂t∂x
· (σk − σα

√
γk

)
γkh3/2 + ∂2u

∂x2
· ( 1

2 (σ 2
k − σ 2

α )γkh + bα(σk − σα
√

γk)γkh3/2)
+ 1

2
∂3u

∂x3
· σ 2

α

(
σk − σα

√
γk

)
γkh3/2 + (gk − gα)γkh + O(h2). (3.8)
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Due to assumptions (i) and (ii) and relation (3.4), we get

σα = σ(tk, α, u(tk+1, α)) = σ(tk, x, u(tk, x))+ ∂σ

∂x
· (α − x)

+∂σ

∂u
· (u(tk+1, α)− u(tk, x))+ O(h)

= σ + ∂σ

∂x
· (σα
√

γk − σk
)√

h + ∂σ

∂u

∂u

∂x
· (σα
√

γk − σk
)√

h + O(h)

= σ +
(

∂σ

∂x
+ ∂σ

∂u

∂u

∂x

)
· σk

(√
γk − 1

)√
h + O(h),

bα = b(tk, α, u(tk+1, α)) = b +
(

∂b

∂x
+ ∂b

∂u

∂u

∂x

)
· σk

(√
γk − 1

)√
h + O(h),

gα = g(tk, α, u(tk+1, α)) = g +
(

∂g

∂x
+ ∂g

∂u

∂u

∂x

)
· σk

(√
γk − 1

)√
h + O(h),

bk = b(tk, x, u(tk+1, x)) = b + O(h), σk = σ + O(h), gk = g + O(h), (3.9)

where b, σ , g (without any indices) and their derivatives are calculated at the point
(tk, x, u(tk, x)).

Using (3.9), we obtain from (3.8):

v(tk, x) = u(tk, x)+ h(1− γk) ·
[
∂u

∂t
+ σ 2

2

∂2u

∂x2
+ b

∂u

∂x
+ g

]

+h3/2γkσ
(
1−√γk

) · [ ∂2u

∂t∂x
+ σ 2

2

∂3u

∂x3
+ σ ·

(
∂σ

∂x
+ ∂σ

∂u

∂u

∂x

)
∂2u

∂x2
+ b

∂2u

∂x2

+
(

∂b

∂x
+ ∂b

∂u

∂u

∂x

)
∂u

∂x
+ ∂g

∂x
+ ∂g

∂u

∂u

∂x

]
+ O(h2)

= u(tk, x)+
(

h(1− γk)+ h3/2γkσ
(
1−√γk

) ∂

∂x

)[
∂u

∂t
+ σ 2

2

∂2u

∂x2
+ b

∂u

∂x
+ g

]
+ O(h2).

(3.10)

Taking into account that u(t, x) is the solution to problem (2.1), (2.2), the
relation (3.10) implies

v(tk, x) = u(tk, x)+ O(h2).

The case x + bk · h + σk ·
√

h > β can be considered analogously. �

Let us prove the following theorem on global convergence.

THEOREM 3.1 Under assumptions (i) and (ii), the method (2·16) has the first order of
convergence with respect to h i.e.

|ū(tk, x)− u(tk, x)| � K h,

where K does not depend on h, k, x .
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Proof. Denote the error of method (2.16) on the kth layer ((N − k)th step) as

R(tk, x) := ū(tk, x)− u(tk, x). (3.11)

If x + b̄k · h ± σ̄k ·
√

h ∈ [α, β], we have (see (2.16) and (3.11)):

u(tk, x)+ R(tk, x) = 1
2 u

(
tk+1, x + b̄k · h − σ̄k ·

√
h
)+ 1

2 R
(
tk+1, x + b̄k · h − σ̄k ·

√
h
)

+ 1
2 u

(
tk+1, x + b̄k · h + σ̄k ·

√
h
)+ 1

2 R
(
tk+1, x + b̄k · h + σ̄k ·

√
h
)+ ḡk · h. (3.12)

Expanding the functions u(tk+1, x + b̄k · h ± σ̄k ·
√

h) at the point (tk, x), we get

u
(
tk+1, x + b̄k · h ± σ̄k ·

√
h
) = u(tk, x)+ ∂u

∂t
h + (

b̄k · h ± σ̄k ·
√

h
)∂u

∂x

+ σ̄ 2
k

2

∂2u

∂x2
· h ± b̄k σ̄k

∂2u

∂x2
· h3/2 ± σ̄k

∂2u

∂t∂x
· h3/2 ± σ̄ 3

k

6

∂3u

∂x3
· h3/2 + O(h2), (3.13)

where the derivatives are calculated at the point (tk, x).
Here we have to assume for a while that the value u(tk+1, x) + R(tk+1, x) remains in

the interval (u◦, u◦) for a sufficiently small h (see condition (ii)). Clearly, R(tN , x) = 0,
and below we prove recurrently that R(tk, x) is sufficiently small for a sufficiently small h.
Thereupon, thanks to (3.1) this assumption will be justified for such h.

Due to assumptions (i) and (ii) and notation (3.11), we obtain

b̄k = b(tk, x, ū(tk+1, x)) = b(tk, x, u(tk+1, x)+ R(tk+1, x))

= b(tk, x, u(tk+1, x))+∆b = b(tk, x, u(tk, x))+∆b + O(h),

σ̄k = σ(tk, x, u(tk, x))+∆σ + O(h), σ̄ 2
k = σ 2(tk, x, u(tk, x))+∆σ 2 + O(h),

ḡk = g(tk, x, u(tk, x))+∆g + O(h), (3.14)

where

|∆b|, |∆σ |, |∆σ 2|, |∆g| � K · |R(tk+1, x)|.
Substituting (3.13) in (3.12) and taking into account (3.14), we come to the relation

u(tk, x)+ R(tk, x) = u(tk, x)+ h ·
(

∂u

∂t
+ b

∂u

∂x
+ σ 2

2

∂2u

∂x2
+ g

)
+ r(tk, x)+ O(h2)

+ 1
2 R

(
tk+1, x + b̄k · h − σ̄k ·

√
h
)+ 1

2 R
(
tk+1, x + b̄k · h + σ̄k ·

√
h
)
, (3.15)

where the derivatives are calculated at (tk, x), b, σ , g are calculated at (tk, x, u(tk, x)), and

|r(tk, x)| � K h|R(tk+1, x)|.
Since u(t, x) is the solution to (2.1), (2.2), the relation (3.15) implies

R(tk, x) = 1
2 R

(
tk+1, x + b̄k · h − σ̄k ·

√
h
)+ 1

2 R
(
tk+1, x + b̄k · h + σ̄k ·

√
h
)

+r(tk, x)+ O(h2). (3.16)



NONLINEAR DIRICHLET PROBLEM BY PROBABILISTIC APPROACH 897

For x such that x + b̄k · h − σ̄k ·
√

h < α, we get (see (3.11) and (2.16))

u(tk, x)+ R(tk, x) = ū(tk, x) = ϕ(tk+1−γ̄k , α)

− 1
2 u

(
tk+1, α + bαγ̄kh + σα

√
γ̄kh

)+ 1
2 u

(
tk+1, x + b̄k · h + σ̄k ·

√
h
)

− 1
2 R

(
tk+1, α + bαγ̄kh + σα

√
γ̄kh

)+ 1
2 R

(
tk+1, x + b̄k · h + σ̄k ·

√
h
)

−g(tk, α, u(tk+1, α)) · γ̄kh + ḡk · h, (3.17)

where bα , σα , gα are the corresponding coefficients calculated at (tk, α, ϕ(tk+1, α)).
In accordance with (2.16) and (2.13), we have (cf. (3.4))

α − x = b̄kh − σ̄k
√

h − bαγ̄kh + σα

√
γ̄kh = (

σα

√
γ̄k − σ̄k

)√
h + O(h) = O(

√
h).

Recall that γ̄k is a root of (2.13) with the right side x + b̄kh − σ̄k
√

h.
Now we expand the first three terms in the right side of (3.17) in powers of h at the

point (tk, x) as was done in the proof of Lemma 3.1 (see (3.5)–(3.8)). The obtained new
relation contains b̄k , σ̄k , ḡk , γ̄k (instead of bk , σk , gk , γk in (3.8)) and bα , σα , gα . We present
b̄k , σ̄k , ḡk due to (3.14) and bα , σα , gα due to (3.9). As a result, we get (cf. (3.10))

u(tk, x)+ R(tk, x) = u(tk, x)

+
(

h(1− γ̄k)+ h3/2γ̄kσ
(
1−√

γ̄k
) ∂

∂x

)[
∂u

∂t
+ σ 2

2

∂2u

∂x2
+ b

∂u

∂x
+ g

]
+r1(tk, x)+ O(h2)− 1

2 R
(
tk+1, α + bαγ̄kh + σα

√
γ̄kh

)+ 1
2 R

(
tk+1, x + b̄k · h + σ̄k ·

√
h
)
,

where the derivatives of u are calculated at the point (tk, x), the coefficients b, σ , g and
their derivatives are calculated at the point (tk, x, u(tk, x)), and

|r1(tk, x)| � K h|R(tk+1, x)|.
Since u(t, x) is the solution to (2.1), (2.2), finally we arrive at

R(tk, x) = − 1
2 R

(
tk+1, α + bαγ̄kh + σα

√
γ̄kh

)
+ 1

2 R
(
tk+1, x + b̄k · h + σ̄k ·

√
h
)+ r1(tk, x)+ O(h2). (3.18)

Clearly, for x such that x + b̄k · h + σ̄k ·
√

h > β, we can obtain the relation similar
to (3.18):

R(tk, x) = − 1
2 R

(
tk+1, β + bβ δ̄kh − σβ

√
δ̄kh

)
+ 1

2 R(tk+1, x + b̄k · h − σ̄k ·
√

h)+ r2(tk, x)+ O(h2) (3.19)

with

|r2(tk, x)| � K h|R(tk+1, x)|.
Now we introduce

Rk := max
x∈[α,β] |R(tk, x)|.
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The relations (3.16), (3.18), and (3.19) imply (recall that R(tN , x) = 0)

RN = 0, Rk � Rk+1 + K Rk+1h + Ch2, k = N − 1, . . . , 1, 0.

Therefore

Rk � C

K
(eK (T−t0) − 1) · h, k = N , . . . , 0.

�

4. Layer method with one-step boundary error O(h3/2)

Without exploiting the idea used above of involving the points outside the interval [α, β]
while constructing a layer method, it is possible to get a layer method that is simpler but
with a larger one-step error near the boundary than (2.16) (see Lemma 4.1 below). Let us
note that in spite of the greater one-step boundary error the global error of this method will
be O(h) again (see Theorem 4.1). Here we approximate the solution u(tk, x), when the
point x is close to α (or β), using values of the solution at a point (tk+λk , α) with some
λk ∈ (0, 1) (or at a point (tk+µk , β) with some µk ∈ (0, 1)) and at the point (tk+1, x +
bk · h + σk ·

√
h) (or (tk+1, x + bk · h − σk ·

√
h)) with some (positive) weights. These

two weights may be interpreted as probabilities of reaching and not reaching α (or β). The
method obtained in this way has the form

ū(tN , x) = ϕ(tN , x), x ∈ [α, β], (4.1)

ū(tk, x) = 1
2 ū

(
tk+1, x + b̄k · h − σ̄k ·

√
h
)+ 1

2 ū
(
tk+1, x + b̄k · h + σ̄k ·

√
h
)

+ḡk · h, if x + b̄k · h ± σ̄k ·
√

h ∈ [α, β];

ū(tk, x) = 1

1+
√

λ̄k

ϕ(tk+λ̄k
, α)+

√
λ̄k

1+
√

λ̄k

ū
(
tk+1, x + b̄k · h + σ̄k ·

√
h
)

+ḡk ·
√

λ̄kh, if x + b̄k · h − σ̄k ·
√

h < α;

ū(tk, x) = 1

1+√µ̄k
ϕ(tk+µ̄k , β)+

√
µ̄k

1+√µ̄k
ū
(
tk+1, x + b̄k · h − σ̄k ·

√
h
)

+ḡk ·
√

µ̄kh, if x + b̄k · h + σ̄k ·
√

h > β;
k = N − 1, . . . , 1, 0,

where b̄k , σ̄k , ḡk are the coefficients b(t, x, u), σ(t, x, u), g(t, x, u) calculated at the point
(tk, x, ū(tk+1, x)) and 0 < λ̄k , µ̄k < 1 are roots of the quadratic equations (it is not difficult
to verify that the roots exist and are unique)

α = x + b̄k · λ̄kh − σ̄k ·
√

λ̄kh, β = x + b̄k · µ̄kh + σ̄k ·
√

µ̄kh.

This method involves one value of the function ϕ(t, x) and one value of the
approximate solution ū(tk+1, y) on the previous layer in contrast to the method (2.16)
which requires evaluating one value of the function ϕ(t, x) and two values of the
approximate solution ū(tk+1, y) on the previous layer.
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LEMMA 4.1 Under assumptions (i) and (ii), the one-step error ρ(tk, x) of (4.1) is
estimated as

|ρ(tk, x)| � Ch2 if x + bk · h ± σk ·
√

h ∈ [α, β];
|ρ(tk, x)| � Ch3/2 if x + bk · h − σk ·

√
h < α or x + bk · h + σk ·

√
h > β.

The proof is very similar (even simpler) to that of Lemma 3.1 and we do not give it
here. The following convergence theorem for (4.1) takes place.

THEOREM 4.1 Under assumptions (i) and (ii), the method (4.1) has the global error
estimated as

|ū(tk, x)− u(tk, x)| � K h, (4.2)

where K does not depend on h, k, x .

Proof. If we followed the way of proving Theorem 3.1, we would get that the global
error of method (4.1) is O(

√
h). To prove the estimate (4.2), we exploit ideas of proving

convergence theorems for probabilistic methods solving linear boundary value problems
(Milstein, 1995b,c).

To this end, in connection with the layer method (4.1), we introduce the Markov chain
(ϑi , Xi ), i � k, (ϑk, Xk) = (tk, x) ∈ Q, which stops on Γ at a random moment � � N .
For (ϑi , Xi ) /∈ Γ , we define

X±i+1 := Xi + hb̄i ± h1/2σ̄i ,

and if X±i+1 ∈ [α, β], then ϑi+1 = ϑi + h, Xi+1 takes values X−i+1 or X+i+1 with

P{(ϑi+1, Xi+1) = (ϑi + h, X−i+1)} = P{(ϑi+1, Xi+1) = (ϑi + h, X+i+1)} = 1
2 ;

if X−i+1 < α, then

P{(ϑi+1, Xi+1) = (ϑi + λ̄i h, α)} = 1

1+
√

λ̄i

,

P{(ϑi+1, Xi+1) = (ϑi + h, X+i+1)} =
√

λ̄i

1+
√

λ̄i

;

if X+i+1 > β, then

P{(ϑi+1, Xi+1) = (ϑi + h, X−i+1)} =
√

µ̄i

1+√µ̄i
,

P {(ϑi+1, Xi+1) = (ϑi + µ̄i h, β)} = 1

1+√µ̄i
.

Here b̄i = b(ϑi , Xi , ū(ϑi + h, Xi )), σ̄i = σ(ϑi , Xi , ū(ϑi + h, Xi )), ū(tk, x) is considered
to be known from (4.1), and 0 < λ̄i , µ̄i < 1 are roots of the quadratic equations

α = Xi + b̄i · λ̄i h − σ̄i

√
λ̄i h, β = Xi + b̄i · µ̄i h + σ̄i

√
µ̄i h. (4.3)
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If (ϑi , Xi ) ∈ Γ , the Markov chain stops and � = i .
Let us note that ϑi coincides with ti except, maybe, the last moment �.
Now introduce the random sequence Zi , Zk = 0:

if X±i+1 ∈ [α, β], then Zi+1 = Zi + hḡi ; if X−i+1 < α, then Zi+1 = Zi +
√

λ̄i hḡi ;
if X+i+1 > β, then Zi+1 = Zi +

√
µ̄i hḡi ; i = k, . . . , � − 1,

where ḡi = g(ϑi , Xi , ū(ϑi + h, Xi )).
Define the boundary layer ∂Γ ∈ Q. For all the points (tk, x) ∈ Q \ ∂Γ both points

x + hb̄k ± h1/2σ̄k belong to [α, β]. Clearly, for the points (tk, x) ∈ ∂Γ either x + hb̄k −
h1/2σ̄k /∈ [α, β] or x + hb̄k + h1/2σ̄k /∈ [α, β].

It is not difficult to show that the mean of the number of steps ν(tk, x), which the
Markov chain (ϑi , Xi ), i = k, . . . , �, ϑk = tk , Xk = x , spends in the layer ∂Γ is estimated
as

Eν(tk, x) � H, (4.4)

where H does not depend on h, k, x (see Milstein (1995b,c)).
One can see that

ū(tk, x) = E[ū(ϑ�, X�)+ Z� ] = E[ϕ(ϑ�, X�)+ Z� ] = E[u(ϑ�, X�)+ Z� ].
We have R(tN , x) := ū(tN , x)− u(tN , x) = 0 and for k = N − 1, . . . , 0:

R(tk, x) := ū(tk, x)− u(tk, x) = E
�−1∑
i=k

[u(ϑi+1, Xi+1)− u(ϑi , Xi )+ Zi+1 − Zi ]

= E
�−1∑
i=k

IQ\∂Γ (ϑi , Xi )[u(ϑi+1, Xi+1)− u(ϑi , Xi )+ Zi+1 − Zi ]

+E
�−1∑
i=k

I∂Γ (ϑi , Xi )[u(ϑi+1, Xi+1)− u(ϑi , Xi )+ Zi+1 − Zi ]

=
N−1∑
i=k

E E(χ�>i IQ\∂Γ (ϑi , Xi )[u(ϑi+1, Xi+1)− u(ϑi , Xi )+ Zi+1 − Zi ]/Xi , Zi )

+
N−1∑
i=k

E E(χ�>i I∂Γ (ϑi , Xi )[u(ϑi+1, Xi+1)− u(ϑi , Xi )+ Zi+1 − Zi ]/Xi , Zi )

=
N−1∑
i=k

E(χ�>i IQ\∂Γ (ϑi , Xi )E[u(ϑi+1, Xi+1)− u(ϑi , Xi )+ Zi+1 − Zi/Xi , Zi ])

+
N−1∑
i=k

E(χ�>i I∂Γ (ϑi , Xi )E[u(ϑi+1, Xi+1)− u(ϑi , Xi )+ Zi+1 − Zi/Xi , Zi ]). (4.5)
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In (4.5) and below we use the ordinary properties of conditional mathematical
expectations taking into account that the indicator functions χ�>i , IQ\∂Γ (ϑi , Xi ), and
I∂Γ (ϑi , Xi ) are measurable with respect to Xi .

To calculate the conditional expectations in (4.5), we exploit a lemma from Gichman
& Skorochod (1968, Section 10). In our case the lemma allows us to evaluate a conditional
expectation as the ordinary mathemetical expectation under fixed values of the random
variables Xi , Zi .

We get for (ϑi , Xi ) ∈ Q \ ∂Γ that

Ai := E[u(ϑi+1, Xi+1)− u(ϑi , Xi )+ Zi+1 − Zi/Xi , Zi ]
= 1

2 u(ti+1, Xi + hb̄i − h1/2σ̄i )+ 1
2 u(ti+1, Xi + hb̄i + h1/2σ̄i )− u(ti , Xi )+ hḡi . (4.6)

We expand the terms of (4.6) at the point (ti , Xi ) (cf.(̃3.13)). Then, attracting relations
like (3.14) and taking into account that u(t, x) is the solution to the problem (2.1), (2.2),
we obtain

Ai = ri + O(h2), (4.7)

where

|ri | � K h|R(ϑi + h, Xi )|.
Now let (ϑi , Xi ) ∈ ∂Γ be such that Xi is close to α. We have

Bi := E[u(ϑi+1, Xi+1)− u(ϑi , Xi )+ Zi+1 − Zi/Xi , Zi ]

= 1

1+
√

λ̄i

ϕ(ti+λ̄i
, α)+

√
λ̄i

1+
√

λ̄i

u(ti+1, Xi + hb̄i + h1/2σ̄i )− u(ti , Xi )+
√

λ̄i hḡi

= 1

1+
√

λ̄i

u(ti+λ̄i
, α)+

√
λ̄i

1+
√

λ̄i

u(ti+1, Xi + hb̄i + h1/2σ̄i )− u(ti , Xi )+
√

λ̄i hḡi .

(4.8)

We expand the terms of (4.8) at the point (ti , Xi ). Then, using (4.3), attracting relations
like (3.14), and taking into account that u(t, x) is the solution to the problem (2.1), (2.2),
we get

Bi = r̄i + O(h3/2), (4.9)

where

|r̄i | � K h|R(ϑi + h, Xi )|.
An analogous relation can be obtained for (ϑi , Xi ) ∈ ∂Γ with Xi being close to β.
Substituting (4.7) and (4.9) in (4.5), we obtain

R(tk, x) = E
�−1∑
i=k

IQ\∂Γ (ϑi , Xi )[ri + O(h2)] + E
�−1∑
i=k

I∂Γ (ϑi , Xi )[r̄i + O(h3/2)].
(4.10)
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Due to (4.4), ∣∣∣∣∣E
�−1∑
i=k

I∂Γ (ϑi , Xi )O(h3/2)

∣∣∣∣∣ � C Hh3/2.

Then, from (4.10), we obtain for Rk := max
x∈[α,β] |R(tk, x)| that

Rk � K h
N−1∑
i=k

Ri+1 + Ch. (4.11)

Introduce εk := K h
∑N−1

i=k Ri+1 + Ch, k = N − 1, . . . , 0. Due to (4.11), Rk � εk .
Consequently, εk = K h Rk+1 + εk+1 � (1 + K h)εk+1, k = N − 2, . . . , 0. Then (since
εN−1 = Ch)

Rk � εk � CeK (T−t0) · h, k = N , . . . , 0.

�

REMARK 4.1 The assertions of Lemma 4.1 and Theorem 4.1 are also valid if we take
weaker assumptions on the coefficients than (ii), namely

|b| � K , |σ | � K , |g| � K ,

|b(t, x2, u2)− b(t, x1, u1)| + |σ(t, x2, u2)− σ(t, x1, u1)| + |g(t, x2, u2)− g(t, x1, u1)|
� K (|x2 − x1| + |u2 − u1|), t0 � t � T, x ∈ [α, β], u◦ < u < u◦.

REMARK 4.2 It follows from the proof of Theorem 4.1 that to construct a first-order
method we can use an approximation of u(tk, x) for which the one-step error near the
boundary (i.e. when (tk, x) ∈ ∂Γ ) is estimated as O(h) only (cf. Lemma 4.1). For instance,
we can approximate the solution u(tk, x), when x is close to α, by values of the solution
at the point (tk+1, α) and at a point (tk+1, x̂k) ∈ Q�∂Γ (for example, one can take
x̂k = α+h1/2 max σ+h max |b|, where the maxima are taken over (t, x) ∈ Q, u ∈ [u◦, u◦])
with the weights p = x̂k−x

x̂k−α
and q = 1− p respectively. Analogously, we can approximate

u(tk, x) when x is close to β. Making use of this approximation for (tk, x) ∈ ∂Γ and the
Euler approximation for (tk, x) ∈ Q�∂Γ , we get a new layer method with the first order
of convergence (see also Milstein & Tretyakov (2001), where such a construction is used
for solving linear Dirichlet problems by the Monte Carlo approach). This layer method
has practically the same computational complexity as (4.1). But a generalization of this
method to the multi-dimensional case can be easier for realization than a generalization
of (4.1) (see also Section 6).

REMARK 4.3 We can also conclude from the proof of Theorem 4.1 that if we use an
approximation of u(tk, x) for which the one-step error is O(h3/2) for (tk, x) ∈ ∂Γ (as it is
for (4.1)) and is at least O(h5/2) for (tk, x) ∈ Q�∂Γ , we will obtain the new layer method
with the global error O(h3/2). For instance, in the case of constant σ it is possible to get
such a method by attracting the second-order weak Runge–Kutta scheme from Milstein
(1995a) instead of the weak Euler scheme (2.5) used for construction of (4.1) (see also
Milstein (1997)).
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REMARK 4.4 The layer methods of Sections 2 and 4 can be applied to solving the
Dirichlet problem for linear parabolic equations. But if the dimension d of the linear
problem is high (d � 3 in practice) and it is enough to find the solution in a few points
only, the Monte Carlo approach is preferable (Milstein, 1995b,c; Milstein & Tretyakov,
2001).

REMARK 4.5 Using other weak approximations for SDEs, some new layer methods can
be constructed (cf. Milstein (1997) and Milstein & Tretyakov (2000)). In particular, there
are special methods of numerical integration in the weak sense for SDEs with small noise
which are more effective than general ones (Milstein & Tretyakov, 1997). In Milstein &
Tretyakov (2000) they are used for constructing special layer methods for the Cauchy
problem for semilinear parabolic equations with small parameter at higher derivatives. It
is also possible to get some special layer methods in the case of the Dirichlet problem for
semilinear parabolic equations with small parameter.

5. Numerical algorithms

To become a numerical algorithm, the method (2.16) (just as other layer methods) needs a
discretization in the variable x . Consider an equidistant space discretization with a space
step hx (recall that the notation for time step is h): x j = α + jhx , j = 0, 1, 2, . . . , M ,
hx = (β − α)/M . Using, for example, linear interpolation, we construct the following
algorithm (we denote it as ū(tk, x) again, since this does not cause any confusion):

ū(tN , x) = ϕ(tN , x), x ∈ [α, β], (5.1)

ū(tk, x j ) = 1
2 ū

(
tk+1, x j + b̄k, j · h − σ̄k, j ·

√
h
)+ 1

2 ū
(
tk+1, x j + b̄k, j · h + σ̄k, j ·

√
h
)

+ḡk, j · h, if x j + b̄k, j · h ± σ̄k, j ·
√

h ∈ [α, β];
ū(tk, x j ) = ϕ(tk+1−γ̄k, j , α)− g(tk, α, ϕ(tk+1, α)) · γ̄k, j h

− 1
2 ū

(
tk+1, α + b(tk, α, ϕ(tk+1, α)) · γ̄k, j h + σ(tk, α, ϕ(tk+1, α)) ·√γ̄k, j h

)
+ 1

2 ū
(
tk+1, x j + b̄k, j · h + σ̄k, j ·

√
h
)+ ḡk, j · h, if x j + b̄k, j · h − σ̄k, j ·

√
h < α;

ū(tk, x j ) = 1
2 ū

(
tk+1, x j + b̄k, j · h − σ̄k, j ·

√
h
)+ ϕ(tk+1−δ̄k, j

, β)

−g(tk, β, ϕ(tk+1, β)) · δ̄k, j h

− 1
2 ū

(
tk+1, β + b(tk, β, ϕ(tk+1, β)) · δ̄k, j h − σ(tk, β, ϕ(tk+1, β)) ·

√
δ̄k, j h

)
+ḡk, j · h, if x j + b̄k, j · h + σ̄k, j ·

√
h > β;

j = 1, 2, . . . , M − 1,

ū(tk, x) = x j+1 − x

hx
ū(tk, x j )+ x − x j

hx
ū(tk, x j+1), x j < x < x j+1, (5.2)

j = 0, 1, 2, . . . , M − 1, k = N − 1, . . . , 1, 0,

where b̄k, j , σ̄k, j , ḡk, j are the coefficients b(t, x, u), σ(t, x, u), g(t, x, u) calculated at the
point (tk, x j , ū(tk+1, x j )) and 0 < γ̄k, j , δ̄k, j � 1 are roots of (2.13) and (2.14) with the
right sides x j + b̄k, j · h − σ̄k, j ·

√
h and x j + b̄k, j · h + σ̄k, j ·

√
h respectively.
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THEOREM 5.1 If the value of hx is taken equal to �h, � is a positive constant, then under
assumptions (i) and (ii) the algorithm (5.1), (5.2) has the first order of convergence, i.e.
the approximation ū(tk, x) from (5.1), (5.2) satisfies the relation

|ū(tk, x)− u(tk, x)| � K h, (5.3)

where K does not depend on x , h, k.

The proof of Theorem 5.1 differs only little from the proof of the corresponding
theorem in Milstein (1997) and is therefore omitted.

REMARK 5.1 Using probabilistic arguments, it is possible to prove that the algorithm
based on the method (4.1) and linear interpolation has the global error O(h) for hx = �h.

REMARK 5.2 It is natural to consider cubic interpolation instead of the linear one for
constructing numerical algorithms. The use of cubic interpolation allows us to take the
space step hx = �

√
h (in contrast to hx = �h for linear interpolation) and, thus, to

reduce the volume of computations. Moreover, if we use cubic interpolation, we can avoid
special formulas near the boundary choosing some appropriate � (indeed, we can take, for
example, � = 2 max

t∈[t0,T ], x∈G, u∈[u◦, u◦]
σ(t, x, u), then for a sufficiently small h the points

x j + b̄k, j · h± σ̄k, j ·
√

h, j = 1, 2, . . . , M−1, always belong to [α, β]). Unfortunately, we
have not succeeded in proving a convergence theorem in the case of cubic interpolation.
The way of proving Theorem 5.1 gives us some restriction on the type of interpolation
procedure which can be used for constructing the numerical algorithm. The restriction
is such that the sum of the absolute values of the coefficients staying at ū(tk, ·) in the
interpolation procedure must not be greater than 1. Linear interpolation and B-splines of
O(h2

x ) satisfy the restriction. However, cubic interpolation of O(h4
x ) does not satisfy it. In

Sections 7.1 and 7.2 we test an algorithm based on cubic interpolation. The tests give fairly
good results. See also some theoretical explanations and numerical tests in Milstein (1997)
and Milstein & Tretyakov (2000).

REMARK 5.3 Clearly, the algorithms can be considered with variable time steps and
space steps. An algorithm with variable space steps is used in our numerical tests (see
Section 7.1).

6. Extension to the multi-dimensional Dirichlet problem

In this section we generalize the layer method (4.1) to the multi-dimensional case (d > 1).
A generalization of the layer method (2.16) to the multi-dimensional case is complicated
and is not considered here.

As has been mentioned in the Introduction, layer methods are feasible if the dimension
d of the domain G is not more than 3. This is why we restrict ourselves here to the cases
d = 2 and d = 3. We remark only that it is not difficult to generalize the layer method (4.1)
for an arbitrary d .
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Consider the case d = 2. Introduce the notation i Xk+1 :=
(

i X1
k+1, i X2

k+1

)
,

i X1
k+1 = x1 + b̄1

k h + σ̄ 11
k

√
h · iξ

1 + σ̄ 12
k

√
h · iξ

2,

i X2
k+1 = x2 + b̄2

k h + σ̄ 21
k

√
h · iξ

1 + σ̄ 22
k

√
h · iξ

2,

i = 1, 2, 3, 4, x = (x1, x2) ∈ G ⊂ R2,

where 1ξ = (−1,−1), 2ξ = (−1, 1), 3ξ = − 1ξ , 4ξ = − 2ξ and b̄k = (b̄1
k , b̄2

k ), σ̄k = {σ̄ jl
k }

are the coefficients b(t, x, u), σ(t, x, u) calculated at the point (tk, x, ū(tk+1, x)).
If the point x = (x1, x2) ∈ G is sufficiently far from the boundary ∂G (more precisely,

if the points i Xk+1, i = 1, 2, 3, 4, belong to G), the layer method has the form (cf. Milstein
(1997)):

ū(tk, x1, x2) =
4∑

i=1

1
4 ū(tk+1, i X1

k+1, i X2
k+1)+ ḡk · h, (6.1)

where ḡk is the coefficient g(t, x, u) calculated at the point (tk, x, ū(tk+1, x)).
If the point x = (x1, x2) ∈ G is close to the boundary ∂G, then some of the

points i Xk+1 = (i X1
k+1, i X2

k+1), i = 1, 2, 3, 4, may be outside of the domain G. Let

us connect the point x with the points i∗Xk+1, which are outside of G, by the curves
ψi∗(λ) = (ψ1

i∗(λ), ψ2
i∗(λ)):

ψ1
i∗(λ) = x1 + b̄1

k λh + σ̄ 11
k

√
λh · i∗ξ

1 + σ̄ 12
k

√
λh · i∗ξ

2,

ψ2
i∗(λ) = x2 + b̄2

kλh + σ̄ 21
k

√
λh · i∗ξ

1 + σ̄ 22
k

√
λh · i∗ξ

2, 0 � λ � 1.

The boundary ∂G is assumed to be sufficiently smooth. For a sufficiently small h there
is a unique value of λ = i∗ λ̄k , 0 < i∗ λ̄k < 1, such that the point i∗ηk = (i∗η1

k , i∗η2
k ),

where

i∗η
1
k = x1 + b̄1

k · i∗ λ̄kh + σ̄ 11
k

√
i∗ λ̄kh · i∗ξ

1 + σ̄ 12
k

√
i∗ λ̄kh · i∗ξ

2,

i∗η
2
k = x2 + b̄2

k · i∗ λ̄kh + σ̄ 21
k

√
i∗ λ̄kh · i∗ξ

1 + σ̄ 22
k

√
i∗ λ̄kh · i∗ξ

2,

belongs to the boundary ∂G.
Put j λ̄k = 1 and jηk = j Xk+1 for the points j Xk+1 belonging to G. Then the layer
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method takes the form

ū(tk, x1, x2) =
√

2λ̄k · 3λ̄k · 4λ̄k(√
1λ̄k +

√
3λ̄k

)(√
1λ̄k · 3λ̄k +

√
2λ̄k · 4λ̄k

) ū(tk+ 1λ̄k
, 1η

1
k , 1η

2
k )

+
√

1λ̄k · 3λ̄k · 4λ̄k(√
2λ̄k +

√
4λ̄k

)(√
1λ̄k · 3λ̄k +

√
2λ̄k · 4λ̄k

) ū
(
tk+ 2λ̄k

, 2η
1
k , 2η

2
k

)

+
√

1λ̄k · 2λ̄k · 4λ̄k(√
1λ̄k +

√
3λ̄k

)(√
1λ̄k · 3λ̄k +

√
2λ̄k · 4λ̄k

) ū(tk+ 3λ̄k
, 3η

1
k , 3η

2
k )

+
√

1λ̄k · 2λ̄k · 3λ̄k(√
2λ̄k +

√
4λ̄k

)(√
1λ̄k · 3λ̄k +

√
2λ̄k · 4λ̄k

) ū(tk+ 4λ̄k
, 4η

1
k , 4η

2
k )

+ḡk · 2
√

1λ̄k · 2λ̄k · 3λ̄k · 4λ̄k√
1λ̄k · 3λ̄k +

√
2λ̄k · 4λ̄k

h. (6.2)

Recall that if iηk = (iη
1
k , iη

2
k ) ∈ ∂G then ū(tk+ i λ̄k

, iη
1
k , iη

2
k ) = ϕ(tk+ i λ̄k

, iη
1
k , iη

2
k )

(see (1.2)).
The errors of the one-step approximations corresponding to (6.1) and (6.2) are O(h2)

and O(h3/2) respectively. By probabilistic arguments (see the proof of Theorem 4.1), the
global error of the layer method (6.1), (6.2) is estimated by O(h).

Now consider the case d = 3. Introduce the notation i Xk+1 = (i X1
k+1, i X2

k+1, i X3
k+1),

i = 1, 2, . . . , 8, where

i X j
k+1 := x j + b̄ j

k h + σ̄
j1

k

√
h · iξ

1 + σ̄
j2

k

√
h · iξ

2 + σ̄
j3

k

√
h · iξ

3, j = 1, 2, 3,

x = (x1, x2, x3) ∈ G ⊂ R3.

Here b̄k = {b̄ j
k } and σ̄k = {σ̄ jl

k } are the coefficients b(t, x, u) and σ(t, x, u) calculated at
the point (tk, x, ū(tk, x)) and iξ = (iξ

1, iξ
2, iξ

3), i = 1, . . . , 8, are the following vectors:

1ξ = (−1,−1,−1), 2ξ = (−1,−1, 1), 3ξ = (−1, 1,−1), 4ξ = (1,−1,−1),

i+4ξ = − iξ, i = 1, 2, 3, 4.

If the points i Xk+1, i = 1, 2, . . . , 8, belong to G, the layer method has the form

ū(tk, x) =
8∑

i=1

1
8 ū(tk+1, i Xk+1)+ ḡk · h, (6.3)

where ḡk is the coefficient g(t, x, u) calculated at the point (tk, x, ū(tk+1, x)).
If some points i∗Xk+1 /∈ G, we connect the point x with the points i∗Xk+1 by the

curves ψi∗(λ) = (ψ1
i∗(λ), ψ2

i∗(λ), ψ3
i∗(λ)),

ψ
j

i∗(λ) = x j + b̄ j
k λh + σ̄

j1
k

√
λh · i∗ξ

1 + σ̄
j2

k

√
λh · i∗ξ

2 + σ̄
j3

k

√
λh · i∗ξ

3,

j = 1, 2, 3, 0 � λ � 1.
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Due to the smoothness of the boundary ∂G, for a sufficiently small h there is a unique
value of λ = i∗ λ̄k , 0 < i∗ λ̄k < 1, such that the point i∗ηk = (i∗η1

k , i∗η2
k , i∗η3

k ), where

i∗η
j
k = x j + b̄ j

k · i∗ λ̄kh + σ̄
j1

k

√
i∗ λ̄kh · i∗ξ

1 + σ̄
j2

k

√
i∗ λ̄kh · i∗ξ

2 + σ̄
j3

k

√
i∗ λ̄kh · i∗ξ

3,

j = 1, 2, 3,

belongs to the boundary ∂G.
Put j λ̄k = 1 and jηk = j Xk+1 for the points j Xk+1 belonging to G. Then the layer

method takes the form

ū(tk, x) =
4∑

i=1

γk√
i λ̄k +

√
i+4λ̄k

(
1√
i λ̄k

ū(tk+ i λ̄k
, iηk)+ 1√

i+4λ̄k

ū(tk+ i+4λ̄k
, i+4ηk)

)

+ḡk · 4γkh, (6.4)

where

γk =
(

4∑
i=1

1√
i λ̄k · i+4λ̄k

)−1

.

To construct the corresponding numerical algorithms, we attract linear interpolation as
in the previous section. For example, consider the case d = 2. To this end, put the domain
G into a rectangle Π with corners (x1

0 , x2
0), (x1

0 , x2
M2

), (x1
M1

, x2
0), (x1

M1
, x2

M2
) and introduce

the equidistant space discretization of the rectangle Π :

∆M1,M2 := {(x1
j , x2

l ) : x1
j = x1

0 + jhx1 , x2
l = x2

0 + lhx2 , j = 0, . . . , M1, l = 0, . . . , M2},

hx1 = x1
M1
− x1

0

M1
, hx2 = x2

M1
− x2

0

M2
.

The values of ū(tk, x1
j , x2

l ) at the nodes of ∆M1,M2 ∩ G are found in accordance

with (6.1), (6.2). Let (x1, x2) ∈ G and x1
j � x1 � x1

j+1, x2
l � x2 � x2

l+1. If all the

nodes (x1
j , x2

l ), (x1
j , x2

l+1), (x1
j+1, x2

l ), (x1
j+1, x2

l+1) ∈ G, the value of ū(tk, x1, x2) is
evaluated as

ū(tk, x1, x2) = x1
j+1 − x1

hx1
· x2

l+1 − x2

hx2
ū(tk, x1

j , x2
l )

+ x1
j+1 − x1

hx1
· x2 − x2

l

hx2
ū(tk, x1

j , x2
l+1)+

x1 − x1
j

hx1
· x2

l+1 − x2

hx2
ū(tk, x1

j+1, x2
l )

+ x1 − x1
j

hx1
· x2 − x2

l

hx2
ū(tk, x1

j+1, x2
l+1). (6.5)

If the point x = (x1, x2) : x1
j � x1 � x1

j+1, x2
l � x2 � x2

l+1 is such that some of

the nodes (x1
j , x2

l ), (x1
j , x2

l+1), (x1
j+1, x2

l ), (x1
j+1, x2

l+1) do not belong to G, then we use
some points on the boundary ∂G (due to ( 1.2) we know values of u(t, x) for x ∈ ∂G) to
find ū(tk, x1, x2) by linear interpolation.

If we take hxi = � i h, i = 1, 2, �1, �2 > 0 are positive constants, the error of the
proposed algorithm is estimated as O(h).
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7. Numerical tests

In the previous sections we dealt with semilinear parabolic equations with negative
direction of time t : the equations are considered under t < T and the ‘initial’ conditions
are given at t = T . This form of equation is suitable for the probabilistic approach which
we use to construct numerical methods. Of course, the proposed methods are adaptable
to semilinear parabolic equations with positive direction of time, and this adaptation is
particularly easy in the autonomous case. In our numerical tests we use algorithms with
positive direction of time (see, for example, (7.15), (7.16)).

7.1 The Burgers equation

Consider the Dirichlet problem for the one-dimensional Burgers equation:

∂u

∂t
= ε2

2

∂2u

∂x2
− u

∂u

∂x
, t > 0, x ∈ (−1, 1), (7.1)

u(0, x) = −A sin πx, x ∈ [−1, 1], (7.2)

u(t,±1) = 0, t > 0. (7.3)

This problem was used for testing various numerical methods in, for example,
Anderson et al. (1984), Fletcher (1984) and Basdevant et al. (1986) (see also references
therein). By means of the Cole–Hopf transformation, one can find the explicit solution of
problem (7.1)–(7.3) in the form

u(t, x) = −A

∫∞
−∞ sin π(x − y) exp(− A

πε2 cos π(x − y)− y2

2ε2t
) dy∫∞

−∞ exp(− A
πε2 cos π(x − y)− y2

2ε2t
) dy

(7.4)

or

u(t, x) = πε2

2

∑∞
n=1 nan exp(− 1

8ε2π2n2t) sin 1
2πn(x + 1)

1
2 a0 +∑∞

n=1 an exp(− 1
8ε2π2n2t) cos 1

2πn(x + 1)
(7.5)

with

an =
∫ 1

−1
exp

(
− A

πε2
cos πx

)
cos

1

2
πn(x + 1) dx .

We shall simulate the problem (7.1)–(7.3) on relatively small time intervals [0, T ],
where the formula (7.4) is more convenient. For a small ε, there is a thin internal layer
with width∼ε2, where the solution to (7.1)–(7.3) has singular behaviour (see, for example,
Il’in (1992) and references therein). Derivatives of the solution go to infinity as ε → 0. A
typical behaviour of the solution is demonstrated on Fig. 1.

Here we test three algorithms. The first one is algorithm (5.1), (5.2). The second one is
the algorithm based on layer method (4.1) and linear interpolation. In these two algorithms
(they both use linear interpolation), we take the space step hx being equal to the time step
h. The third algorithm is based on cubic interpolation (see Remark 5.2). In the case of the
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-2

-1

0

1

u(t,x) 

-1 -0.5 0 0.5 x

t=0     
t=0.15
t=0.5  
t=1     

FIG. 1. A typical solution u(t, x) of problem (7.1)–(7.3) for ε = 0·1, A = 2 and various time moments.

problem (7.1)–(7.3) it has the form (cf. Milstein & Tretyakov (2000))

ū(0, x) = −A sin πx, x ∈ [−1, 1], (7.6)

ū(tk+1, x0) = ū(tk+1,−1) = 0,

ū(tk+1, xM ) = ū(tk+1, 1) = 0,

ū(tk+1, x j ) = 1
2 ū(tk, x j − hū(tk, x j )− εh1/2)+ 1

2 ū(tk, x j − hū(tk, x j )+ εh1/2),

j = 1, . . . , M − 1,

ū(tk, x) =
3∑

i=0

Φ j,i (x)ū(tk, x j+i ), x j < x < x j+3,

Φ j,i (x) =
3∏

m=0,m �=i

x − x j+m

x j+i − x j+m
,

k = 0, . . . , N − 1.

Here we use a nonequidistant discretization of the interval [−1, 1]. We take hx :=
x j+1 − x j = ε

√
h in [−0·1, 0·1] and hx =

√
h outside [−0·1, 0·1]. Such a choice of

hx is dictated by the fact that if h is comparatively large (for example, hx = ε2), the
equidistant discretization with hx =

√
h has not more than one node in the thin internal

layer. For a sufficiently small h, it is possible to use the equidistant discretization for cubic
interpolation as well.

Since ε  1, the points x j − hū(tk, x j ) ± εh1/2, j = 1, . . . , M − 1, belong to the
interval (−1, 1). Thus, we avoid using special formulas near the boundary in (7.6) (see
Remark 5.2 as well).

Table 1 gives numerical results obtained by using the algorithms (5.1), (5.2) and (7.6).
The algorithm based on the layer method (4.1) and linear interpolation gives results being
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TABLE 1 The Burgers equation. Dependence of the errors errc(t, h) and

errl (t, h) in h for algorithms (5.1), (5.2) and (7.6) under t = 0·5, ε = 0·1
and A = 2

h Algorithm (5.1), (5.2) Algorithm (7.6)
errc(t, h) errl (t, h) errc(t, h) errl (t, h)

0·01 1·239 · 10−1 3·035 · 10−2 1·854 · 10−1 3·081 · 10−2

0·001 6 4·574 · 10−2 5·311 · 10−3 5·855 · 10−2 5·481 · 10−3

0·000 1 2·673 · 10−3 3·288 · 10−4 3·737 · 10−3 3·466 · 10−4

0·000 016 4·261 · 10−4 5·259 · 10−5 5·919 · 10−4 5·527 · 10−5

practically identical to the ones for (5.1), (5.2). We present the errors of the approximate
solutions ū in the discrete Chebyshov norm and in l1-norm:

errc(t, h) = max
xi
|ū(t, xi )− u(t, xi )|,

errl(t, h) =
∑

i

|ū(t, xi )− u(t, xi )| · hx .

The algorithms based on linear interpolation require both larger volume of compu-
tations per time layer and larger amount of memory than the algorithm (7.6) based on
cubic interpolation. For instance, in the considered case the algorithm (5.1), (5.2) with
h = 0·0001 needs 2 · 104 computations of ū(tk, x) per layer t = tk and to store an array of
2 · 104 elements, and the algorithm (7.6) with the same step h = 0·0001 requires only 380
computations of ū(tk, x) per layer and an array of 380 elements (see also Remark 5.2).

7.2 Comparison analysis

In this section we give some comparison analysis of the layer methods proposed in the
paper and the well known finite-difference schemes (see also Remark 2.1). We use (7.1)–
(7.3) as a test problem again. Here we compare the algorithm (7.6) with two explicit finite-
difference schemes (7.7) and (7.8) of order O(∆t,∆x2), where ∆t is a time step and ∆x
is a space step. These finite-difference schemes are used for simulation of the Burgers
equation in Anderson et al. (1984) and Fletcher (1991).

The method of differences forward in time and central differences in space applied to
the divergent form of the Burgers equation is written as

ū(0, x) = −A sin πx, x ∈ [−1, 1], (7.7)

ū(tk+1, x0) = ū(tk+1,−1) = 0, ū(tk+1, xM ) = ū(tk+1, 1) = 0,

ū(tk+1, x j ) = ū(tk, x j )− ∆t

4∆x
(ū2(tk, x j+1)− ū2(tk, x j−1))

+ε2

2

∆t

∆x2
(ū(tk, x j+1)− 2ū(tk, x j )+ ū(tk, x j−1)),

j = 1, . . . , M − 1, k = 0, . . . , N − 1,

where the step of a time discretization ∆t := T/N and tk = k · ∆t and the step of space
discretization ∆x := 2/M and x j = −1+ j ·∆x .
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TABLE 2 The Burgers equation. The relative errors δl (t, h)

(top position) and δc(t, h) (lower position) of algorithm (7.6)
and finite-difference schemes (7.7) and (7.8) are given for
t = 0·08, ε = 0·1, h = ∆t = 0·0016 and various A

A Algorithm (7.6) Scheme (7.7) Scheme (7.8)
5 7·79 · 10−3 2·22 · 10−2 2·01 · 10−2

5·28 · 10−2 2·05 · 10−1 1·66 · 10−1

oscillations oscillations

10 1·87 · 10−2 !100 2·35 · 10−2

9·96 · 10−1 !100 6·94 · 10−2

oscillations

15 2·70 · 10−2 overflow 3·64 · 10−1

9·84 · 10−1 3·42 · 100

big oscillations

In the case of the problem (7.1)–(7.3) the Brailovskaya scheme has the form (see
Anderson et al. (1984, p. 161))

ū(0, x) = −A sin πx, x ∈ [−1, 1], (7.8)

ū(tk+1, x0) = û(tk+1, x0) = 0, ū(tk+1, xM ) = û(tk+1, xM ) = 0,

û(tk+1, x j ) = ū(tk, x j )− ∆t

4∆x
(ū2(tk, x j+1)− ū2(tk, x j−1))

+ε2

2

∆t

∆x2
(ū(tk, x j+1)− 2ū(tk, x j )+ ū(tk, x j−1)),

ū(tk+1, x j ) = ū(tk, x j )− ∆t

4∆x
(û2(tk, x j+1)− û2(tk, x j−1))

+ε2

2

∆t

∆x2
(ū(tk, x j+1)− 2ū(tk, x j )+ ū(tk, x j−1)),

j = 1, . . . , M − 1, k = 0, . . . , N − 1.

The space step ∆x in the finite-difference schemes (7.7) and (7.8) is selected as ∆x =
� · ε√∆t . The results of Tables 2 and 3 correspond to � = 4.

As in Section 7.1, we realize the algorithm (7.6) using a nonequidistant discretization
of the interval [−1, 1]. For the time step h = 0·0016 (Table 2), we take hx := x j+1− x j =
ε
√

h in [−0·1, 0·1] and hx = 2
√

h outside [−0·1, 0·1]. And for h = 0·0001 (Table 3) we
choose hx = ε

√
h in [−0·02, 0·02] and hx = 2

√
h outside [−0·02, 0·02] (see also the

explanations in Section 7.1).
Tables 2 and 3 present the relative errors δc(t, h) and δl(t, h). The error δc(t, h) is equal

to

δc(t, h) = maxxi |ū(t, xi )− u(t, xi )|
maxxi |u(t, xi )|



912 G.N. MILSTEIN AND M.V. TRETYAKOV

TABLE 3 The Burgers equation. The relative errors δl (t, h)

(top position) and δc(t, h) (lower position) of algorithm (7.6)
and finite-difference schemes (7.7) and (7.8) are given for
h = ∆t = 0·0001; the other parameters are as in Table 2

A Algorithm (7.6) Scheme (7.7) Scheme (7.8)
5 1·26 · 10−3 8·88 · 10−4 7·81 · 10−4

4·68 · 10−2 1·55 · 10−2 1·10 · 10−2

10 1·24 · 10−3 3·56 · 10−3 3·58 · 10−3

9·25 · 10−2 1·54 · 10−1 1·54 · 10−1

oscillations oscillations

15 1·91 · 10−3 5·07 · 10−3 5·11 · 10−3

1·99 · 10−1 1·81 · 10−1 1·84 · 10−1

oscillations oscillations

for all three methods. The error δl(t, h) is equal to

δl(t, h) = 1

maxxi |u(t, xi )|
∑

i

|ū(t, xi )− u(t, xi )| · hx

for algorithm (7.6) while for the schemes (7.7) and (7.8) it is given by

δl(t, h) = 1

maxxi |u(t, xi )|
∑

i

|ū(t, xi )− u(t, xi )| ·∆x .

The comment ‘oscillations’ means that the numerical solution has oscillations in a
neighbourhood of x = 0. An illustration of such oscillations is given in Fig. 2. The
comment ‘overflow’ indicates that overflow error occurs during simulation.

Let us observe that if we take � = 2 in order to improve accuracy of the results obtained
by the Brailovskaya scheme (7.8), for example, for ∆t = 0·0016, A = 10 (see Table 2 and
Fig. 2), the numerical solution becomes more unstable and overflow error occurs. If we
take � = 8 in this case, the errors and amplitude of oscillations become greater than for
� = 4.

We can conclude from the results presented in Tables 2 and 3 and in Fig. 2 that
the algorithm (7.6) based on the layer method demonstrates a more stable behavior
than the finite-difference schemes when the parameter A is sufficiently large. In the
considered problem (7.1)–(7.3) large values of A lead, in particular, to large advection
in a neighborhood of x = 0. Our experiments confirm that the layer methods allow us to
avoid difficulties stemming from strong advection (see Introduction and Remark 2.1). It
should also be mentioned that the algorithms based on layer methods require more CPU
time than finite-difference schemes. For example, in the case of parameters as in Table 3
to solve (7.1)–(7.3) by the algorithm (7.6) we need ≈2 s while the schemes (7.7) and (7.8)
require≈0·3 and≈0·4 s correspondingly. But the algorithm (7.6) gives us quite appropriate
results with the greater step h = 0·0016 (see Table 2 and Fig. 2) and in this case it requires
≈0·06 s. Simulations were made on PC with Intel Pentium 233 MHz processor using
Borland C compiler. A more detailed comparison analysis requires a special consideration
and will be done in a later publication.
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-5

0

5

-0.2 -0.1 0 0.1 0.2 x

exact solution
algorithm (7.6)

scheme (7.8)

FIG. 2. Solution of problem (7.1)–(7.3) for A = 10, other parameters are as in Table 2.

7.3 Quasilinear equation with power law nonlinearities

Consider the Dirichlet problem for quasilinear parabolic equation with power law
nonlinearities (Samarskii, 1977; Samarskii et al., 1995):

∂u

∂t
= 1

2

∂

∂x

(
uq ∂u

∂x

)
, t ∈ (0, 1), x > 0, q > 0, (7.9)

with the initial condition

u(0, x) = (1− x/L)2/q , x ∈ [0, L], (7.10)

u(0, x) = 0, x > L ,

and the boundary regime

u(t, 0) = (1− t)−1/q , t ∈ (0, 1), (7.11)

where L = √(q + 2)/q .
The exact solution to this problem has the form (Samarskii, 1977; Samarskii et al.,

1995)

u(t, x) =
(

1− x/L√
1− t

)2/q

for x ∈ [0, L]

and

u(t, x) = 0 for x > L .



914 G.N. MILSTEIN AND M.V. TRETYAKOV

0

5

10

15

20

0 0.5 1 1.5 x

u(t,x)
t=0.5    
t=0.9    
t=0.99  
t=0.999

FIG. 3. A typical solution u(t, x) of problem (7.9)–(7.11) for q = 1·5 and various time moments.

The temperature u(t, x) grows infinitely as t → 1. At the same time the heat remains
localized in the interval [0, L). Figure 3 presents a typical behavior of the solution to (7.9)–
(7.11).

Equation (7.9) is not of the form (2.1). The function

v = uq+1

satisfies the problem

∂v

∂t
= 1

2
vq/(q+1) ∂2v

∂x2
, t ∈ (0, 1), x > 0, (7.12)

v(0, x) = (1− x/L)2(q+1)/q , x ∈ [0, L], (7.13)

v(0, x) = 0, x > L ,

v(t, 0) = (1− t)−(q+1)/q , t ∈ (0, 1). (7.14)

Equation (7.12) has the form (2.1).
We simulate the solution to (7.12)–(7.14) by two algorithms: algorithm (5.1), (5.2) and

the algorithm based on the layer method (4.1) and linear interpolation. The last one in the
case of the problem (7.12)–(7.14) has the form

v̄(0, x) =
{

(1− x/L)2(q+1)/q , x ∈ [0, L],
0, x ∈ (L ,∞),

(7.15)
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TABLE 4 Quasilinear equation with power law nonlinearities. Dependence
of errors errv̄ (t, h) (top position) and errū(t, h) (lower position) in h and t
for algorithm (7.15), (7.16) under q = 1·5

h = 10−1 h = 10−2 h = 10−3 h = 10−4

t = 0·5 0·8664 · 10−1 0·8786 · 10−2 0·9705 · 10−3 1·018 · 10−4

0·3542 · 10−1 0·7693 · 10−2 1·685 · 10−3 3·622 · 10−4

t = 0·9 >5 8·094 · 10−1 8·265 · 10−2 8·817 · 10−3

5·910 · 10−1 8·109 · 10−2 8·656 · 10−3 8·918 · 10−4

v̄(tk+1, x j ) = 1
2 v̄

(
tk, x j − (v̄(tk, x j ))

q/2(q+1) · √h
)+ 1

2 v̄
(
tk, x j + (v̄(tk, x j ))

q/2(q+1) · √h
)
,

if x j − (v̄(tk, x j ))
q/2(q+1) · √h � 0;

v̄(tk+1, x j ) = 1

1+
√

λ̄k

(1− tk+1−λ̄k
)−(q+1)/q

+
√

λ̄k

1+
√

λ̄k

v̄
(
tk, x j + (v̄(tk, x j ))

q/2(q+1) · √h
)
,

λ̄k =
(

x j

(v̄(tk, x j ))q/2(q+1) · √h

)2

, if x j − (v̄(tk, x j ))
q/2(q+1) · √h < 0;

v̄(tk+1, x) = x j+1 − x

hx
v̄(tk+1, x j )+ x − x j

hx
v̄(tk+1, x j+1), x j � x � x j+1, (7.16)

j = 0, 1, 2, . . . , k = 1, . . . , N ,

where x j = j · hx , tk = k · h.
In our tests we take hx = h. Tables 4 and 5 give numerical results obtained by

using algorithm (7.15), (7.16). The algorithm (5.1), (5.2) gives similar results and they
are omitted here. Table 4 presents the errors

errv̄(t, h) := max
j
|v̄(t, x j )− v(t, x j )|,

errū(t, h) := max
j
|ū(t, x j )− u(t, x j )|, ū(t, x j ) = (v̄(t, x j ))

1/(q+1).

For times t which are close to the explosion time t = 1, the functions u(t, x) and
v(t, x) take big values and the absolute errors become fairly large. In Table 5 we present
the relative error

δ(t, h) := errū(t, h)

u(t, 0)

at times close to the explosion.
In the experiments, the tested algorithms converge as O(h) which is in complete

agreement with our theoretical results.
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TABLE 5 Quasilinear equation with power law nonlinearities. Dependence of
the relative error δ(t, h) in h and t for algorithm (7.15), (7.16) under q = 1·5

h = 10−1 h = 10−2 h = 10−3 h = 10−4

t = 0·9 1·273 · 10−1 1·747 · 10−2 1·865 · 10−3 1·921 · 10−4

t = 0·99 — 1·392 · 10−1 1·789 · 10−2 1·913 · 10−3

t = 0·999 — — 1·398 · 10−1 1·801 · 10−2

t = 0·9999 — — — 1·400 · 10−1
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