
Finite Element Methods for a class of Stochastic

PDEs from phase transitions

Dimitra Antonopoulou

University of Athens, Greece

‘Milstein’s method: 50 years on’, 30/6-3/7 2025, University of Nottingham (UK)



Phase separation

- In a vessel D a two-phases mixture is forced to homogenization,

→֒ reducing the temperature the binary alloy starts to separate rapidly,

→֒ thin transition layers of width an order of ε are formed and the
evolution slows down (ε small enough).

→֒ ε-dependent spdes for the concentration.

→֒ sharp interface limit as ε→ 0.

Some essentials for the numerical approximation:

- underlying existence-regularity theory,

- noise definition and its numerical implementation,

- sufficient theory (at least numerical convergence) so that the applied
scheme will lead somewhere we provisionally trust.



A class of ε-dependent spdes

ut = −δ(ε)∆
(
ε2∆u − f (u)

)
+ µ(ε)(ε2∆u − f (u)) + F(u, x , t; ε),

x ∈ D, t > 0,

u(x , 0) = u0(x ; ε), x ∈ D (possibly layered),

and b.c. on ∂D,

(1)

for u the concentration of one of the components of the binary alloy, and

0 < ε≪ 1.

f (u) = F ′(u), is the derivative of a double equal-well potential, typical
example

f (u) = u3 − u, F (u) :=
1

4
(u2 − 1)2,

and the ε-dependent weights satisfy

δ(ε) ≥ 0, µ(ε) ≥ 0.



Figure: The potential F

Figure: The nonlinearity f = F ′



Main cases

– δ(ε) > 0, µ(ε) = 0 Cahn-Hilliard equation (Model B).

– δ(ε) = 0, µ(ε) > 0 Allen-Cahn equation (Model A).

– δ(ε) > 0, µ(ε) > 0 ‘competition’

of Cahn-Hilliard and Allen-Cahn operators (Model B/A).

F ≡ 0 the homogeneous problem,

F 6= 0 =

{
smooth stochastic perturbation,

non smooth stochastic perturbation.

Questions: Existence, regularity, transitions profile, sharp interface limit
as ε→ 0, numerical approximation.

Numerical Difficulty: ε≪ 1 in physical scale

→֒ severe rounding errors.



1. The stochastic Cahn-Hilliard equation

ut = ∆(−ε∆u + ε−1f (u)) + εγẆ (x , t), x in D,

∂u

∂ν
=
∂∆u

∂ν
= 0 on ∂D (Neumann b.c.)

(2)

Here
δ(ε) := ε−1, and µ(ε) ≡ 0,

with

F(u, x , t; ε) := F(x , t; ε) = εγẆ = εγ
∞∑

i=1

ai β̇i(t)ei (x),

for βi stochastically independent brownian motions.

Let the chemical potential v = v(ε) and derive the stochastic system:

ut = −∆v + εγẆ

v = −ε−1f (u) + ε∆u.
(3)

In d = 2, 3, by applying a boot-strap stochastic argument, in A, Blömker,
Karali, A.I.H.P. Prob.-Stat, 2018, we proved the next theorem for the
Stochastic sharp interface limit.



Theorem: Let γ > γ0 > 1. The limit of v as ε→ 0+ solves on [0,T ] the
deterministic Hele-Shaw problem

∆v = 0 in D\Γ(t), t > 0

∂nv = 0 on ∂D

v = λH on Γ(t)

V =
1

2
(∂nv

+ − ∂nv
−) on Γ(t)

Γ(0) = Γ0,

where H is the mean curvature, and V the velocity of the surface Γ(t).

Remarks:

- The above was derived when
∫

D

W (x , t)dx = 0 (mass conservation).

- This problem coincides to the limit problem of deterministic C-H of
Alikakos, Bates, Chen, ARMA 1994.

- When γ smaller formal asymptotics indicated convergence but with

v = λH +W on Γ(t).



Numerical approximation

In (2), we consider one mode in the noise series, i.e.,

F(u, x , t; ε) := F(x , t; ε) = εγẆ = εγσ(x)β̇(t).

The non-smooth in time noise is approximated, by using the increments
of the brownian motion β(t) ≡ N(0, t), as follows

β̇(t) ∼= rate of change =
β(t i )− β(t i−1)

t i − t i−1
∼ k−1/2N(0, 1) = N(0, k−1).

In A, Banas, Nürnberg, Prohl, Numer. Math. 2021, we defined the next
semi-discretization in time:

Let 0 = t0 < t1 < · · · < tJ = T a uniform partition, with step-size
k = T

J
. For 1 ≤ j ≤ J, let

∆jβ := β(t j )− β(t j−1) ∼ N(0, k),

the corresponding brownian increments.



We seek in H1(D) approximations of the solution u and of the chemical
potential v

U j(x) ≃ u(x , t j ), V j (x) ≃ v(x , t j)

satisfying the discrete weak formulation of the system (3)

(U j − U j−1, ϕ) + k(∇W j ,∇ϕ) = εγ
(
σ, ϕ

)
∆jβ ∀ϕ ∈ H1(D) ,

ε(∇U j ,∇ψ) +
1

ε

(
f (U j), ψ

)
= (V j , ψ) ∀ψ ∈ H1(D) ,

U0(x) = u0(x ; ε) ∈ H1(D).

Remark: The scheme without noise was introduced and analyzed in Feng,
Prohl Numer. Math. 2004.

In dimensions d = 2,
- by a discrete boot-strap argument, we estimated the error in
expectation in H−1 for k < εℓ for some ℓ > 0 sufficiently large,

- the convergence to the Hele-Shaw was experimentally investigated for a
fully discrete space-time scheme.

Remark: This result was derived by energy estimates, i.e., up to H1(D)
regularity used for the stochastic C-H.



But how smooth the solution can really be?

Let us consider the more general case of multiplicative noise, where

F(u, x , t; ε) := σ(u)εγẆ = σ(u)εγ
∞∑

i=1

ai β̇i (t)ei (x).

In A Nonlinearity, 2023, the next result was derived.

Theorem: Let ‖u0‖H2(D) have bounded p-moments, d = 1, 2, 3, and

|σ(x)| + |σ′(x)|+ |σ′′(x)| ≤ c , ∀ x ∈ R, and

∞∑

i=1

a2i ‖ei‖
2
H4(D) <∞.

Then for any T > 0, and some k = k(p) > 0, and for any p ≥ 1

E

(
sup

0≤t≤T

‖u‖2p
L∞(D)

)
≤ cE

(
sup

0≤t≤T

‖u‖2p
H2(D)

)
≤ cε−k(p).

Moreover, if ∂D is C 1, for



‖u(·, t)‖C0,θ(D) := sup
x 6=y∈D

|u(x , t)− u(y , t)|

|x − y |θ
,

it follows for any 0 < θ < 1 for d = 2, and for θ = 1
2 when d = 3

E

(
sup

0≤t≤T

‖u(·, t)‖2p
C0,θ(D)

)
≤ cE

(
sup

0≤t≤T

‖u(·, t)‖2p
H2(D)

)
≤ cε−k(p).

Additionally, if the initial data are layered, then u → ±1 a.s. In
particular, for any γ > 0 (of noise), and any 0 < α < min{γ, 1/2}

lim
ε→0+

P(‖|u| − 1‖L2(D) ≥ εα) = 0.

Remark: The H2(D) estimate, establishes a.s. convergence in L2(D) to
the step function through a.s. continuous paths.

The H2 regularity was derived by applying a proper version of BDG

inequality (see for example in Marinelli, Röckner, Exp. Math. 2016), for

the a priori estimates in expectation up to H2 (inspired by Elliott,

Songmu, ARMA, 1986, made for the determ. CH.)



2. The stochastic Allen-Cahn equation with mild noise

wt = ∆w +
f (w)

ε2
+

Ẇ (x , t; ε)

ε
, x ∈ Ω, 0 < t ≤ T ,

w(x , 0) = w0(x), x ∈ Ω,

∂w

∂η
= 0, x ∈ ∂Ω, 0 < t ≤ T (Neumann b.c.)

(4)

Here
δ(ε) ≡ 0, and µ(ε) = ε−2.

with

F(u, x , t; ε) := F(x , t; ε) =
Ẇ (x , t; ε)

ε
,

for
Ẇ (x , t; ε) a mild noise tending to rough as ε→ 0.)

- In A IMA NA 2020, a DG nonlinear method was introduced

→֒ existence and uniqueness of the numerical solution were proved

→֒ optimal error estimates were derived.



- In A, Egwu, Yan IMA NA 2023, the mild noise was numerically
approximated

→֒ and we applied an a posteriori error analysis on the scheme.

Smooth time-noise definition (H. Weber AIHP P.Stat., 2010)

Let ρ : R → R
+

- compactly supported in [−1, 1],
- symmetric around zero,
- it satisfies ∫ ∞

−∞

ρ(s)ds = 1.

Define for 0 < γ < 2
3

ρε(s) := ε−γρ
( s

εγ

)
.

Let β(t), β̃(t) ∼ N(0, t), t ≥ 0 two stochastically independent

Brownian Motions.

The smooth approximation of a brownian β(t) is given by,

βε(t) :=

∫ 0

−∞

ρε(t − s)β̃(−s)ds +

∫ ∞

0

ρε(t − s)β(s)ds,



and the smooth approximation of its formal derivative by

β̇ε(t) :=

∫ 0

−∞

∂t(ρ
ε(t − s))β̃(−s)ds +

∫ ∞

0

∂t(ρ
ε(t − s))β(s)ds,

which is the smooth approximation of β̇.

Numerical implementation of smooth noise

How we insert x-dependence in the mild noise?

An answer: In A IMA NA 2020, the smooth space-time noise was defined
by the convolution

Ẇ (x , t; ε) := G(x)β̇ε(t),

for G ∈ C∞.

How we select ρ?

How we construct the convolution integral numerically?

In A, Egwu, Yan IMA NA 2023, the bump function was selected and the
composite trapezoidal rule on the convolution was used.



Let the compactly supported bump function r : R → R
+, with

r(s) :=

{
e
− 1

1−s2 s ∈ (−1, 1)

0 otherwise
, and define

ρ(s) := r(s)
[ ∫ 1

−1

r(s)ds
]−1

=




e
− 1

1−s2

[ ∫ 1

−1

e
− 1

1−s2 ds
]−1

s ∈ (−1, 1),

0 otherwise.

Then ρ satisfies all the properties required in the convolution definitions.

Figure: The smooth approximation βε(t) of the brownian for γ = 1
8 <

2
3

and T = 10, for ε = 10−3, 10−6, 10−9 (from the left to the right).



Figure: First row: The smooth approximation βε(t) of the brownian and
β̇ε(t) the smooth approximation of the formal derivative of the brownian,
for γ = 1

8 <
2
3 , T = 10, and ε = 10−14. Second row: A brownian path

(with D. Higham’s algorithm, SIAM Rev. 2001), and its formal derivative.



The DG scheme for the mild stochastic AC,
motivated by Jamet SINUM 1978.

We apply the exponential transformation

w = eb(ε)tu, with inf
ε∈(0,1)

(b(ε)− ε−2) ≥ ĉ0 > 0,

which is analogous to these of A, Plexousakis Numer.Math. 2010,
A, Plexousakis ESAIM M2AN 2019, and obtain

ut = ∆u − b(ε)u +
g(u, ε, t)

ε2

+m(ε, t)
Ẇ (x , t; ε)

ε
, x ∈ D, 0 < t ≤ T ,

for
g(u, ε, t) := u − e2b(ε)tu3, m(ε, t) := e−b(ε)t .



The exponential transformation resulted to numerical stability on:

- linear parabolic equations (linear Schrödinger, Heat)

- stochastic Allen-Cahn.

Let 0 = t0 < t1 < · · · < tN = T , a partition of [0,T ], and set

G n := D × (tn, tn+1).

For each 0 ≤ n ≤ N − 1

let a family {V n
h } of finite dimensional subspaces of H1(G n), and

define Vh such that
Vh|(tn ,tn+1) := V n

h .

Remark: The functions of Vh are in general discontinuous at the
temporal nodes tn.



→֒ We seek uh ∈ Vh such that:

− ((uh, ∂tvh))Gn + ((∇uh,∇vh))Gn + b(ε)((uh, vh))Gn

− ε−2((uh, vh))Gn + ε−2((e2b(ε)t (uh)
3, vh))Gn

+ (un+1
h , vn+1

h )D − (unh , v
n+0
h )D = ε−1((e−b(ε)tξεt , vh))Gn ,

∀vh ∈ V n
h , n = 0, . . . ,N − 1, u0h = u0,

for ξεt := Ẇ (x , t; ε) the mild noise.

Here, ((·, ·))Gn , (·, ·)D denote the L2(G n) and the L2(D) inner
products respectively, while | · |D := ‖ · ‖L2(D).

Remarks: The DG scheme is nonlinear, time discontinuous,
adaptive in t, while u0h coincides with the continuous problem
initial data.

The weak formulation and the inner product is defined by L2

double integration in space-time.



3. Coexistence of both Cahn-Hilliard and Allen-Cahn operators

Let us recall the CH/AC equation

ut = −δ(ε)∆
(
ε2∆u−f (u)

)
+µ(ε)(ε2∆u−f (u))+F , x ∈ D, t > 0,

where
δ(ε) > 0, µ(ε) ≥ 0.

For the homogeneous problem (F ≡ 0 and so deterministic)
in d = 1, A, Karali, Tzirakis, in Cal.Var. 2021

→֒ we estimated the spectrum of the linearized CH/AC operator,

→֒ determined families of weights δ(ε), µ(ε), for which the
dynamics of N layers are stable and rest exponentially small in ε,

→֒ derived a system of ODEs for the layers motion.



For the same problem, in A, Karali, D. Li, J.Sc.Comput. 2025,

→֒ we applied a SAV-linearized RK method in d = 1, 2, 3

- we proved optimal error estimates,

- we had the first simulations for the mixed problem (deterministic)
by further discretizing in space by FEM.

In progress: The SAV method for stochastic equations.

Thank you!
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