WALNUTS = Within-Orbit Adaptive Leapfrog No-U-Turn Sampler

Nawaf Bou-Rabee (Rutgers & Flatiron)

joint work with Bob Carpenter (Flatiron), Tore Kleppe (Norway), & Sifan Liu (Flatiron).

arxiv:2506.18746 https://github.com/bob-carpenter/walnuts

arxiv:2506.18746
https://github.com/bob-carpenter/walnuts

Markov Chain Monte Carlo

» Goal: Sample from a target probability measure 1 on R?, with density also denoted by 4.

2/18

Markov Chain Monte Carlo

» Goal: Sample from a target probability measure 1 on R?, with density also denoted by 4.

» Approach: Construct a Markov chain with transition kernel 7 such that y = pr.

2/18

Markov Chain Monte Carlo

» Goal: Sample from a target probability measure 1 on R?, with density also denoted by 4.
» Approach: Construct a Markov chain with transition kernel 7 such that y = pr.
> Sufficient condition: Reversibility (detailed balance):

p(dx) 7(x, dx") = p(dx") w(x’, dx)

guarantees that y is invariant.

2/18

Markov Chain Monte Carlo

» Goal: Sample from a target probability measure 1 on R?, with density also denoted by 4.
» Approach: Construct a Markov chain with transition kernel 7 such that y = pr.
> Sufficient condition: Reversibility (detailed balance):
p(dx) 7(x, dx") = p(dx") w(x’, dx)
guarantees that p is invariant.

» Two broad classes of MCMC methods:

— Gradient-free: transitions evaluate only u (e.g., RWM, Goodman-Weare Sampler, NURS).

2/18

Markov Chain Monte Carlo

» Goal: Sample from a target probability measure 1 on R?, with density also denoted by 4.
» Approach: Construct a Markov chain with transition kernel 7 such that y = pr.
> Sufficient condition: Reversibility (detailed balance):
p(dx) 7(x, dx") = p(dx") w(x’, dx)
guarantees that p is invariant.

» Two broad classes of MCMC methods:

— Gradient-free: transitions evaluate only u (e.g., RWM, Goodman-Weare Sampler, NURS).

— Gradient-based: also evaluate Vlog i (e.g., MALA, HMC, NUTS).

2/18

Hamiltonian Monte Carlo (HMC)?

» Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

t(Duane et al (1987); Neal (2011))

3/18

Hamiltonian Monte Carlo (HMC)?

» Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

» Approach: Introduce an auxiliary momentum p € RY define the Hamiltonian,
H(0,p) = U(0) + 3p" M~ *p.

Then simulate corresponding Hamiltonian dynamics.

t(Duane et al (1987); Neal (2011))

3/18

Hamiltonian Monte Carlo (HMC)?

» Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

» Approach: Introduce an auxiliary momentum p € RY define the Hamiltonian,
H(0,p) = U(0) + 3p" M~ *p.
Then simulate corresponding Hamiltonian dynamics.

» HMC transition:
1. Refresh momentum: p ~ N (0, M).

t(Duane et al (1987); Neal (2011))

3/18

Hamiltonian Monte Carlo (HMC)?

» Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

» Approach: Introduce an auxiliary momentum p € RY define the Hamiltonian,
H(0,p) = U(0) + 3p" M~ *p.
Then simulate corresponding Hamiltonian dynamics.

» HMC transition:

1. Refresh momentum: p ~ N (0, M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.

t(Duane et al (1987); Neal (2011))

3/18

Hamiltonian Monte Carlo (HMC)?

» Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

» Approach: Introduce an auxiliary momentum p € RY define the Hamiltonian,
H(0,p) = U(0) + 3p" M~ *p.
Then simulate corresponding Hamiltonian dynamics.

» HMC transition:

1. Refresh momentum: p ~ N (0, M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

t(Duane et al (1987); Neal (2011))

3/18

Hamiltonian Monte Carlo (HMC)?

» Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

» Approach: Introduce an auxiliary momentum p € RY define the Hamiltonian,
H(0,p) = U(0) + 3p" M~ *p.
Then simulate corresponding Hamiltonian dynamics.

» HMC transition:
1. Refresh momentum: p ~ N (0, M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

> Invariant distribution: the extended target i(6, p) o e~ H(9:7).

t(Duane et al (1987); Neal (2011))

3/18

Hamiltonian Monte Carlo (HMC)?

» Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

v

Approach: Introduce an auxiliary momentum p € RY define the Hamiltonian,
H(0,p) = U(0) + 3p" M~ *p.
Then simulate corresponding Hamiltonian dynamics.

» HMC transition:
1. Refresh momentum: p ~ N (0, M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

> Invariant distribution: the extended target i(6, p) o e~ H(9:7).

v

Tuning parameters:

i €Z (integration time), h>0 (step size), M € R¥*? (mass matrix).

t(Duane et al (1987); Neal (2011))

3/18

Why Integration Time Tuning is Tricky in HMC'

Too short: insufficient integration leads to random-walk behavior

(Mackenzie (1989))

a/18

Why Integration Time Tuning is Tricky in HMC'

o . ®®%02%
0.0‘:.0.. "5

Too long: trajectory loops back, wasting computation

(Mackenzie (1989))

a/18

The No-U-Turn Sampler (NUTS)!

» NUTS builds on HMC by adaptively choosing integration time.

f(Hoffman & Gelman, 2011; Betancourt, 2017)

5/18

The No-U-Turn Sampler (NUTS)!

» NUTS builds on HMC by adaptively choosing integration time.
» Widely used in probabilistic programming languages:

— Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

f(Hoffman & Gelman, 2011; Betancourt, 2017)

5/18

The No-U-Turn Sampler (NUTS)!

» NUTS builds on HMC by adaptively choosing integration time.

» Widely used in probabilistic programming languages:
— Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
— Also used in: PyMC, NumPyro, Turing, NIMBLE.

f(Hoffman & Gelman, 2011; Betancourt, 2017)

5/18

The No-U-Turn Sampler (NUTS)!

» NUTS builds on HMC by adaptively choosing integration time.

» Widely used in probabilistic programming languages:
— Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
— Also used in: PyMC, NumPyro, Turing, NIMBLE.

./V

lllustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

The No-U-Turn Sampler (NUTS)!

» NUTS builds on HMC by adaptively choosing integration time.

» Widely used in probabilistic programming languages:
— Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
— Also used in: PyMC, NumPyro, Turing, NIMBLE.

./

lllustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

The No-U-Turn Sampler (NUTS)!

» NUTS builds on HMC by adaptively choosing integration time.

» Widely used in probabilistic programming languages:
— Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
— Also used in: PyMC, NumPyro, Turing, NIMBLE.

Rl

lllustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

The No-U-Turn Sampler (NUTS)!

» NUTS builds on HMC by adaptively choosing integration time.

» Widely used in probabilistic programming languages:
— Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
— Also used in: PyMC, NumPyro, Turing, NIMBLE.

lllustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

The No-U-Turn Sampler (NUTS)!

» NUTS builds on HMC by adaptively choosing integration time.

» Widely used in probabilistic programming languages:
— Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
— Also used in: PyMC, NumPyro, Turing, NIMBLE.

lllustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

The No-U-Turn Sampler (NUTS)!

» NUTS builds on HMC by adaptively choosing integration time.
» Widely used in probabilistic programming languages:

— Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
— Also used in: PyMC, NumPyro, Turing, NIMBLE.

lllustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

T(Hoffman & Gelman, 2011; Betancourt, 2017)

5/18

Neal’s Funnel: u(w,x) =N (w|0,9) []L, N(x |0, e*)

» However: some important targets exhibit extreme variations in scale, e.g., Neal's funnel.f

T(Neal, 2003; Betancourt & Girolami, 2013)

6/18

Neal’s Funnel: u(w,x) =N (w|0,9) []L, N(x |0, e*)

» However: some important targets exhibit extreme variations in scale, e.g., Neal's funnel.f

In(\)

Mouth

In(x)

[

Xi

Neck

» Left: Funnel width scales as /2 — shape preserved under horizontal rescaling.

T(Neal, 2003; Betancourt & Girolami, 2013)

6/18

Neal’s Funnel: u(w,x) =N (w|0,9) []L, N(x |0, e*)

» However: some important targets exhibit extreme variations in scale, e.g., Neal's funnel.f

In(A\)

Mouth

In(k)

[

Xi

Neck

CDA
N
&

4 2

» Left: Funnel width scales as /2 — shape preserved under horizontal rescaling.
» Top right: Spectral radius A\(w) = max(1/9,e~“) grows in the neck.

T(Neal, 2003; Betancourt & Girolami, 2013)

6/18

Neal’s Funnel: u(w,x) =N (w|0,9) []L, N(x |0, e*)

» However: some important targets exhibit extreme variations in scale, e.g., Neal's funnel.f

In(A\)

Mouth

In(k)

[

Xi

Neck

CDA
N
&

4 2

» Left: Funnel width scales as /2 — shape preserved under horizontal rescaling.
» Top right: Spectral radius A\(w) = max(1/9,e~“) grows in the neck.
» Bottom right: Condition number k(w) = 9 - max(e“, e~*) grows sharply with |w|.

T(Neal, 2003; Betancourt & Girolami, 2013)

6/18

Our Solution: WALNUTS

» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

7/18

Our Solution: WALNUTS

» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

> Key ideas:

— Introduces variable step sizes within each leapfrog orbit.

7/18

Our Solution: WALNUTS

» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

> Key ideas:
— Introduces variable step sizes within each leapfrog orbit.

— Adapts the step size based on local energy error.

7/18

Our Solution: WALNUTS

» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

> Key ideas:
— Introduces variable step sizes within each leapfrog orbit.

— Adapts the step size based on local energy error.

— Lightweight modification: simply reweights states generated during orbit expansion.

7/18

Our Solution: WALNUTS

» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

> Key ideas:

— Introduces variable step sizes within each leapfrog orbit.

Adapts the step size based on local energy error.

Lightweight modification: simply reweights states generated during orbit expansion.

Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

7/18

Our Solution: WALNUTS

» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

> Key ideas:

— Introduces variable step sizes within each leapfrog orbit.

Adapts the step size based on local energy error.

Lightweight modification: simply reweights states generated during orbit expansion.

— Preserves core features of NUTS: path length adaptivity & biased progressive sampling.
> Benefits:

— Reversible and unbiased.

7/18

Our Solution: WALNUTS

» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

> Key ideas:

— Introduces variable step sizes within each leapfrog orbit.

Adapts the step size based on local energy error.

Lightweight modification: simply reweights states generated during orbit expansion.

— Preserves core features of NUTS: path length adaptivity & biased progressive sampling.
> Benefits:

— Reversible and unbiased.

— Plugs directly into the existing NUTS implementation in Stan.

7/18

Our Solution: WALNUTS

» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

> Key ideas:
— Introduces variable step sizes within each leapfrog orbit.
— Adapts the step size based on local energy error.
— Lightweight modification: simply reweights states generated during orbit expansion.
— Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

» Benefits:

— Reversible and unbiased.
— Plugs directly into the existing NUTS implementation in Stan.

— Improves robustness through local step-size adaptivity.

7/18

Our Solution: WALNUTS

» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

> Key ideas:
— Introduces variable step sizes within each leapfrog orbit.
— Adapts the step size based on local energy error.
— Lightweight modification: simply reweights states generated during orbit expansion.
— Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

» Benefits:

Reversible and unbiased.

Plugs directly into the existing NUTS implementation in Stan.

— Improves robustness through local step-size adaptivity.

More forgiving with respect to tuning (e.g., macro step size).

7/18

Visualization of WALNUTS Transition Step

» Macro steps: white dots mark positions
at coarse time steps.

+900sesaesesnsnreset et ?TrT

mE .

larger smaller

weight

8/18

Visualization of WALNUTS Transition Step

» Macro steps: white dots mark positions
at coarse time steps.

» Micro steps: colors between macro
points show variable-resolution
integration adapted to local energy error.

9990s0sassesnsnsereters? e

mE .

larger smaller

weight

8/18

Visualization of WALNUTS Transition Step

» Macro steps: white dots mark positions
at coarse time steps.

» Micro steps: colors between macro
points show variable-resolution
integration adapted to local energy error.

9990s0sassesnsnsereters? e

mE .

larger smaller

weight

» Final state: star indicates selection via
biased progressive sampling (inset).

8/18

WALNUTS vs NUTS in Neal's Funnel

WALNUTS NUTS

number of doublings in accepted orbit
largest log; (£) in orbit
~ w IS o

°

-0 -5 0 5 10 -0 -5 0 5 10
w w largest w in orbit smallest w in orbit

> Left two panels: w-marginal histograms for WALNUTS and NUTS.

9/18

WALNUTS vs NUTS in Neal's Funnel

WALNUTS NUTS

number of doublings in accepted orbit
largest log; (1) in orbit
~ w IS o

°

-0 -5 0 5 10 -0 -5 0 5 10
w w largest w in orbit smallest w in orbit

> Left two panels: w-marginal histograms for WALNUTS and NUTS.
— WALNUTS recovers the correct N(0,9) distribution.

9/18

WALNUTS vs NUTS in Neal's Funnel

WALNUTS NUTS

-0 -5 0 5 10 -0 -5 0 5 10
largest w in orbit smallest w in orbit

> Left two panels: w-marginal histograms for WALNUTS and NUTS.
— WALNUTS recovers the correct N(0,9) distribution.
— NUTS exhibits bias despite using 104% of WALNUTS's total gradient calls.

9/18

WALNUTS vs NUTS in Neal's Funnel

WALNUTS NUTS

-0 -5 0 5 10 -0 -5 0 5 10
largest w in orbit smallest w in orbit

> Left two panels: w-marginal histograms for WALNUTS and NUTS.
— WALNUTS recovers the correct N(0,9) distribution.
— NUTS exhibits bias despite using 104% of WALNUTS's total gradient calls.
> Right two panels: Behavior of adaptive parameters vs. location in the funnel.

9/18

WALNUTS vs NUTS in Neal's Funnel

WALNUTS NUTS

-0 -5 0 5 10 -0 -5 0 5 10
largest w in orbit smallest w in orbit

> Left two panels: w-marginal histograms for WALNUTS and NUTS.
— WALNUTS recovers the correct N(0,9) distribution.
— NUTS exhibits bias despite using 104% of WALNUTS's total gradient calls.

> Right two panels: Behavior of adaptive parameters vs. location in the funnel.
— Orbit length increases in wide mouth (right tail).

9/18

WALNUTS vs NUTS in Neal's Funnel

WALNUTS NUTS

Cepted orbit

largest logs (0) i

TumBer of doubTings Tn ac

-0 -5 0 5 10 -0 -5 0 5 10
w w largest w in orbit smallest w in orbit

> Left two panels: w-marginal histograms for WALNUTS and NUTS.
— WALNUTS recovers the correct N(0,9) distribution.
— NUTS exhibits bias despite using 104% of WALNUTS's total gradient calls.
> Right two panels: Behavior of adaptive parameters vs. location in the funnel.
— Orbit length increases in wide mouth (right tail).
— Micro step size h¢™" decreases in narrow neck (left tail).

9/18

Cold-Start Diagnostics: WALNUTS in Neal’'s Funnel

» Setup: Initialized deep in the neck: w = —30, x; =0 for i =1,...,10.

10/18

Cold-Start Diagnostics: WALNUTS in Neal's Funnel

» Setup: Initialized deep in the neck: w = —30, x;, =0 for i =1,...,10.

—— largest w in orbit)
—— smallest w in orbit 10
0 + w MCMC samples 107 4
-5 1072
|2 10-1
]
5
<
-10 [1073 o
I g
5 3
-15 3 1074 £ 10
15 =
£ e
s 5
-20 2 1o
2107
[
102
-25 10-6
-30
1077
104
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
MCMC iteration # MCMC iteration # MCMC iteration #

» Left: WALNUTS samples of w (green) with orbit spans (lines).

10/18

Cold-Start Diagnostics: WALNUTS in Neal's Funnel

» Setup: Initialized deep in the neck: w = —30, x;, =0 for i =1,...,10.

—— largest w in orbit
§ 100
~—— smallest w in orbit
0 + w MCMC samples 107 4
5 10-2
|2 10-1
]
5
<
-10 [1073 o
g g
[@ a
& 3
3 g5 % 5]
S 107 2102
S =
£ e
s 5
-20 2 10
2107
[
102
-2 106
-30
1077
107*
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
MCMC iteration # MCMC iteration # MCMC iteration #

» Left: WALNUTS samples of w (green) with orbit spans (lines).
» Center: Adaptive micro step sizes h/~! per orbit; gray line shows macro step size h = 0.3.

10/18

Cold-Start Diagnostics: WALNUTS in Neal's Funnel

» Setup: Initialized deep in the neck: w = —30, x; =0 for i =1,...,10.

—— largest w in orbit

0
—— smallest w in orbit 10
0 + w MCMC samples 107 4
-5 1072
2 10-!
5
-10 £ 103
g 10 5
@ 5
15 gm-a %10’Z
S o
£ e
s 5
-20 %10
[
1073
-25 10-6
-30 1077
1074
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
MCMC iteration # MCMC iteration # MCMC iteration #

> Left: WALNUTS samples of w (green) with orbit spans (lines).
» Center: Adaptive micro step sizes h~! per orbit; gray line shows macro step size h = 0.3.
» Right: Energy error remains tightly controlled per orbit; dashed line shows § = 0.3.

10/18

WALNUTS: Transition Step

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

> Auxiliary variables: p € RY (momentum),

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

» Auxiliary variables: p € RY (momentum), O C R?? (orbit),

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

» Auxiliary variables: p € R (momentum), O C R?? (orbit), i € Z (integration time),

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)
11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

1. Refresh auxiliary variables.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

1. Refresh auxiliary variables.
2. Apply an involution W.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution W.
3. Return 6;.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

1. Refresh auxiliary variables.
2. Apply an involution W.
3. Return 6;.

> W preserves pjoint

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

1. Refresh auxiliary variables.
2. Apply an involution W.
3. Return 6;.

> U preserves pjoint = WALNUTS is reversible.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18

Contrast with HMC

0 sample auxiliary variable | | apply involution accept/reject 0’
current state p ~ N(0, M) Fo®;(6,p) using fi next state

Gibbs refreshment corrects for energy error

12/18

Contrast with HMC

0 sample auxiliary variable | | apply involution accept/reject 0’
current state p ~ N(0, M) Fo®;(6,p) using fi next state

Gibbs refreshment corrects for energy error

sample auxiliary variables: - -
p ~ N(0, M) [apply involution E 0; }
AN S micro steps £, orbit O, index i i ST SN

no Metropolis correction is needed since W preserves the joint density

12 /18

WALNUTS: Orbit Construction

Red: forward orbit from (6o, po).

13/18

WALNUTS: Orbit Construction

Red: forward orbit from (6o, po). Gray: same from (6;, p;).

13/18

WALNUTS: Orbit Construction

ann®
o

Red: forward orbit from (0o, po). Gray: same from (6;, p;). Dotted segments: same step-size distribution.

13/18

WALNUTS: Orbit Construction

Red: forward orbit from (0o, po). Gray: same from (6;, p;). Dotted segments: same step-size distribution.

£3,2+1 Micro steps £p_1,b Micro steps
_~ \AN
ta hz;; " tat1 thb—1 hé;l’ b tp

13/18

WALNUTS: Doubling Tree and U-turn Condition

TS
/ \
t 2, t_1, to, t1 t2,t37t4,t5
(t—2, t— (to, t1) (t2, t3) (ta, ts)

/\ /\ /\ /\

14 /18

WALNUTS: Doubling Tree and U-turn Condition

t 2, t_1, to, t1 t2,t37t4,t5

/ \ / \ min(pa - (05 — 02), po- (O — 0a)) > O

(t—2, t— (to, t1) (t2, t3) (ta, ts)

e e

14 /18

WALNUTS: Doubling Tree and U-turn Condition

t 2, t_1, to, t1 t2,t37t4,t5

/ \ / \ min(pa - (05 — 02), po- (O — 0a)) > O

(t—2,t-1) (to, t1) (t2, t3) (ta, ts) #

ARASASATIN, ;::?

min(pa - (6 — 6a), pp- (6 —02)) <O

14 /18

WALNUTS: Randomized Integration Time Selection

> WALNUTS selects the next state via biased progressive sampling (BPS).

15 /18

WALNUTS: Randomized Integration Time Selection

> WALNUTS selects the next state via biased progressive sampling (BPS).
» At each doubling step, sample a candidate index:

it ~ categorical(af**: b5**, W),

15 /18

WALNUTS: Randomized Integration Time Selection

> WALNUTS selects the next state via biased progressive sampling (BPS).
» At each doubling step, sample a candidate index:

it ~ categorical(af**: b5**, W),

» Accept with probability:

)

15 /18

WALNUTS: Randomized Integration Time Selection

» WALNUTS selects the next state via biased progressive sampling (BPS).
» At each doubling step, sample a candidate index:

it ~ categorical(af**: b5**, W),

» Accept with probability:

()

» With uniform weights and orbit lengths, BPS produces a symmetric triangular distribution.

15 /18

WALNUTS: Proof of Reversibility

> Defines a carefully constructed involution W on the augmented space: z = (6, p, m, b, £,i).

16 /18

WALNUTS: Proof of Reversibility

> Defines a carefully constructed involution W on the augmented space: z = (6, p, m, b, £,i).

> In words: W recenters the orbit to index i by updating the initial point to (6;, p;) and
shifting the step size sequence accordingly V : (0, p, m, b, £,i) — (0;, pi,m,b— 1,5, —i).

16 /18

WALNUTS: Proof of Reversibility

> Defines a carefully constructed involution W on the augmented space: z = (6, p, m, b, £,i).

> In words: W recenters the orbit to index i by updating the initial point to (6;, p;) and
shifting the step size sequence accordingly V : (0, p, m, b, £,i) — (0;, pi,m,b— 1,5, —i).

bo 4y li_a lia
(e,p) (elapl) (9,‘,1,[),‘,1) (Qi)pi)
(S0 (S0 (8D (501

16 /18

WALNUTS: Proof of Reversibility

> Defines a carefully constructed involution W on the augmented space: z = (6, p, m, b, £,i).

> In words: W recenters the orbit to index i by updating the initial point to (6;, p;) and
shifting the step size sequence accordingly V : (0, p, m, b, £,i) — (0;, pi,m,b— 1,5, —i).

Lo 01 li—o lia
(9, p) (61, p1) e (0i-1,pi-1) (0, pi)
(80)_; (S70)_i1 (8'0)-2 (S0) 1

» The extended target distribution is exactly invariant under V:

pjoint(z) X efH(E’,p) : porbit(m, b7£ | Hap) : pindex(i | ‘O»P, m, b7 K)

16 /18

WALNUTS: Proof of Reversibility

> Defines a carefully constructed involution W on the augmented space: z = (6, p, m, b, £,i).

> In words: W recenters the orbit to index i by updating the initial point to (6;, p;) and
shifting the step size sequence accordingly V : (0, p, m, b, £,i) — (0;, pi,m,b— 1,5, —i).

Lo 2 li—a lia
7~ N N XN N
(9, p) (61, p1) e (0i-1,pi-1) (0, pi)
(S0)_; (80) i1 (S80) 2 (S¢)_1

» The extended target distribution is exactly invariant under V:

7H(9,p)

pjoint(z) x e : porbit(m, b7£ | 97/0) : pindex(i | ’07/), m, bv K)

» Bottom line: WALNUTS transition kernel is reversible with respect to the target p.

16 /18

Conclusion & Outlook

Conclusions

» Summary. WALNUTS improves performance with minimal overhead.

17 /18

Conclusion & Outlook

Conclusions

» Summary. WALNUTS improves performance with minimal overhead.

» Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

17 /18

Conclusion & Outlook

Conclusions

» Summary. WALNUTS improves performance with minimal overhead.
» Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

» Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

17 /18

Conclusion & Outlook

Conclusions

» Summary. WALNUTS improves performance with minimal overhead.

» Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

» Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.
Future Directions

» Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &
Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

17 /18

Conclusion & Outlook

Conclusions

» Summary. WALNUTS improves performance with minimal overhead.
» Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

» Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions

» Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &
Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

> Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).

17 /18

Conclusion & Outlook

Conclusions

» Summary. WALNUTS improves performance with minimal overhead.
» Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

» Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions

» Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &
Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

> Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).
» Adam-like Step-sizes. See Ben's talk (Leimkuhler, Lohman & Whalley (2025)).

17 /18

Conclusion & Outlook

Conclusions

» Summary. WALNUTS improves performance with minimal overhead.
» Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

» Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions

» Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &
Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

> Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).
» Adam-like Step-sizes. See Ben's talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.

17 /18

WALNUTS: Paper and Code

> Paper: arXiv:2506.18746

» Code Repository: github.com/bob-carpenter/walnuts

Questions, feedback, or contributions are welcome!

18 /18

https://arxiv.org/abs/2506.18746
https://github.com/bob-carpenter/walnuts

