
WALNUTS = Within-Orbit Adaptive Leapfrog No-U-Turn Sampler

Nawaf Bou-Rabee (Rutgers & Flatiron)

joint work with Bob Carpenter (Flatiron), Tore Kleppe (Norway), & Sifan Liu (Flatiron).

arxiv:2506.18746 https://github.com/bob-carpenter/walnuts

arxiv:2506.18746
https://github.com/bob-carpenter/walnuts

Markov Chain Monte Carlo

▶ Goal: Sample from a target probability measure µ on Rd , with density also denoted by µ.

▶ Approach: Construct a Markov chain with transition kernel π such that µ = µπ.

▶ Sufficient condition: Reversibility (detailed balance):

µ(dx)π(x , dx ′) = µ(dx ′)π(x ′, dx)

guarantees that µ is invariant.

▶ Two broad classes of MCMC methods:

– Gradient-free: transitions evaluate only µ (e.g., RWM, Goodman-Weare Sampler, NURS).

– Gradient-based: also evaluate ∇ logµ (e.g., MALA, HMC, NUTS).

2 / 18

Markov Chain Monte Carlo

▶ Goal: Sample from a target probability measure µ on Rd , with density also denoted by µ.

▶ Approach: Construct a Markov chain with transition kernel π such that µ = µπ.

▶ Sufficient condition: Reversibility (detailed balance):

µ(dx)π(x , dx ′) = µ(dx ′)π(x ′, dx)

guarantees that µ is invariant.

▶ Two broad classes of MCMC methods:

– Gradient-free: transitions evaluate only µ (e.g., RWM, Goodman-Weare Sampler, NURS).

– Gradient-based: also evaluate ∇ logµ (e.g., MALA, HMC, NUTS).

2 / 18

Markov Chain Monte Carlo

▶ Goal: Sample from a target probability measure µ on Rd , with density also denoted by µ.

▶ Approach: Construct a Markov chain with transition kernel π such that µ = µπ.

▶ Sufficient condition: Reversibility (detailed balance):

µ(dx)π(x , dx ′) = µ(dx ′)π(x ′, dx)

guarantees that µ is invariant.

▶ Two broad classes of MCMC methods:

– Gradient-free: transitions evaluate only µ (e.g., RWM, Goodman-Weare Sampler, NURS).

– Gradient-based: also evaluate ∇ logµ (e.g., MALA, HMC, NUTS).

2 / 18

Markov Chain Monte Carlo

▶ Goal: Sample from a target probability measure µ on Rd , with density also denoted by µ.

▶ Approach: Construct a Markov chain with transition kernel π such that µ = µπ.

▶ Sufficient condition: Reversibility (detailed balance):

µ(dx)π(x , dx ′) = µ(dx ′)π(x ′, dx)

guarantees that µ is invariant.

▶ Two broad classes of MCMC methods:

– Gradient-free: transitions evaluate only µ (e.g., RWM, Goodman-Weare Sampler, NURS).

– Gradient-based: also evaluate ∇ logµ (e.g., MALA, HMC, NUTS).

2 / 18

Markov Chain Monte Carlo

▶ Goal: Sample from a target probability measure µ on Rd , with density also denoted by µ.

▶ Approach: Construct a Markov chain with transition kernel π such that µ = µπ.

▶ Sufficient condition: Reversibility (detailed balance):

µ(dx)π(x , dx ′) = µ(dx ′)π(x ′, dx)

guarantees that µ is invariant.

▶ Two broad classes of MCMC methods:

– Gradient-free: transitions evaluate only µ (e.g., RWM, Goodman-Weare Sampler, NURS).

– Gradient-based: also evaluate ∇ logµ (e.g., MALA, HMC, NUTS).

2 / 18

Hamiltonian Monte Carlo (HMC)†

▶ Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

▶ Approach: Introduce an auxiliary momentum ρ ∈ Rd define the Hamiltonian,

H(θ, ρ) = U(θ) + 1
2ρ

⊤M−1ρ.

Then simulate corresponding Hamiltonian dynamics.

▶ HMC transition:
1. Refresh momentum: ρ ∼ N (0,M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

▶ Invariant distribution: the extended target µ̂(θ, ρ) ∝ e−H(θ,ρ).

▶ Tuning parameters:

i ∈ Z (integration time), h > 0 (step size), M ∈ Rd×d (mass matrix).

†(Duane et al (1987); Neal (2011))
3 / 18

Hamiltonian Monte Carlo (HMC)†

▶ Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

▶ Approach: Introduce an auxiliary momentum ρ ∈ Rd define the Hamiltonian,

H(θ, ρ) = U(θ) + 1
2ρ

⊤M−1ρ.

Then simulate corresponding Hamiltonian dynamics.

▶ HMC transition:
1. Refresh momentum: ρ ∼ N (0,M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

▶ Invariant distribution: the extended target µ̂(θ, ρ) ∝ e−H(θ,ρ).

▶ Tuning parameters:

i ∈ Z (integration time), h > 0 (step size), M ∈ Rd×d (mass matrix).

†(Duane et al (1987); Neal (2011))
3 / 18

Hamiltonian Monte Carlo (HMC)†

▶ Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

▶ Approach: Introduce an auxiliary momentum ρ ∈ Rd define the Hamiltonian,

H(θ, ρ) = U(θ) + 1
2ρ

⊤M−1ρ.

Then simulate corresponding Hamiltonian dynamics.

▶ HMC transition:
1. Refresh momentum: ρ ∼ N (0,M).

2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

▶ Invariant distribution: the extended target µ̂(θ, ρ) ∝ e−H(θ,ρ).

▶ Tuning parameters:

i ∈ Z (integration time), h > 0 (step size), M ∈ Rd×d (mass matrix).

†(Duane et al (1987); Neal (2011))
3 / 18

Hamiltonian Monte Carlo (HMC)†

▶ Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

▶ Approach: Introduce an auxiliary momentum ρ ∈ Rd define the Hamiltonian,

H(θ, ρ) = U(θ) + 1
2ρ

⊤M−1ρ.

Then simulate corresponding Hamiltonian dynamics.

▶ HMC transition:
1. Refresh momentum: ρ ∼ N (0,M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.

3. Accept/reject the proposal using a Metropolis step.

▶ Invariant distribution: the extended target µ̂(θ, ρ) ∝ e−H(θ,ρ).

▶ Tuning parameters:

i ∈ Z (integration time), h > 0 (step size), M ∈ Rd×d (mass matrix).

†(Duane et al (1987); Neal (2011))
3 / 18

Hamiltonian Monte Carlo (HMC)†

▶ Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

▶ Approach: Introduce an auxiliary momentum ρ ∈ Rd define the Hamiltonian,

H(θ, ρ) = U(θ) + 1
2ρ

⊤M−1ρ.

Then simulate corresponding Hamiltonian dynamics.

▶ HMC transition:
1. Refresh momentum: ρ ∼ N (0,M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

▶ Invariant distribution: the extended target µ̂(θ, ρ) ∝ e−H(θ,ρ).

▶ Tuning parameters:

i ∈ Z (integration time), h > 0 (step size), M ∈ Rd×d (mass matrix).

†(Duane et al (1987); Neal (2011))
3 / 18

Hamiltonian Monte Carlo (HMC)†

▶ Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

▶ Approach: Introduce an auxiliary momentum ρ ∈ Rd define the Hamiltonian,

H(θ, ρ) = U(θ) + 1
2ρ

⊤M−1ρ.

Then simulate corresponding Hamiltonian dynamics.

▶ HMC transition:
1. Refresh momentum: ρ ∼ N (0,M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

▶ Invariant distribution: the extended target µ̂(θ, ρ) ∝ e−H(θ,ρ).

▶ Tuning parameters:

i ∈ Z (integration time), h > 0 (step size), M ∈ Rd×d (mass matrix).

†(Duane et al (1987); Neal (2011))
3 / 18

Hamiltonian Monte Carlo (HMC)†

▶ Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

▶ Approach: Introduce an auxiliary momentum ρ ∈ Rd define the Hamiltonian,

H(θ, ρ) = U(θ) + 1
2ρ

⊤M−1ρ.

Then simulate corresponding Hamiltonian dynamics.

▶ HMC transition:
1. Refresh momentum: ρ ∼ N (0,M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

▶ Invariant distribution: the extended target µ̂(θ, ρ) ∝ e−H(θ,ρ).

▶ Tuning parameters:

i ∈ Z (integration time), h > 0 (step size), M ∈ Rd×d (mass matrix).
†(Duane et al (1987); Neal (2011))

3 / 18

Why Integration Time Tuning is Tricky in HMC†

Too short: insufficient integration leads to random-walk behavior

Too long: trajectory loops back, wasting computation

†(Mackenzie (1989))
4 / 18

Why Integration Time Tuning is Tricky in HMC†

Too short: insufficient integration leads to random-walk behavior

Too long: trajectory loops back, wasting computation

†(Mackenzie (1989))
4 / 18

The No-U-Turn Sampler (NUTS)†

▶ NUTS builds on HMC by adaptively choosing integration time.

▶ Widely used in probabilistic programming languages:

– Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

– Also used in: PyMC, NumPyro, Turing, NIMBLE.

Illustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

†(Hoffman & Gelman, 2011; Betancourt, 2017)
5 / 18

The No-U-Turn Sampler (NUTS)†

▶ NUTS builds on HMC by adaptively choosing integration time.

▶ Widely used in probabilistic programming languages:

– Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

– Also used in: PyMC, NumPyro, Turing, NIMBLE.

Illustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

†(Hoffman & Gelman, 2011; Betancourt, 2017)
5 / 18

The No-U-Turn Sampler (NUTS)†

▶ NUTS builds on HMC by adaptively choosing integration time.

▶ Widely used in probabilistic programming languages:

– Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

– Also used in: PyMC, NumPyro, Turing, NIMBLE.

Illustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

†(Hoffman & Gelman, 2011; Betancourt, 2017)
5 / 18

The No-U-Turn Sampler (NUTS)†

▶ NUTS builds on HMC by adaptively choosing integration time.

▶ Widely used in probabilistic programming languages:

– Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

– Also used in: PyMC, NumPyro, Turing, NIMBLE.

Illustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

†(Hoffman & Gelman, 2011; Betancourt, 2017)
5 / 18

The No-U-Turn Sampler (NUTS)†

▶ NUTS builds on HMC by adaptively choosing integration time.

▶ Widely used in probabilistic programming languages:

– Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

– Also used in: PyMC, NumPyro, Turing, NIMBLE.

Illustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

†(Hoffman & Gelman, 2011; Betancourt, 2017)
5 / 18

The No-U-Turn Sampler (NUTS)†

▶ NUTS builds on HMC by adaptively choosing integration time.

▶ Widely used in probabilistic programming languages:

– Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

– Also used in: PyMC, NumPyro, Turing, NIMBLE.

Illustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

†(Hoffman & Gelman, 2011; Betancourt, 2017)
5 / 18

The No-U-Turn Sampler (NUTS)†

▶ NUTS builds on HMC by adaptively choosing integration time.

▶ Widely used in probabilistic programming languages:

– Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

– Also used in: PyMC, NumPyro, Turing, NIMBLE.

Illustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

†(Hoffman & Gelman, 2011; Betancourt, 2017)
5 / 18

The No-U-Turn Sampler (NUTS)†

▶ NUTS builds on HMC by adaptively choosing integration time.

▶ Widely used in probabilistic programming languages:

– Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

– Also used in: PyMC, NumPyro, Turing, NIMBLE.

Illustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

†(Hoffman & Gelman, 2011; Betancourt, 2017)
5 / 18

The No-U-Turn Sampler (NUTS)†

▶ NUTS builds on HMC by adaptively choosing integration time.

▶ Widely used in probabilistic programming languages:

– Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

– Also used in: PyMC, NumPyro, Turing, NIMBLE.

Illustration: NUTS builds a trajectory by randomly expanding forward and backward until a U-turn.

†(Hoffman & Gelman, 2011; Betancourt, 2017)
5 / 18

Neal’s Funnel: µ(ω, x) = N (ω | 0, 9)
∏d

i=1 N (xi | 0, eω)

▶ However: some important targets exhibit extreme variations in scale, e.g., Neal’s funnel.†

Neck

Mouth

xi

ω

−4 −2 0 2 4

0

2

4

ω

ln
(λ
)

−4 −2 0 2 4
0

2

4

6

ω

ln
(κ
)

▶ Left: Funnel width scales as eω/2 — shape preserved under horizontal rescaling.
▶ Top right: Spectral radius λ(ω) = max(1/9, e−ω) grows in the neck.
▶ Bottom right: Condition number κ(ω) = 9 ·max(eω, e−ω) grows sharply with |ω|.

†(Neal, 2003; Betancourt & Girolami, 2013)
6 / 18

Neal’s Funnel: µ(ω, x) = N (ω | 0, 9)
∏d

i=1 N (xi | 0, eω)

▶ However: some important targets exhibit extreme variations in scale, e.g., Neal’s funnel.†

Neck

Mouth

xi

ω

−4 −2 0 2 4

0

2

4

ω

ln
(λ
)

−4 −2 0 2 4
0

2

4

6

ω

ln
(κ
)

▶ Left: Funnel width scales as eω/2 — shape preserved under horizontal rescaling.

▶ Top right: Spectral radius λ(ω) = max(1/9, e−ω) grows in the neck.
▶ Bottom right: Condition number κ(ω) = 9 ·max(eω, e−ω) grows sharply with |ω|.

†(Neal, 2003; Betancourt & Girolami, 2013)
6 / 18

Neal’s Funnel: µ(ω, x) = N (ω | 0, 9)
∏d

i=1 N (xi | 0, eω)

▶ However: some important targets exhibit extreme variations in scale, e.g., Neal’s funnel.†

Neck

Mouth

xi

ω

−4 −2 0 2 4

0

2

4

ω

ln
(λ
)

−4 −2 0 2 4
0

2

4

6

ω

ln
(κ
)

▶ Left: Funnel width scales as eω/2 — shape preserved under horizontal rescaling.
▶ Top right: Spectral radius λ(ω) = max(1/9, e−ω) grows in the neck.

▶ Bottom right: Condition number κ(ω) = 9 ·max(eω, e−ω) grows sharply with |ω|.

†(Neal, 2003; Betancourt & Girolami, 2013)
6 / 18

Neal’s Funnel: µ(ω, x) = N (ω | 0, 9)
∏d

i=1 N (xi | 0, eω)

▶ However: some important targets exhibit extreme variations in scale, e.g., Neal’s funnel.†

Neck

Mouth

xi

ω

−4 −2 0 2 4

0

2

4

ω

ln
(λ
)

−4 −2 0 2 4
0

2

4

6

ω

ln
(κ
)

▶ Left: Funnel width scales as eω/2 — shape preserved under horizontal rescaling.
▶ Top right: Spectral radius λ(ω) = max(1/9, e−ω) grows in the neck.
▶ Bottom right: Condition number κ(ω) = 9 ·max(eω, e−ω) grows sharply with |ω|.
†(Neal, 2003; Betancourt & Girolami, 2013)

6 / 18

Our Solution: WALNUTS

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ Key ideas:

– Introduces variable step sizes within each leapfrog orbit.

– Adapts the step size based on local energy error.

– Lightweight modification: simply reweights states generated during orbit expansion.

– Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

▶ Benefits:

– Reversible and unbiased.

– Plugs directly into the existing NUTS implementation in Stan.

– Improves robustness through local step-size adaptivity.

– More forgiving with respect to tuning (e.g., macro step size).

7 / 18

Our Solution: WALNUTS

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ Key ideas:

– Introduces variable step sizes within each leapfrog orbit.

– Adapts the step size based on local energy error.

– Lightweight modification: simply reweights states generated during orbit expansion.

– Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

▶ Benefits:

– Reversible and unbiased.

– Plugs directly into the existing NUTS implementation in Stan.

– Improves robustness through local step-size adaptivity.

– More forgiving with respect to tuning (e.g., macro step size).

7 / 18

Our Solution: WALNUTS

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ Key ideas:

– Introduces variable step sizes within each leapfrog orbit.

– Adapts the step size based on local energy error.

– Lightweight modification: simply reweights states generated during orbit expansion.

– Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

▶ Benefits:

– Reversible and unbiased.

– Plugs directly into the existing NUTS implementation in Stan.

– Improves robustness through local step-size adaptivity.

– More forgiving with respect to tuning (e.g., macro step size).

7 / 18

Our Solution: WALNUTS

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ Key ideas:

– Introduces variable step sizes within each leapfrog orbit.

– Adapts the step size based on local energy error.

– Lightweight modification: simply reweights states generated during orbit expansion.

– Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

▶ Benefits:

– Reversible and unbiased.

– Plugs directly into the existing NUTS implementation in Stan.

– Improves robustness through local step-size adaptivity.

– More forgiving with respect to tuning (e.g., macro step size).

7 / 18

Our Solution: WALNUTS

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ Key ideas:

– Introduces variable step sizes within each leapfrog orbit.

– Adapts the step size based on local energy error.

– Lightweight modification: simply reweights states generated during orbit expansion.

– Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

▶ Benefits:

– Reversible and unbiased.

– Plugs directly into the existing NUTS implementation in Stan.

– Improves robustness through local step-size adaptivity.

– More forgiving with respect to tuning (e.g., macro step size).

7 / 18

Our Solution: WALNUTS

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ Key ideas:

– Introduces variable step sizes within each leapfrog orbit.

– Adapts the step size based on local energy error.

– Lightweight modification: simply reweights states generated during orbit expansion.

– Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

▶ Benefits:

– Reversible and unbiased.

– Plugs directly into the existing NUTS implementation in Stan.

– Improves robustness through local step-size adaptivity.

– More forgiving with respect to tuning (e.g., macro step size).

7 / 18

Our Solution: WALNUTS

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ Key ideas:

– Introduces variable step sizes within each leapfrog orbit.

– Adapts the step size based on local energy error.

– Lightweight modification: simply reweights states generated during orbit expansion.

– Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

▶ Benefits:

– Reversible and unbiased.

– Plugs directly into the existing NUTS implementation in Stan.

– Improves robustness through local step-size adaptivity.

– More forgiving with respect to tuning (e.g., macro step size).

7 / 18

Our Solution: WALNUTS

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ Key ideas:

– Introduces variable step sizes within each leapfrog orbit.

– Adapts the step size based on local energy error.

– Lightweight modification: simply reweights states generated during orbit expansion.

– Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

▶ Benefits:

– Reversible and unbiased.

– Plugs directly into the existing NUTS implementation in Stan.

– Improves robustness through local step-size adaptivity.

– More forgiving with respect to tuning (e.g., macro step size).

7 / 18

Our Solution: WALNUTS

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ Key ideas:

– Introduces variable step sizes within each leapfrog orbit.

– Adapts the step size based on local energy error.

– Lightweight modification: simply reweights states generated during orbit expansion.

– Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

▶ Benefits:

– Reversible and unbiased.

– Plugs directly into the existing NUTS implementation in Stan.

– Improves robustness through local step-size adaptivity.

– More forgiving with respect to tuning (e.g., macro step size).

7 / 18

Visualization of WALNUTS Transition Step

▶ Macro steps: white dots mark positions
at coarse time steps.

▶ Micro steps: colors between macro
points show variable-resolution
integration adapted to local energy error.

▶ Final state: star indicates selection via
biased progressive sampling (inset).

8 / 18

Visualization of WALNUTS Transition Step

▶ Macro steps: white dots mark positions
at coarse time steps.

▶ Micro steps: colors between macro
points show variable-resolution
integration adapted to local energy error.

▶ Final state: star indicates selection via
biased progressive sampling (inset).

8 / 18

Visualization of WALNUTS Transition Step

▶ Macro steps: white dots mark positions
at coarse time steps.

▶ Micro steps: colors between macro
points show variable-resolution
integration adapted to local energy error.

▶ Final state: star indicates selection via
biased progressive sampling (inset).

8 / 18

WALNUTS vs NUTS in Neal’s Funnel

▶ Left two panels: ω-marginal histograms for WALNUTS and NUTS.

– WALNUTS recovers the correct N (0, 9) distribution.
– NUTS exhibits bias despite using 104% of WALNUTS’s total gradient calls.

▶ Right two panels: Behavior of adaptive parameters vs. location in the funnel.
– Orbit length increases in wide mouth (right tail).
– Micro step size hℓ−1 decreases in narrow neck (left tail).

9 / 18

WALNUTS vs NUTS in Neal’s Funnel

▶ Left two panels: ω-marginal histograms for WALNUTS and NUTS.
– WALNUTS recovers the correct N (0, 9) distribution.

– NUTS exhibits bias despite using 104% of WALNUTS’s total gradient calls.
▶ Right two panels: Behavior of adaptive parameters vs. location in the funnel.

– Orbit length increases in wide mouth (right tail).
– Micro step size hℓ−1 decreases in narrow neck (left tail).

9 / 18

WALNUTS vs NUTS in Neal’s Funnel

▶ Left two panels: ω-marginal histograms for WALNUTS and NUTS.
– WALNUTS recovers the correct N (0, 9) distribution.
– NUTS exhibits bias despite using 104% of WALNUTS’s total gradient calls.

▶ Right two panels: Behavior of adaptive parameters vs. location in the funnel.
– Orbit length increases in wide mouth (right tail).
– Micro step size hℓ−1 decreases in narrow neck (left tail).

9 / 18

WALNUTS vs NUTS in Neal’s Funnel

▶ Left two panels: ω-marginal histograms for WALNUTS and NUTS.
– WALNUTS recovers the correct N (0, 9) distribution.
– NUTS exhibits bias despite using 104% of WALNUTS’s total gradient calls.

▶ Right two panels: Behavior of adaptive parameters vs. location in the funnel.

– Orbit length increases in wide mouth (right tail).
– Micro step size hℓ−1 decreases in narrow neck (left tail).

9 / 18

WALNUTS vs NUTS in Neal’s Funnel

▶ Left two panels: ω-marginal histograms for WALNUTS and NUTS.
– WALNUTS recovers the correct N (0, 9) distribution.
– NUTS exhibits bias despite using 104% of WALNUTS’s total gradient calls.

▶ Right two panels: Behavior of adaptive parameters vs. location in the funnel.
– Orbit length increases in wide mouth (right tail).

– Micro step size hℓ−1 decreases in narrow neck (left tail).

9 / 18

WALNUTS vs NUTS in Neal’s Funnel

▶ Left two panels: ω-marginal histograms for WALNUTS and NUTS.
– WALNUTS recovers the correct N (0, 9) distribution.
– NUTS exhibits bias despite using 104% of WALNUTS’s total gradient calls.

▶ Right two panels: Behavior of adaptive parameters vs. location in the funnel.
– Orbit length increases in wide mouth (right tail).
– Micro step size hℓ−1 decreases in narrow neck (left tail).

9 / 18

Cold-Start Diagnostics: WALNUTS in Neal’s Funnel

▶ Setup: Initialized deep in the neck: ω = −30, xi = 0 for i = 1, . . . , 10.

▶ Left: WALNUTS samples of ω (green) with orbit spans (lines).
▶ Center: Adaptive micro step sizes hℓ−1 per orbit; gray line shows macro step size h = 0.3.
▶ Right: Energy error remains tightly controlled per orbit; dashed line shows δ = 0.3.

10 / 18

Cold-Start Diagnostics: WALNUTS in Neal’s Funnel

▶ Setup: Initialized deep in the neck: ω = −30, xi = 0 for i = 1, . . . , 10.

▶ Left: WALNUTS samples of ω (green) with orbit spans (lines).

▶ Center: Adaptive micro step sizes hℓ−1 per orbit; gray line shows macro step size h = 0.3.
▶ Right: Energy error remains tightly controlled per orbit; dashed line shows δ = 0.3.

10 / 18

Cold-Start Diagnostics: WALNUTS in Neal’s Funnel

▶ Setup: Initialized deep in the neck: ω = −30, xi = 0 for i = 1, . . . , 10.

▶ Left: WALNUTS samples of ω (green) with orbit spans (lines).
▶ Center: Adaptive micro step sizes hℓ−1 per orbit; gray line shows macro step size h = 0.3.

▶ Right: Energy error remains tightly controlled per orbit; dashed line shows δ = 0.3.

10 / 18

Cold-Start Diagnostics: WALNUTS in Neal’s Funnel

▶ Setup: Initialized deep in the neck: ω = −30, xi = 0 for i = 1, . . . , 10.

▶ Left: WALNUTS samples of ω (green) with orbit spans (lines).
▶ Center: Adaptive micro step sizes hℓ−1 per orbit; gray line shows macro step size h = 0.3.
▶ Right: Energy error remains tightly controlled per orbit; dashed line shows δ = 0.3.

10 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum),

O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit),

i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),

ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:

1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.

2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.

3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint

⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

WALNUTS: Transition Step

▶ Instance of the auxiliary-variable-and-involution framework†.

▶ Auxiliary variables: ρ ∈ Rd (momentum), O ⊂ R2d (orbit), i ∈ Z (integration time),
ℓ ∈ N|O|−1 (micro step counts).

▶ Define joint distribution over all variables: pjoint.

▶ WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution Ψ.
3. Return θi .

▶ Ψ preserves pjoint ⇒ WALNUTS is reversible.

†Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11 / 18

Contrast with HMC

θ

current state
sample auxiliary variable

ρ ∼ N (0,M)
apply involution
F ◦ Φi

h(θ, ρ)
accept/reject

using µ̂
θ′

next state

Gibbs refreshment corrects for energy error

θ

current state

sample auxiliary variables:
ρ ∼ N (0,M)

micro steps ℓ, orbit O, index i

apply involution
Ψ

θi
next state

no Metropolis correction is needed since Ψ preserves the joint density

12 / 18

Contrast with HMC

θ

current state
sample auxiliary variable

ρ ∼ N (0,M)
apply involution
F ◦ Φi

h(θ, ρ)
accept/reject

using µ̂
θ′

next state

Gibbs refreshment corrects for energy error

θ

current state

sample auxiliary variables:
ρ ∼ N (0,M)

micro steps ℓ, orbit O, index i

apply involution
Ψ

θi
next state

no Metropolis correction is needed since Ψ preserves the joint density

12 / 18

WALNUTS: Orbit Construction

ti

t0

ta tb

Red: forward orbit from (θ0, ρ0).

Gray: same from (θi , ρi). Dotted segments: same step-size distribution.

ta ta+1 tb−1 tb

· · ·

ℓa,a+1 micro steps ℓb−1,b micro steps

hℓ−1
a,a+1 hℓ−1

b−1,b

13 / 18

WALNUTS: Orbit Construction

ti

t0

ta tb

Red: forward orbit from (θ0, ρ0). Gray: same from (θi , ρi).

Dotted segments: same step-size distribution.

ta ta+1 tb−1 tb

· · ·

ℓa,a+1 micro steps ℓb−1,b micro steps

hℓ−1
a,a+1 hℓ−1

b−1,b

13 / 18

WALNUTS: Orbit Construction

ti

t0

ta tb

Red: forward orbit from (θ0, ρ0). Gray: same from (θi , ρi). Dotted segments: same step-size distribution.

ta ta+1 tb−1 tb

· · ·

ℓa,a+1 micro steps ℓb−1,b micro steps

hℓ−1
a,a+1 hℓ−1

b−1,b

13 / 18

WALNUTS: Orbit Construction

ti

t0

ta tb

Red: forward orbit from (θ0, ρ0). Gray: same from (θi , ρi). Dotted segments: same step-size distribution.

ta ta+1 tb−1 tb

· · ·

ℓa,a+1 micro steps ℓb−1,b micro steps

hℓ−1
a,a+1 hℓ−1

b−1,b 13 / 18

WALNUTS: Doubling Tree and U-turn Condition

(ta, . . . , tb)

(t−2, t−1, t0, t1)

(t−2, t−1)

t−2

1

t−1

0

1

(t0, t1)

t0

1

t1

0

0

1

(t2, t3, t4, t5)

(t2, t3)

t2

1

t3

0

1

(t4, t5)

t4

1

t5

0

0

0

ρa

ρb

θb − θa

min(ρa · (θb − θa), ρb · (θb − θa)) > 0

ρa

ρb

θb − θa

min(ρa · (θb − θa), ρb · (θb − θa)) < 0

14 / 18

WALNUTS: Doubling Tree and U-turn Condition

(ta, . . . , tb)

(t−2, t−1, t0, t1)

(t−2, t−1)

t−2

1

t−1

0

1

(t0, t1)

t0

1

t1

0

0

1

(t2, t3, t4, t5)

(t2, t3)

t2

1

t3

0

1

(t4, t5)

t4

1

t5

0

0

0

ρa

ρb

θb − θa

min(ρa · (θb − θa), ρb · (θb − θa)) > 0

ρa

ρb

θb − θa

min(ρa · (θb − θa), ρb · (θb − θa)) < 0

14 / 18

WALNUTS: Doubling Tree and U-turn Condition

(ta, . . . , tb)

(t−2, t−1, t0, t1)

(t−2, t−1)

t−2

1

t−1

0

1

(t0, t1)

t0

1

t1

0

0

1

(t2, t3, t4, t5)

(t2, t3)

t2

1

t3

0

1

(t4, t5)

t4

1

t5

0

0

0

ρa

ρb

θb − θa

min(ρa · (θb − θa), ρb · (θb − θa)) > 0

ρa

ρb

θb − θa

min(ρa · (θb − θa), ρb · (θb − θa)) < 0

14 / 18

WALNUTS: Randomized Integration Time Selection

▶ WALNUTS selects the next state via biased progressive sampling (BPS).

▶ At each doubling step, sample a candidate index:

iext
k ∼ categorical(aext

k :bext
k , Wext

k).

▶ Accept with probability:

min

(
1,

∑
Wext

k∑
Wk

)
.

▶ With uniform weights and orbit lengths, BPS produces a symmetric triangular distribution.

−N 0 N

k

15 / 18

WALNUTS: Randomized Integration Time Selection

▶ WALNUTS selects the next state via biased progressive sampling (BPS).
▶ At each doubling step, sample a candidate index:

iext
k ∼ categorical(aext

k :bext
k , Wext

k).

▶ Accept with probability:

min

(
1,

∑
Wext

k∑
Wk

)
.

▶ With uniform weights and orbit lengths, BPS produces a symmetric triangular distribution.

−N 0 N

k

15 / 18

WALNUTS: Randomized Integration Time Selection

▶ WALNUTS selects the next state via biased progressive sampling (BPS).
▶ At each doubling step, sample a candidate index:

iext
k ∼ categorical(aext

k :bext
k , Wext

k).

▶ Accept with probability:

min

(
1,

∑
Wext

k∑
Wk

)
.

▶ With uniform weights and orbit lengths, BPS produces a symmetric triangular distribution.

−N 0 N

k

15 / 18

WALNUTS: Randomized Integration Time Selection

▶ WALNUTS selects the next state via biased progressive sampling (BPS).
▶ At each doubling step, sample a candidate index:

iext
k ∼ categorical(aext

k :bext
k , Wext

k).

▶ Accept with probability:

min

(
1,

∑
Wext

k∑
Wk

)
.

▶ With uniform weights and orbit lengths, BPS produces a symmetric triangular distribution.

−N 0 N

k 15 / 18

WALNUTS: Proof of Reversibility

▶ Defines a carefully constructed involution Ψ on the augmented space: z = (θ, ρ,m, b, ℓ, i).

▶ In words: Ψ recenters the orbit to index i by updating the initial point to (θi , ρi) and
shifting the step size sequence accordingly Ψ : (θ, ρ,m, b, ℓ, i) 7→ (θi , ρi ,m, b− i ,S iℓ,−i).

(θ, ρ) (θ1, ρ1) · · · (θi−1, ρi−1) (θi , ρi)

ℓ0 ℓ1 ℓi−2 ℓi−1

(S iℓ)−1(S iℓ)−2(S iℓ)−i+1(S iℓ)−i

▶ The extended target distribution is exactly invariant under Ψ:

pjoint(z) ∝ e−H(θ,ρ) · porbit(m, b, ℓ | θ, ρ) · pindex(i | ·θ, ρ,m, b, ℓ)

▶ Bottom line: WALNUTS transition kernel is reversible with respect to the target µ.

16 / 18

WALNUTS: Proof of Reversibility

▶ Defines a carefully constructed involution Ψ on the augmented space: z = (θ, ρ,m, b, ℓ, i).

▶ In words: Ψ recenters the orbit to index i by updating the initial point to (θi , ρi) and
shifting the step size sequence accordingly Ψ : (θ, ρ,m, b, ℓ, i) 7→ (θi , ρi ,m, b− i ,S iℓ,−i).

(θ, ρ) (θ1, ρ1) · · · (θi−1, ρi−1) (θi , ρi)

ℓ0 ℓ1 ℓi−2 ℓi−1

(S iℓ)−1(S iℓ)−2(S iℓ)−i+1(S iℓ)−i

▶ The extended target distribution is exactly invariant under Ψ:

pjoint(z) ∝ e−H(θ,ρ) · porbit(m, b, ℓ | θ, ρ) · pindex(i | ·θ, ρ,m, b, ℓ)

▶ Bottom line: WALNUTS transition kernel is reversible with respect to the target µ.

16 / 18

WALNUTS: Proof of Reversibility

▶ Defines a carefully constructed involution Ψ on the augmented space: z = (θ, ρ,m, b, ℓ, i).

▶ In words: Ψ recenters the orbit to index i by updating the initial point to (θi , ρi) and
shifting the step size sequence accordingly Ψ : (θ, ρ,m, b, ℓ, i) 7→ (θi , ρi ,m, b− i ,S iℓ,−i).

(θ, ρ) (θ1, ρ1) · · · (θi−1, ρi−1) (θi , ρi)

ℓ0 ℓ1 ℓi−2 ℓi−1

(S iℓ)−1(S iℓ)−2(S iℓ)−i+1(S iℓ)−i

▶ The extended target distribution is exactly invariant under Ψ:

pjoint(z) ∝ e−H(θ,ρ) · porbit(m, b, ℓ | θ, ρ) · pindex(i | ·θ, ρ,m, b, ℓ)

▶ Bottom line: WALNUTS transition kernel is reversible with respect to the target µ.

16 / 18

WALNUTS: Proof of Reversibility

▶ Defines a carefully constructed involution Ψ on the augmented space: z = (θ, ρ,m, b, ℓ, i).

▶ In words: Ψ recenters the orbit to index i by updating the initial point to (θi , ρi) and
shifting the step size sequence accordingly Ψ : (θ, ρ,m, b, ℓ, i) 7→ (θi , ρi ,m, b− i ,S iℓ,−i).

(θ, ρ) (θ1, ρ1) · · · (θi−1, ρi−1) (θi , ρi)

ℓ0 ℓ1 ℓi−2 ℓi−1

(S iℓ)−1(S iℓ)−2(S iℓ)−i+1(S iℓ)−i

▶ The extended target distribution is exactly invariant under Ψ:

pjoint(z) ∝ e−H(θ,ρ) · porbit(m, b, ℓ | θ, ρ) · pindex(i | ·θ, ρ,m, b, ℓ)

▶ Bottom line: WALNUTS transition kernel is reversible with respect to the target µ.

16 / 18

WALNUTS: Proof of Reversibility

▶ Defines a carefully constructed involution Ψ on the augmented space: z = (θ, ρ,m, b, ℓ, i).

▶ In words: Ψ recenters the orbit to index i by updating the initial point to (θi , ρi) and
shifting the step size sequence accordingly Ψ : (θ, ρ,m, b, ℓ, i) 7→ (θi , ρi ,m, b− i ,S iℓ,−i).

(θ, ρ) (θ1, ρ1) · · · (θi−1, ρi−1) (θi , ρi)

ℓ0 ℓ1 ℓi−2 ℓi−1

(S iℓ)−1(S iℓ)−2(S iℓ)−i+1(S iℓ)−i

▶ The extended target distribution is exactly invariant under Ψ:

pjoint(z) ∝ e−H(θ,ρ) · porbit(m, b, ℓ | θ, ρ) · pindex(i | ·θ, ρ,m, b, ℓ)

▶ Bottom line: WALNUTS transition kernel is reversible with respect to the target µ.

16 / 18

Conclusion & Outlook

Conclusions
▶ Summary. WALNUTS improves performance with minimal overhead.

▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

▶ Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions
▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &

Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

▶ Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).

▶ Adam-like Step-sizes. See Ben’s talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.

17 / 18

Conclusion & Outlook

Conclusions
▶ Summary. WALNUTS improves performance with minimal overhead.

▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

▶ Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions
▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &

Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

▶ Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).

▶ Adam-like Step-sizes. See Ben’s talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.

17 / 18

Conclusion & Outlook

Conclusions
▶ Summary. WALNUTS improves performance with minimal overhead.

▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

▶ Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions
▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &

Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

▶ Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).

▶ Adam-like Step-sizes. See Ben’s talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.

17 / 18

Conclusion & Outlook

Conclusions
▶ Summary. WALNUTS improves performance with minimal overhead.

▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

▶ Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions
▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &

Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

▶ Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).

▶ Adam-like Step-sizes. See Ben’s talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.

17 / 18

Conclusion & Outlook

Conclusions
▶ Summary. WALNUTS improves performance with minimal overhead.

▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

▶ Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions
▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &

Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

▶ Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).

▶ Adam-like Step-sizes. See Ben’s talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.

17 / 18

Conclusion & Outlook

Conclusions
▶ Summary. WALNUTS improves performance with minimal overhead.

▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

▶ Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions
▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &

Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

▶ Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).

▶ Adam-like Step-sizes. See Ben’s talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.

17 / 18

Conclusion & Outlook

Conclusions
▶ Summary. WALNUTS improves performance with minimal overhead.

▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

▶ Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions
▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &

Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

▶ Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).

▶ Adam-like Step-sizes. See Ben’s talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.

17 / 18

WALNUTS: Paper and Code

▶ Paper: arXiv:2506.18746

▶ Code Repository: github.com/bob-carpenter/walnuts

Questions, feedback, or contributions are welcome!

18 / 18

https://arxiv.org/abs/2506.18746
https://github.com/bob-carpenter/walnuts

