WALNUTS = \underline{W} ithin-Orbit \underline{A} daptive \underline{L} eapfrog \underline{N} o- \underline{U} - \underline{T} urn \underline{S} ampler

Nawaf Bou-Rabee (Rutgers & Flatiron)

joint work with Bob Carpenter (Flatiron), Tore Kleppe (Norway), & Sifan Liu (Flatiron).

arxiv:2506.18746 https://github.com/bob-carpenter/walnuts

▶ Goal: Sample from a target probability measure μ on \mathbb{R}^d , with density also denoted by μ .

- ▶ Goal: Sample from a target probability measure μ on \mathbb{R}^d , with density also denoted by μ .
- **Approach:** Construct a Markov chain with transition kernel π such that $\mu = \mu \pi$.

- ▶ **Goal:** Sample from a target probability measure μ on \mathbb{R}^d , with density also denoted by μ .
- **Approach:** Construct a Markov chain with transition kernel π such that $\mu = \mu \pi$.
- ► **Sufficient condition:** *Reversibility* (detailed balance):

$$\mu(dx)\pi(x,dx')=\mu(dx')\pi(x',dx)$$

guarantees that μ is invariant.

- ▶ Goal: Sample from a target probability measure μ on \mathbb{R}^d , with density also denoted by μ .
- **Approach:** Construct a Markov chain with transition kernel π such that $\mu = \mu \pi$.
- ▶ **Sufficient condition:** *Reversibility* (detailed balance):

$$\mu(dx)\pi(x,dx')=\mu(dx')\pi(x',dx)$$

guarantees that μ is invariant.

- Two broad classes of MCMC methods:
 - Gradient-free: transitions evaluate only μ (e.g., RWM, Goodman-Weare Sampler, NURS).

- ▶ Goal: Sample from a target probability measure μ on \mathbb{R}^d , with density also denoted by μ .
- **Approach:** Construct a Markov chain with transition kernel π such that $\mu = \mu \pi$.
- ▶ Sufficient condition: Reversibility (detailed balance):

$$\mu(dx)\pi(x,dx')=\mu(dx')\pi(x',dx)$$

guarantees that μ is invariant.

- Two broad classes of MCMC methods:
 - Gradient-free: transitions evaluate only μ (e.g., RWM, Goodman-Weare Sampler, NURS).
 - **Gradient-based:** also evaluate $\nabla \log \mu$ (e.g., MALA, HMC, NUTS).

▶ Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

^{†(}Duane et al (1987); Neal (2011))

- ► Core idea: Transforms the sampling problem into simulating Hamiltonian flows.
- **Approach:** Introduce an auxiliary momentum $\rho \in \mathbb{R}^d$ define the Hamiltonian,

$$H(\theta,\rho) = U(\theta) + \frac{1}{2}\rho^{\top}M^{-1}\rho.$$

 $^{^{\}dagger}$ (Duane et al (1987); Neal (2011))

- Core idea: Transforms the sampling problem into simulating Hamiltonian flows.
- **Approach:** Introduce an auxiliary momentum $\rho \in \mathbb{R}^d$ define the Hamiltonian,

$$H(\theta, \rho) = U(\theta) + \frac{1}{2}\rho^{\top}M^{-1}\rho.$$

- ► HMC transition:
 - 1. Refresh momentum: $\rho \sim \mathcal{N}(0, M)$.

 $^{^{\}dagger}$ (Duane et al (1987); Neal (2011))

- Core idea: Transforms the sampling problem into simulating Hamiltonian flows.
- **Approach:** Introduce an auxiliary momentum $\rho \in \mathbb{R}^d$ define the Hamiltonian,

$$H(\theta, \rho) = U(\theta) + \frac{1}{2}\rho^{\top}M^{-1}\rho.$$

- HMC transition:
 - 1. Refresh momentum: $\rho \sim \mathcal{N}(0, M)$.
 - 2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.

 $^{^{\}dagger}$ (Duane et al (1987); Neal (2011))

- Core idea: Transforms the sampling problem into simulating Hamiltonian flows.
- **Approach:** Introduce an auxiliary momentum $\rho \in \mathbb{R}^d$ define the Hamiltonian,

$$H(\theta,\rho) = U(\theta) + \frac{1}{2}\rho^{\top}M^{-1}\rho.$$

- HMC transition:
 - 1. Refresh momentum: $\rho \sim \mathcal{N}(0, M)$.
 - 2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
 - 3. Accept/reject the proposal using a Metropolis step.

 $^{^{\}dagger}$ (Duane et al (1987); Neal (2011))

- Core idea: Transforms the sampling problem into simulating Hamiltonian flows.
- **Approach:** Introduce an auxiliary momentum $\rho \in \mathbb{R}^d$ define the Hamiltonian,

$$H(\theta,\rho) = U(\theta) + \frac{1}{2}\rho^{\top}M^{-1}\rho.$$

- ► HMC transition:
 - 1. Refresh momentum: $\rho \sim \mathcal{N}(0, M)$.
 - 2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
 - 3. Accept/reject the proposal using a Metropolis step.
- ▶ Invariant distribution: the extended target $\widehat{\mu}(\theta, \rho) \propto e^{-H(\theta, \rho)}$.

 $^{^{\}dagger}$ (Duane et al (1987); Neal (2011))

- ▶ Core idea: Transforms the sampling problem into simulating Hamiltonian flows.
- **Approach:** Introduce an auxiliary momentum $\rho \in \mathbb{R}^d$ define the Hamiltonian,

$$H(\theta,\rho) = U(\theta) + \frac{1}{2}\rho^{\top}M^{-1}\rho.$$

- ► HMC transition:
 - 1. Refresh momentum: $\rho \sim \mathcal{N}(0, M)$.
 - 2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
 - 3. Accept/reject the proposal using a Metropolis step.
- ▶ Invariant distribution: the extended target $\widehat{\mu}(\theta, \rho) \propto e^{-H(\theta, \rho)}$.
- Tuning parameters:

$$i \in \mathbb{Z}$$
 (integration time), $h > 0$ (step size), $M \in \mathbb{R}^{d \times d}$ (mass matrix).

 $^{^{\}dagger}$ (Duane et al (1987); Neal (2011))

Why Integration Time Tuning is Tricky in HMC[†]

Too short: insufficient integration leads to random-walk behavior

^{†(}Mackenzie (1989))

Why Integration Time Tuning is Tricky in HMC[†]

Too short: insufficient integration leads to random-walk behavior

Too long: trajectory loops back, wasting computation

^{†(}Mackenzie (1989))

▶ NUTS builds on HMC by adaptively choosing integration time.

[†](Hoffman & Gelman, 2011; Betancourt, 2017)

- ▶ NUTS builds on HMC by adaptively choosing integration time.
- ▶ Widely used in probabilistic programming languages:
 - Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).

^{†(}Hoffman & Gelman, 2011; Betancourt, 2017)

- ▶ NUTS builds on HMC by adaptively choosing integration time.
- ▶ Widely used in probabilistic programming languages:
 - Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
 - Also used in: PyMC, NumPyro, Turing, NIMBLE.

^{†(}Hoffman & Gelman, 2011; Betancourt, 2017)

- ▶ NUTS builds on HMC by adaptively choosing integration time.
- ▶ Widely used in probabilistic programming languages:
 - Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
 - Also used in: PyMC, NumPyro, Turing, NIMBLE.

- ▶ NUTS builds on HMC by adaptively choosing integration time.
- ▶ Widely used in probabilistic programming languages:
 - Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
 - Also used in: PyMC, NumPyro, Turing, NIMBLE.

- ▶ NUTS builds on HMC by adaptively choosing integration time.
- ▶ Widely used in probabilistic programming languages:
 - Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
 - Also used in: PyMC, NumPyro, Turing, NIMBLE.

- ▶ NUTS builds on HMC by adaptively choosing integration time.
- ▶ Widely used in probabilistic programming languages:
 - Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
 - Also used in: PyMC, NumPyro, Turing, NIMBLE.

- ▶ NUTS builds on HMC by adaptively choosing integration time.
- ▶ Widely used in probabilistic programming languages:
 - Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
 - Also used in: PyMC, NumPyro, Turing, NIMBLE.

- ▶ NUTS builds on HMC by adaptively choosing integration time.
- ▶ Widely used in probabilistic programming languages:
 - Stan: CmdStan (2.2M), RStan (6.0M), PyStan (110M+ downloads).
 - Also used in: PyMC, NumPyro, Turing, NIMBLE.

^{†(}Hoffman & Gelman, 2011; Betancourt, 2017)

Neal's Funnel: $\mu(\omega, x) = \mathcal{N}(\omega \mid 0, 9) \prod_{i=1}^{d} \mathcal{N}(x_i \mid 0, e^{\omega})$

▶ However: some important targets exhibit extreme variations in scale, e.g., Neal's funnel.[†]

[†](Neal, 2003; Betancourt & Girolami, 2013)

Neal's Funnel:
$$\mu(\omega, x) = \mathcal{N}(\omega \mid 0, 9) \prod_{i=1}^{d} \mathcal{N}(x_i \mid 0, e^{\omega})$$

▶ However: some important targets exhibit extreme variations in scale, e.g., Neal's funnel.[†]

▶ **Left:** Funnel width scales as $e^{\omega/2}$ — shape preserved under horizontal rescaling.

^{†(}Neal, 2003; Betancourt & Girolami, 2013)

Neal's Funnel:
$$\mu(\omega, x) = \mathcal{N}(\omega \mid 0, 9) \prod_{i=1}^{d} \mathcal{N}(x_i \mid 0, e^{\omega})$$

▶ However: some important targets exhibit extreme variations in scale, e.g., Neal's funnel.[†]

- ▶ **Left:** Funnel width scales as $e^{\omega/2}$ shape preserved under horizontal rescaling.
- ▶ **Top right:** Spectral radius $\lambda(\omega) = \max(1/9, e^{-\omega})$ grows in the neck.

^{†(}Neal, 2003; Betancourt & Girolami, 2013)

Neal's Funnel:
$$\mu(\omega, x) = \mathcal{N}(\omega \mid 0, 9) \prod_{i=1}^{d} \mathcal{N}(x_i \mid 0, e^{\omega})$$

▶ However: some important targets exhibit extreme variations in scale, e.g., Neal's funnel.[†]

- **Left:** Funnel width scales as $e^{\omega/2}$ shape preserved under horizontal rescaling.
- ▶ **Top right:** Spectral radius $\lambda(\omega) = \max(1/9, e^{-\omega})$ grows in the neck.
- **Bottom right:** Condition number $\kappa(\omega) = 9 \cdot \max(e^{\omega}, e^{-\omega})$ grows sharply with $|\omega|$.

^{†(}Neal, 2003; Betancourt & Girolami, 2013)

► WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

▶ WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

► Key ideas:

- Introduces variable step sizes within each leapfrog orbit.

► WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

► Key ideas:

- Introduces variable step sizes within each leapfrog orbit.
- Adapts the step size based on local energy error.

► WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

► Key ideas:

- Introduces variable step sizes within each leapfrog orbit.
- Adapts the step size based on local energy error.
- Lightweight modification: simply reweights states generated during orbit expansion.

► WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

► Key ideas:

- Introduces variable step sizes within each leapfrog orbit.
- Adapts the step size based on local energy error.
- Lightweight modification: simply reweights states generated during orbit expansion.
- Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

► WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

► Key ideas:

- Introduces variable step sizes within each leapfrog orbit.
- Adapts the step size based on local energy error.
- Lightweight modification: simply reweights states generated during orbit expansion.
- Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

Benefits:

- Reversible and unbiased.

► WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

► Key ideas:

- Introduces variable step sizes within each leapfrog orbit.
- Adapts the step size based on local energy error.
- Lightweight modification: simply reweights states generated during orbit expansion.
- Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

Benefits:

- Reversible and unbiased.
- Plugs directly into the existing NUTS implementation in Stan.

► WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

► Key ideas:

- Introduces variable step sizes within each leapfrog orbit.
- Adapts the step size based on local energy error.
- Lightweight modification: simply reweights states generated during orbit expansion.
- Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

Benefits:

- Reversible and unbiased.
- Plugs directly into the existing NUTS implementation in Stan.
- Improves robustness through local step-size adaptivity.

Our Solution: WALNUTS

► WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

Key ideas:

- Introduces variable step sizes within each leapfrog orbit.
- Adapts the step size based on local energy error.
- Lightweight modification: simply reweights states generated during orbit expansion.
- Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

Benefits:

- Reversible and unbiased.
- Plugs directly into the existing NUTS implementation in Stan.
- Improves robustness through local step-size adaptivity.
- More forgiving with respect to tuning (e.g., macro step size).

Visualization of WALNUTS Transition Step

► Macro steps: white dots mark positions at coarse time steps.

Visualization of WALNUTS Transition Step

- ► Macro steps: white dots mark positions at coarse time steps.
- ► Micro steps: colors between macro points show variable-resolution integration adapted to local energy error.

Visualization of WALNUTS Transition Step

- ► Macro steps: white dots mark positions at coarse time steps.
- ► Micro steps: colors between macro points show variable-resolution integration adapted to local energy error.
- ► Final state: star indicates selection via biased progressive sampling (inset).

Left two panels: ω -marginal histograms for WALNUTS and NUTS.

- **Left two panels:** ω -marginal histograms for WALNUTS and NUTS.
 - WALNUTS recovers the correct $\mathcal{N}(0,9)$ distribution.

- **Left two panels:** ω -marginal histograms for WALNUTS and NUTS.
 - WALNUTS recovers the correct $\mathcal{N}(0,9)$ distribution.
 - NUTS exhibits bias despite using 104% of WALNUTS's total gradient calls.

- **Left two panels:** ω -marginal histograms for WALNUTS and NUTS.
 - WALNUTS recovers the correct $\mathcal{N}(0,9)$ distribution.
 - NUTS exhibits bias despite using 104% of WALNUTS's total gradient calls.
- **Right two panels:** Behavior of adaptive parameters vs. location in the funnel.

- **Left two panels:** ω -marginal histograms for WALNUTS and NUTS.
 - WALNUTS recovers the correct $\mathcal{N}(0,9)$ distribution.
 - NUTS exhibits bias despite using 104% of WALNUTS's total gradient calls.
- ▶ **Right two panels:** Behavior of adaptive parameters vs. location in the funnel.
 - Orbit length increases in wide mouth (right tail).

- **Left two panels:** ω -marginal histograms for WALNUTS and NUTS.
 - WALNUTS recovers the correct $\mathcal{N}(0,9)$ distribution.
 - NUTS exhibits bias despite using 104% of WALNUTS's total gradient calls.
- ▶ **Right two panels:** Behavior of adaptive parameters vs. location in the funnel.
 - Orbit length increases in wide mouth (right tail).
 - Micro step size $h\ell^{-1}$ decreases in narrow neck (left tail).

Setup: Initialized deep in the neck: $\omega = -30$, $x_i = 0$ for i = 1, ..., 10.

Setup: Initialized deep in the neck: $\omega = -30$, $x_i = 0$ for $i = 1, \dots, 10$.

▶ **Left:** WALNUTS samples of ω (green) with orbit spans (lines).

Setup: Initialized deep in the neck: $\omega = -30$, $x_i = 0$ for $i = 1, \dots, 10$.

- **Left:** WALNUTS samples of ω (green) with orbit spans (lines).
- ▶ **Center:** Adaptive micro step sizes $h\ell^{-1}$ per orbit; gray line shows macro step size h = 0.3.

▶ **Setup:** Initialized deep in the neck: $\omega = -30$, $x_i = 0$ for i = 1, ..., 10.

- **Left:** WALNUTS samples of ω (green) with orbit spans (lines).
- ▶ **Center:** Adaptive micro step sizes $h\ell^{-1}$ per orbit; gray line shows macro step size h = 0.3.
- **Right:** Energy error remains tightly controlled per orbit; dashed line shows $\delta = 0.3$.

 $^{^\}dagger$ Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

► Instance of the auxiliary-variable-and-involution framework[†].

 $^{^\}dagger$ Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum),

 $^{^\}dagger$ Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit),

 $^{^{\}dagger}$ Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit), $i \in \mathbb{Z}$ (integration time),

[†]Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit), $i \in \mathbb{Z}$ (integration time), $\ell \in \mathbb{N}^{|\mathcal{O}|-1}$ (micro step counts).

[†]Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit), $i \in \mathbb{Z}$ (integration time), $\ell \in \mathbb{N}^{|\mathcal{O}|-1}$ (micro step counts).
- Define joint distribution over all variables: p_{ioint}.

[†]Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit), $i \in \mathbb{Z}$ (integration time), $\ell \in \mathbb{N}^{|\mathcal{O}|-1}$ (micro step counts).
- Define joint distribution over all variables: p_{joint}.
- ► WALNUTS transition step:

[†]Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit), $i \in \mathbb{Z}$ (integration time), $\ell \in \mathbb{N}^{|\mathcal{O}|-1}$ (micro step counts).
- Define joint distribution over all variables: p_{joint}.
- **▶** WALNUTS transition step:
 - 1. Refresh auxiliary variables.

[†]Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit), $i \in \mathbb{Z}$ (integration time), $\ell \in \mathbb{N}^{|\mathcal{O}|-1}$ (micro step counts).
- Define joint distribution over all variables: p_{joint}.
- **▶** WALNUTS transition step:
 - 1. Refresh auxiliary variables.
 - 2. Apply an involution Ψ .

 $^{^{\}dagger}$ Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit), $i \in \mathbb{Z}$ (integration time), $\ell \in \mathbb{N}^{|\mathcal{O}|-1}$ (micro step counts).
- Define joint distribution over all variables: p_{joint}.
- **▶** WALNUTS transition step:
 - 1. Refresh auxiliary variables.
 - 2. Apply an involution Ψ .
 - 3. Return θ_i .

[†]Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit), $i \in \mathbb{Z}$ (integration time), $\ell \in \mathbb{N}^{|\mathcal{O}|-1}$ (micro step counts).
- Define joint distribution over all variables: p_{joint}.

▶ WALNUTS transition step:

- 1. Refresh auxiliary variables.
- 2. Apply an involution Ψ .
- 3. Return θ_i .
- Ψ preserves p_{joint}

[†]Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

- ► Instance of the auxiliary-variable-and-involution framework[†].
- ▶ Auxiliary variables: $\rho \in \mathbb{R}^d$ (momentum), $\mathcal{O} \subset \mathbb{R}^{2d}$ (orbit), $i \in \mathbb{Z}$ (integration time), $\ell \in \mathbb{N}^{|\mathcal{O}|-1}$ (micro step counts).
- Define joint distribution over all variables: p_{joint}.
- **▶** WALNUTS transition step:
 - 1. Refresh auxiliary variables.
 - 2. Apply an involution Ψ .
 - 3. Return θ_i .
- \blacktriangleright Ψ preserves $p_{\text{joint}} \Rightarrow \text{WALNUTS}$ is reversible.

[†]Andrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, & Marsden (2024)

Contrast with HMC

Contrast with HMC

no Metropolis correction is needed since $\boldsymbol{\Psi}$ preserves the joint density

Red: forward orbit from (θ_0, ρ_0) .

Red: forward orbit from (θ_0, ρ_0) . Gray: same from (θ_i, ρ_i) .

Red: forward orbit from (θ_0, ρ_0) . Gray: same from (θ_i, ρ_i) . Dotted segments: same step-size distribution.

Red: forward orbit from (θ_0, ρ_0) . Gray: same from (θ_i, ρ_i) . Dotted segments: same step-size distribution.

13/18

WALNUTS: Doubling Tree and U-turn Condition

WALNUTS: Doubling Tree and U-turn Condition

WALNUTS: Doubling Tree and U-turn Condition

▶ WALNUTS selects the next state via biased progressive sampling (BPS).

- ▶ WALNUTS selects the next state via biased progressive sampling (BPS).
- ► At each doubling step, sample a candidate index:

$$i_k^{ ext{ext}} \sim ext{categorical}(a_k^{ ext{ext}}:b_k^{ ext{ext}},\,\mathcal{W}_k^{ ext{ext}}).$$

- ▶ WALNUTS selects the next state via biased progressive sampling (BPS).
- ► At each doubling step, sample a candidate index:

$$i_k^{ ext{ext}} \sim ext{categorical}(a_k^{ ext{ext}}; b_k^{ ext{ext}}, \, \mathcal{W}_k^{ ext{ext}}).$$

► Accept with probability:

$$\min \left(1, \frac{\sum \mathcal{W}_k^{\text{ext}}}{\sum \mathcal{W}_k}\right).$$

- ▶ WALNUTS selects the next state via biased progressive sampling (BPS).
- ► At each doubling step, sample a candidate index:

$$i_k^{ ext{ext}} \sim ext{categorical}(a_k^{ ext{ext}}; b_k^{ ext{ext}}, \, \mathcal{W}_k^{ ext{ext}}).$$

Accept with probability:

$$\min \left(1, \frac{\sum \mathcal{W}_k^{\mathrm{ext}}}{\sum \mathcal{W}_k}\right).$$

▶ With uniform weights and orbit lengths, BPS produces a symmetric triangular distribution.

Defines a carefully constructed involution Ψ on the augmented space: $z = (\theta, \rho, m, b, \ell, i)$.

- ▶ Defines a carefully constructed involution Ψ on the augmented space: $z = (\theta, \rho, m, b, \ell, i)$.
- ▶ In words: Ψ recenters the orbit to index i by updating the initial point to (θ_i, ρ_i) and shifting the step size sequence accordingly $\Psi : (\theta, \rho, m, b, \ell, i) \mapsto (\theta_i, \rho_i, m, b i, S^i \ell, -i)$.

- ▶ Defines a carefully constructed involution Ψ on the augmented space: $z = (\theta, \rho, m, b, \ell, i)$.
- **In words:** Ψ recenters the orbit to index i by updating the initial point to (θ_i, ρ_i) and shifting the step size sequence accordingly Ψ : $(\theta, \rho, m, b, \ell, i)$ \mapsto $(\theta_i, \rho_i, m, b i, S^i\ell, -i)$.

- **Defines** a carefully constructed involution Ψ on the augmented space: $z = (\theta, \rho, m, b, \ell, i)$.
- **In words:** Ψ recenters the orbit to index i by updating the initial point to (θ_i, ρ_i) and shifting the step size sequence accordingly Ψ : $(\theta, \rho, m, b, \ell, i)$ \mapsto $(\theta_i, \rho_i, m, b i, S^i\ell, -i)$.

 \blacktriangleright The **extended target distribution** is exactly **invariant** under Ψ :

$$p_{\text{joint}}(z) \propto e^{-H(\theta, \rho)} \cdot p_{\text{orbit}}(m, b, \ell \mid \theta, \rho) \cdot p_{\text{index}}(i \mid \theta, \rho, m, b, \ell)$$

- **Defines** a carefully constructed involution Ψ on the augmented space: $z = (\theta, \rho, m, b, \ell, i)$.
- **In words:** Ψ recenters the orbit to index i by updating the initial point to (θ_i, ρ_i) and shifting the step size sequence accordingly Ψ : $(\theta, \rho, m, b, \ell, i)$ \mapsto $(\theta_i, \rho_i, m, b i, S^i\ell, -i)$.

 \blacktriangleright The **extended target distribution** is exactly **invariant** under Ψ :

$$p_{\mathsf{joint}}(z) \propto e^{-H(\theta, \rho)} \cdot p_{\mathsf{orbit}}(m, b, \ell \mid \theta, \rho) \cdot p_{\mathsf{index}}(i \mid \cdot \theta, \rho, m, b, \ell)$$

Bottom line: WALNUTS transition kernel is reversible with respect to the target μ .

Conclusions

Summary. WALNUTS improves performance with minimal overhead.

Conclusions

- **Summary.** WALNUTS improves performance with minimal overhead.
- ▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

Conclusions

- **Summary.** WALNUTS improves performance with minimal overhead.
- ▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.
- **Beyond NUTS.** The core adaptive scheme extends to other HMC-type methods.

Conclusions

- **Summary.** WALNUTS improves performance with minimal overhead.
- ▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.
- **Beyond NUTS.** The core adaptive scheme extends to other HMC-type methods.

Future Directions

▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird & Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

Conclusions

- **Summary.** WALNUTS improves performance with minimal overhead.
- ▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.
- ▶ **Beyond NUTS.** The core adaptive scheme extends to other HMC-type methods.

Future Directions

- ▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird & Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).
- ► Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).

Conclusions

- **Summary.** WALNUTS improves performance with minimal overhead.
- ▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.
- ▶ **Beyond NUTS.** The core adaptive scheme extends to other HMC-type methods.

Future Directions

- ▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird & Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).
- ► Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).
- ► Adam-like Step-sizes. See Ben's talk (Leimkuhler, Lohman & Whalley (2025)).

Conclusions

- **Summary.** WALNUTS improves performance with minimal overhead.
- ▶ Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.
- ▶ **Beyond NUTS.** The core adaptive scheme extends to other HMC-type methods.

Future Directions

- ▶ Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird & Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).
- ► Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).
- ► Adam-like Step-sizes. See Ben's talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.

WALNUTS: Paper and Code

▶ Paper: arXiv:2506.18746

► Code Repository: github.com/bob-carpenter/walnuts

Questions, feedback, or contributions are welcome!