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» Approach: Construct a Markov chain with transition kernel 7 such that y = pr.
> Sufficient condition: Reversibility (detailed balance):
p(dx) 7(x, dx") = p(dx") w(x’, dx)
guarantees that p is invariant.

» Two broad classes of MCMC methods:

— Gradient-free: transitions evaluate only u (e.g., RWM, Goodman-Weare Sampler, NURS).

— Gradient-based: also evaluate Vlog i (e.g., MALA, HMC, NUTS).
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» Core idea: Transforms the sampling problem into simulating Hamiltonian flows.

v

Approach: Introduce an auxiliary momentum p € RY define the Hamiltonian,
H(0,p) = U(0) + 3p" M~ *p.
Then simulate corresponding Hamiltonian dynamics.

» HMC transition:
1. Refresh momentum: p ~ N (0, M).
2. Simulate Hamiltonian dynamics for time t = ih using the leapfrog method.
3. Accept/reject the proposal using a Metropolis step.

> Invariant distribution: the extended target i(6, p) o e~ H(9:7).

v

Tuning parameters:

i €Z (integration time), h>0 (step size), M € R¥*?  (mass matrix).

t(Duane et al (1987); Neal (2011))
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Why Integration Time Tuning is Tricky in HMC'

Too short: insufficient integration leads to random-walk behavior

(Mackenzie (1989))
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Too long: trajectory loops back, wasting computation

(Mackenzie (1989))
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» Left: Funnel width scales as /2 — shape preserved under horizontal rescaling.
» Top right: Spectral radius A\(w) = max(1/9,e~“) grows in the neck.
» Bottom right: Condition number k(w) = 9 - max(e“, e~*) grows sharply with |w|.

T(Neal, 2003; Betancourt & Girolami, 2013)
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» WALNUTS = Within-orbit Adaptive Leapfrog No-U-Turn Sampler.

> Key ideas:
— Introduces variable step sizes within each leapfrog orbit.
— Adapts the step size based on local energy error.
— Lightweight modification: simply reweights states generated during orbit expansion.
— Preserves core features of NUTS: path length adaptivity & biased progressive sampling.

» Benefits:

Reversible and unbiased.

Plugs directly into the existing NUTS implementation in Stan.

— Improves robustness through local step-size adaptivity.

More forgiving with respect to tuning (e.g., macro step size).

7/18
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Visualization of WALNUTS Transition Step

» Macro steps: white dots mark positions
at coarse time steps.

» Micro steps: colors between macro
points show variable-resolution
integration adapted to local energy error.
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» Final state: star indicates selection via
biased progressive sampling (inset).
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WALNUTS vs NUTS in Neal's Funnel
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WALNUTS vs NUTS in Neal's Funnel
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> Left two panels: w-marginal histograms for WALNUTS and NUTS.
— WALNUTS recovers the correct N(0,9) distribution.
— NUTS exhibits bias despite using 104% of WALNUTS's total gradient calls.
> Right two panels: Behavior of adaptive parameters vs. location in the funnel.
— Orbit length increases in wide mouth (right tail).
— Micro step size h¢™" decreases in narrow neck (left tail).
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> Left: WALNUTS samples of w (green) with orbit spans (lines).
» Center: Adaptive micro step sizes h~! per orbit; gray line shows macro step size h = 0.3.
» Right: Energy error remains tightly controlled per orbit; dashed line shows § = 0.3.

10/18



WALNUTS: Transition Step

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

> Auxiliary variables: p € RY (momentum),

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

» Auxiliary variables: p € RY (momentum), O C R?? (orbit),

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

» Auxiliary variables: p € R (momentum), O C R?? (orbit), i € Z (integration time),

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework!.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)
11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

1. Refresh auxiliary variables.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

1. Refresh auxiliary variables.
2. Apply an involution W.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:
1. Refresh auxiliary variables.
2. Apply an involution W.
3. Return 6;.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

1. Refresh auxiliary variables.
2. Apply an involution W.
3. Return 6;.

> W preserves pjoint

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
Marsden (2024)

11/18



WALNUTS: Transition Step

» Instance of the auxiliary-variable-and-involution framework?.

> Auxiliary variables: p € RY (momentum), O C R?? (orbit), i € Z (integration time),
£ € NII=1 (micro step counts).

» Define joint distribution over all variables: pjgint.

> WALNUTS transition step:

1. Refresh auxiliary variables.
2. Apply an involution W.
3. Return 6;.

> U preserves pjoint = WALNUTS is reversible.

fAndrieu, Lee, & Livingstone (2020); Glatt-Holtz, Krometis, & Mondaini (2023); B.-R., Carpenter, &
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Contrast with HMC
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Contrast with HMC

0 sample auxiliary variable | | apply involution accept/reject 0’
current state p ~ N(0, M) Fo®;(6,p) using fi next state

Gibbs refreshment corrects for energy error

sample auxiliary variables: - -
p ~ N(0, M) [apply involution E 0; }
AN S micro steps £, orbit O, index i i ST SN

no Metropolis correction is needed since W preserves the joint density

12 /18



WALNUTS: Orbit Construction

Red: forward orbit from (6o, po).
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» WALNUTS selects the next state via biased progressive sampling (BPS).
» At each doubling step, sample a candidate index:

it ~ categorical(af**: b5**, W),

» Accept with probability:

()

» With uniform weights and orbit lengths, BPS produces a symmetric triangular distribution.
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> Defines a carefully constructed involution W on the augmented space: z = (6, p, m, b, £,i).

> In words: W recenters the orbit to index i by updating the initial point to (6;, p;) and
shifting the step size sequence accordingly V : (0, p, m, b, £,i) — (0;, pi,m,b— 1,5, —i).
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» The extended target distribution is exactly invariant under V:

7H(9,p)

pjoint(z) x e : porbit(m, b7£ | 97/0) : pindex(i | ’07/), m, bv K)

» Bottom line: WALNUTS transition kernel is reversible with respect to the target p.
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» Plug-and-play. Easily integrates into frameworks like Stan, PyMC, and NumPyro.

» Beyond NUTS. The core adaptive scheme extends to other HMC-type methods.

Future Directions

» Mass matrix. Build on Riemannian HMC (Girolami & Calderhead (2011); Hird &
Livingstone (2023); Whalley, Paulin & Leimkuhler (2024); Tran & Kleppe (2024)).

> Ensemble methods. Leverage ensembles (Goodman & Weare (2010); Chen (2025)).
» Adam-like Step-sizes. See Ben's talk (Leimkuhler, Lohman & Whalley (2025)).

Outlook. Points toward a new class of locally adaptive HMC methods for anisotropic targets.
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WALNUTS: Paper and Code

> Paper: arXiv:2506.18746

» Code Repository: github.com/bob-carpenter/walnuts

Questions, feedback, or contributions are welcome!
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