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I. INTRODUCTION
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Motivations

Motivation: Critical parameters for complex particle systems with
singular McKean-Vlasov interaction kernels

dX i,N
t =

∫
βχ(x , z) µ

N
s (dz) +

∫ ∫
γχ(x , z) µ

N
s (dz) dW

i
t

where βχ and γχ are singular kernels and χ is a critical
parameter to determine

Most often, inaccessible accurate tail estimates on the limit
probability distribution µs of µN

s := 1
N

∑N
i=1 δX i,N

s

Simulations may give intuition on the finiteness of the expectations∫
|β(x , z)| µs(dz) and

∫
|γ(x , z)| µ(dz) (or of other integrals useful

to the construction of solutions)
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Our strategy

A naive strategy: Regularize the model by removing singularities.
Regularization of interaction kernels, simulation of truncated laws, etc.
Risk: Lose explosion and condensation times and get inaccurate
approximations of critical parameters

Our strategy: Develop a test to detect simulations with possibly infinite
expectation or variance

The test needs to have a very low numerical cost

Not developed on classical limit theorems because they do not lead
to effective procedures (see a next slide)

Preliminary difficulty: How to set-up the problem?
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The interesting Hawkins’result

’Does there exist a test, which makes the right decision with arbitrarily
high probability if given sufficient data, of the hypothesis that a given r.v.
has finite expectation?’
Answer: NO!

Theorem (Hawkins)
Let G (resp. H) be the set of densities with finite (resp. infinite) means.
Let T be the class of sequential tests which terminate in finite time,
whatever is the density of the data.
G and H would be distinguishable in T if: ∀ϵ it would exist a test in T
s.t. {

EF (ϕ) < ϵ if F ∈ G
EF (ϕ) > 1− ϵ if F ∈ H

. . . But G and H are NOT distinguishable.
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Illustration 1: Fluctuations of the Maxima

Many limit theorems describing the behaviour of SN

N := 1
N

∑N
j=1 Υj

suppose that the Υi ’s are centered. They cannot be applied in our
situation since the expectation is unknown .

An a priori interesting result for non centered r.v.’s:
Let Υ,Υ1, . . . ,Υn be i.i.d. positive random variables.
Set Mn := max{Υ1, . . . ,Υn}.
Proposition

1 If E(Υ) = ∞ then lim supn
Mn

n = ∞ a.s.

2 If E(Υ) <∞ then limn
Mn

n = 0 a.s.

However,
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Example:
Let Υ = |G |−r with G ∼ N (0, 1).
For r < 1 one has E(Υ) <∞ whereas for r ≥ 1 one has E(Υ) = ∞. In
that second case,

Very big values are too rare in the samples to lead to significantly
excessive values of Mn

n , even when n is very large

The larger is n, the larger needs to be Υn to make Mn

n significantly

larger than Mn−1

n−1 :

Jumps occur at times Tn where new upper record values appear. For
any i.i.d. sequence the probability law of Tn+1 −Tn does not depend
on the law of the subjacent random variable and has infinite
expectation (Nevzorov)
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Fig. 1: Trajectories of Mn
n

in the finite expectation of Υ case.
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in the infinite expectation of Υ case.
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Illustration 2: Self-normalized Iterated Logarithm Law

Suppose that X ∈ DA(2) , i.e. there exist An and Bn s.t.

B−1
n

n∑
i=1

Xi − An

weakly converges to a Gaussian law.
Suppose also that E(X ) = 0.
Then

lim sup
n→∞

∑n
j=1 Xj

Vn

√
2 log log(n)

= 1 a.s.

First issue: In our case, E(X ) is unknown .

Second issue: Unfortunately, ineffective to test if X ∈ DA(2).

Example: Again, let X = |G |−r . For r ≤ 0.5, X ∈ DA(2), whereas for
r > 0.5, X ∈ DA(1/r). In both cases, most of the self-normalized
empirical means remain strictly confined between the curves
−
√

2 log log(n) and
√

2 log log(n).
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Fig. 3: Paths of the self-normalized empirical mean for laws in DA(2)
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Fig. 4: Paths of the Self-normalized empirical mean for laws NOT in DA(2)
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II. From reminders on stable
laws to our strategy
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A few reminders on stable laws

Stable law with parameters 0 < α ≤ 2 and −1 ≤ β ≤ 1:
Its characteristic function is

exp(i a λ− b |λ|α(1 + i β sign(λ) w(λ, α)),

where

w(λ, α) =

{
tan(πα2 ) if α ̸= 1
2
π log(|λ|) if α = 1

If α = 2: Gaussian. If α = 1 and β = 0: Cauchy.

Domain of attraction DA(α) of an α-stable law Fα:
The law F belongs to DA(α) if there exist An and Bn s.t.

B−1
n

n∑
i=1

Xi − An

weakly converges to Fα, where the Xi are i.i.d. with probability
distribution function F . MANY INTERESTING F ’s!
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Domains of attraction and tails:
Let F be a probability distribution function. For R > 0 denote the
truncated second moment of F by

U(R) :=

∫ R

−R

x2F (dx).

The probability distribution F belongs to the domain of attraction
DA(2) of the Gaussian distribution if and only if the function U is
slowly varying at infinity, that is, lims→∞ U(sx)/U(s) = 1 for any
x > 0

It belongs to some other domain of attraction DA(α) with
0 < α < 2 if there exist a slowly varying at infinity function
H : R+ → R and positive numbers p and q such that{

1− F (x) + F (−x) ∼ 2−α
α x−α H(x), x → ∞,

limx→∞
1−F (x)

1−F (x)+F (−x) = p, limx→∞
F (−x)

1−F (x)+F (−x) = q
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Domains of attraction and variance:
If the random variable X belongs to D(α) then

E(|X |δ) <∞ for 0 < δ < α,

E(|X |δ) = ∞ for δ > α and α < 2.

In particular, E(X 2) = ∞ for α < 2.

Remark.

If E(X 2) <∞ then X belongs to DA(2). The converse is not true.

For example, X =
√

|Y | with Y Cauchy belongs to DA(2) and has an
infinite second moment.

This observation explains our choice of the null hypothesis in a next slide.
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Slow convergence of estimators of α

The estimation of α is difficult.
Consider the Meerschaert-Scheffler estimator of the index α:

α̂n :=
max{log

(∑n
i=1(Xi − X̄n)

2
)
, 0}

2 log(n)
.

Meerschaert and Scheffler proved that the estimator α̂n is asymptotically

consistent when the data belong to some DA(α): α̂n
P−−−→

n→∞
1
α . However,

the convergence rate of α̂n is low.
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Typical behaviour of α̂n:

Random Variable α n = 105 n = 106 n = 107

|G |−0.6, G ∼ N (0, 1) 0.6 0.67540532 0.66530621 0.65674121
|G |−0.7, G ∼ N (0, 1) 0.7 0.76454733 0.75509289 0.74727714
|G |−0.8, G ∼ N (0, 1) 0.8 0.85825199 0.84867939 0.84254414

Table 1: Mean value of the Meerschaert-Scheffler estimator over 10000
simulations of samples with size n.
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The estimator α̂n is not reliable to detect α < 2:
Now, X ∼ |G |−0.45 with G ∼ N(0, 1). Thus X belongs to D(2).

m Empirical mean of γ̂ Empirical sd of γ̂ Empirical min of γ̂
105 0.55740888 0.0169447807 0.5331192
106 0.55160767 0.0113382256 0.53850901
107 0.54669192 0.00862631795 0.53852758
108 0.54221338 0.00650946694 0.53628999
109 0.53842022 0.00491848875 0.53440811

Table 2: Descriptive statistics of the Meerschaert-Scheffler estimator of the tail
index of X = |G−0.45| over 10000 simulations of samples with different sizes.

Based on these empirical results one would conclude that X does not
belong to DA(2).



Introduction From reminders on stable laws to our strategy Our hypothesis test Insights on the choices of m and n Empirical evidence

Our objective:

To provide an asymptotic statistical test under the additional assumption
that X :=

√
|V | belongs to some domain of attraction DA(α) of a stable

law of index 0 < α ≤ 2.

The null and alternative hypotheses of our hypothesis test respectively
are:

H0 : X ∈ DA(2)

and

H1 : ∃0 < α < 2, X ∈ DA(α)

Our key observation is that X cannot have a finite second moment
when H0 is rejected (and therefore H1 is accepted).
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Key known result: A generalization of Donsker’s theorem

Theorem
Let X ,X1,X2, . . . be a sequence of non-degenerate i.i.d. random variables
such that X ∈ DA(α).
Let

Sn :=
n∑

j=1

Xj

There exist centering constants µm and normalizing constants cm such
that

Lm :=

(
S⌊mt⌋ − µmt

cm
, t ≥ 0

)
D−−−→

n→∞
L,

where

L is a standard α-stable Lévy process if α < 2

L is a standard Brownian motion if α = 2
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Consequences

For α < 2 the trajectories of α-stable processes are a.s.
discontinuous, whereas for α = 2 the trajectories of the Brownian
motion are a.s. continuous

For m large enough the trajectories of (S⌊mt⌋ − µmt)/cm should
resemble the trajectories of the limit process

Conclusion:
Testing for jumps in the trajectories of (S⌊mt⌋ − µmt)/cm should
allow to discriminate between X ∈ DA(2) and X ∈ DA(α).
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(a) r = 0.2 (b) r = 0.8

Fig. 5: Trajectories of Lm when the subjacent random variable X ∼ |G |−r ,
where G ∼ N (0, 1). In the left column r = 0.2, therefore the limit of Lm is a
Brownian motion and the trajectories of Lm seem to be continuous. In the right
column, r = 0.8, hence the limit of Lm is a Lévy process and the trajectories of
Lm seem to have jumps.

For r = 0.2 : We are under H0. E (X ) and E (X 2) are known explicitly.
For r = 0.8: X is in the normal domain of attraction of stable
distribution with index 1/r , hence the normalizing constant is cm = m1/r .
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Conclusions from the reminders:

We propose to deal with the restricted class of r.v. in the domain of
attraction of a stable law

For m big enough, the trajectories of (S⌊mt⌋ − µmt)/cm should
resemble the trajectories of the limit process

For α < 2, the trajectories of α-stable processes are almost surely
discontinuous, whereas for α = 2 the trajectories of the Brownian
motion are almost surely continuous

Testing for jumps the trajectories of (S⌊mt⌋ − µmt)/cm could allow
to discriminate between X ∈ DA(2) and X ∈ DA(α)

A severe drawback: We do not know the values of µm and cm, in
particular because we do not know α.
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III. Our hypothesis test
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To bypass the fact that µm is unknown:

Lemma.
Let D[0, 1] be the space of cadlag functions on [0, 1] and Ψ be the map

∀x(·) ∈ D[0, 1], Ψ(x)(t) := x(t)− tx(1)

The mapping Ψ is continuous for the Skorokhod topology .

Corollary.

Let Zm :=

(
S⌊mt⌋ − tSm

cm
, t ≥ 0

)
If X ∈ DA(α), then

Zm D−−−−→
m→∞

Z := Ψ(L)

α < 2: L is an α-stable Lévy process (Ψ(L) is discontinuous )

α = 2: L is a Brownian motion (Ψ(L) is a (continuous) Brownian
bridge )
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To bypass the fact that cm is unknown:

For any stochastic process (Yt)0≤t≤1 set ∆n
i Y := Yi/n − Y(i−1)/n .

The realized bivariation and realized quadratic variation are

B̂(Y , n) :=
n−1∑
i=1

|∆n
i Y ||∆n

i+1Y | and Q̂(Y , n) :=
n∑

i=1

|∆n
i Y |2

The normalized bivariation is

Ŝn(Y ) :=
B̂(Y , n)

Q̂(Y , n)
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The normalized bivariation was used by Barndorff-Nielsen and
Shephard who considered (Yt) of the form

Yt = Y0 +

∫ t

0

as ds +

∫ t

0

σs dWs +
Nt∑
j=1

cj , (1)

where W is a Brownian motion and (Nt) is a counting process.
They notably assumed that cj are non-zero random variable, σ is
pathwise bounded away from zero and (a, σ) is independent of (Wt).
They provided a test to decide ‘H0: (Nt) ≡ 0’ against ‘H1: (Nt) ̸≡ 0’.
The test is based on the statistic

1√
n

(
2

π
Ŝn(Y )− 1

) ∫ t

0
σ2
s ds√∫ t

0
σ4
s ds

In our case, the process σ of Ψ(L) would be null and the number of
jumps before any time t > 0 would be infinite under H1.
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Ait-Sahalia and Jacod used p-variation with p > 2 in their test to
determine whether a semimartingale Y is continuous or not from the
observation of one single path at discrete times.
As Barndorff-Nielsen and Shephard they used the non-degeneracy
assumption on the integrand σ.

In our case, Y is, either an transformed Lévy process, or a Brownian
bridge. In both cases, the p-variation is asymptotically infinite since a
Brownian bridge satisfies

Yt = x + Bt +

∫ t

0

−Ys

1− s
ds

for some Brownian motion (Bt).



Introduction From reminders on stable laws to our strategy Our hypothesis test Insights on the choices of m and n Empirical evidence

Recall

Zm :=

(
S⌊mt⌋ − tSm

cm
, t ≥ 0

)
and

Zm D−−−−→
m→∞

Z := Ψ(L)

α < 2: L is an α-stable Lévy process (Ψ(L) is discontinuous )

α = 2: L is a Brownian motion (Ψ(L) is a (continuous) Brownian
bridge )

Barndorff-Nielsen and Shephard’s test gave us the idea to consider the
statistic

Ŝ m
n := Ŝn(Z

m)



Introduction From reminders on stable laws to our strategy Our hypothesis test Insights on the choices of m and n Empirical evidence

An important property.

The map Ŝn is invariant under normalizations:

Ŝn(Z
m) =

∑n−1
i=1 |Zm

i/n − Zm
(i−1)/n||Z

m
(i+1)/n − Zm

i/n|∑n
i=1 |Zm

i/n − Zm
(i−1)/n|2

=

∑n−1
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

(Xj − Sm

m )

∣∣∣∣ ∣∣∣∣∑⌊m(i+1)
n ⌋

j=⌊mi
n ⌋+1

(Xj − Sm

m )

∣∣∣∣∑n
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

(Xj − Sm

m )

∣∣∣∣2
Therefore, to compute Ŝn(Z

m) we need to know neither µm nor cm.
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Our main result:

Theorem.
Assume that X belongs to some D(α). Consider and i.i.d. sample
X1, . . . ,Xm of X , and the statistic

Ŝ m
n := Ŝn(Z

m) =

∑n−1
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

(Xj − Sm

m )

∣∣∣∣ ∣∣∣∣∑⌊m(i+1)
n ⌋

j=⌊mi
n ⌋+1

(Xj − Sm

m )

∣∣∣∣∑n
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

(Xj − Sm

m )

∣∣∣∣2
Let zq denote the q-quantile of a standard normal random variable and
let σ2

π := 1 + 4
π − 20

π2 . The rejection region

Cn,m :=

{∣∣∣∣Ŝ m
n − 2

π

∣∣∣∣ > z1−q/2

√
σ2
π

n

}

satisfies
1 limn→∞ limm→∞ P (Cn,m|H1) = 1
2 lim supn→∞ lim supm→∞ P (Cn,m|H0) ≤ q
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Consistency of the statistic

Proposition.
For any ϵ > 0 one has

lim
n→∞

lim
m→∞

P
(
|Ŝ m

n − κ| ≤ ϵ
)
= 1

with

κ :=

{
0 when X ∈ DA(α), α < 2
2
π when X ∈ DA(2)

Consequence:
This proposition easily leads to the first part of our main theorem since
κ = 0 under H1 and therefore

∀ϵ > 0, lim
n→∞

lim
m→∞

P
(
Ŝ m

n ≤ ϵ
)
= 1
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Sketch of the proof of the consistency of our statistic

Recall

Ŝn(Y ) :=
B̂(Y , n)

Q̂(Y , n)
and Ŝ m

n := Ŝn(Z
m)

Lemma 1.
For any n ∈ N,

Ŝ m
n = Ŝn(Z

m)
D−−−−→

m→∞
Ŝn(Ψ(L))

Lemma 2.

1 Let L be an α-stable process starting from 0.
For 1 < α < 2,

Ŝn(Ψ(L))
a.s.−−−→

n→∞
0

For α ≤ 1 the convergence holds in probability.

2 Let L be a Brownian motion, then

Ŝn(Ψ(L))
a.s.−−−→

n→∞

2

π



Introduction From reminders on stable laws to our strategy Our hypothesis test Insights on the choices of m and n Empirical evidence

Lemma 2-1.
1 If L is an α-stable process with α < 2, then Q̂(Ψ(L), n) converges in

distribution to a non-degenerate random variable
2 If L is a Brownian motion, then

Q̂(Ψ(L), n)
a.s.−−−→

n→∞
1

Lemma 2-2.
Let L be, either a Brownian motion or an α-stable process starting from 0
with α > 1. Then,

B̂(Ψ(L), n)− B̂(L, n)
a.s.−−−→

n→∞
0

For α ≤ 1 the convergence holds in probability.
Lemma 2-3.

1 Let L be an α-stable process starting from 0. For α > 1,

B̂(L, n)
a.s.−−−→

n→∞
0

For α ≤ 1 the convergence holds in probability.
2 Let L be a Brownian motion, then

B̂(L, n)
a.s.−−−→

n→∞

2

π
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A Central Limit Theorem for our statistic

Proposition If X belongs to D(2), for any bounded and continuous
function ψ : R → R we have

lim
n→∞

lim
m→∞

E
[
ψ

(√
n

σπ
(Ŝ m

n − 2

π
)

)]
= E [ψ(G)]

where σ2
π := 1 + 4

π − 20
π2 and G ∼ N (0, 1).

Consequence:
This proposition leads to the second part of our main theorem: For

ψδ(x) :=


1 for x < zq

1− 1
δ (x − zq) for zq ≤ x ≤ zq + δ
0 for x > zq + δ

one has
∀0 < δ < 1, P (Cn,m|H0) ≤ E

(
ψδ(Ŝ

m
n )|H0

)
from which

lim sup
n→∞

lim sup
m→∞

P (Cn,m|H0) ≤ E [ψδ(G )] ≤ q
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Sketch of the proof of our CLT

Lemma.
Let L be a Brownian motion, then:(√

n

[
B̂(Ψ(L), n)− 2

π

]
,
√
n
[
Q̂(Ψ(L), n)− 1

])
D−−−→

n→∞
N2 (0,Σ)

where

Σ :=

(
1 + 4

π − 12
π2

4
π

4
π 2

)
A funny use of Tanaka’s formula:
Let Gi ∼ N (0, 1) be i.i.d. and set Ḡ n := 1

n

∑n
i=1 Gi . We use the formula

to prove

E
[ (

|Gi − Ḡ n||Gi+1 − Ḡ n| − |Gi ||Gi+1|
) (

|Gk − Ḡ n||Gk+1 − Ḡ n| − |Gk ||Gk+1|
) ]

≤ C

n2
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IV. Insights on the choices of
m and n
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On the choice of n (α close to 2)

Let X be symmetric α-stable with α ≈ 2 so that E |X | <∞.
Assume that m is large enough to have X̄m ≈ 0 a.s.
Set

S̃ m
n :=

∑n−1
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

Xj

∣∣∣∣ ∣∣∣∣∑⌊m(i+1)
n ⌋

j=⌊mi
n ⌋+1

Xj

∣∣∣∣∑n
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

Xj

∣∣∣∣2
=

∑n−1
i=1 |Wi−1||Wi |∑n

i=1 W
2
i

with

Wi :=
( n

m

)1/α ⌊m(i+1)
n ⌋∑

j=⌊mi
n ⌋+1

Xj

Notice that Wi has the same α-stable distribution as X .
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1 For n large enough,

1

n

n−1∑
i=1

|Wi−1||Wi | ≈ (E|W1|)2

2 (Embrechts and Goldie) For some slowly varying function ℓ0(·),

1

n2/αℓ0(n)

n−1∑
i=1

|Wi |2 =⇒ W, α
2 − stable

Consequently, in distribution

S̃ m
n ≈ 1

n2/α−1ℓ0(n)

(E|W1|)2

W

Now use estimates on densities of positive stable random variables (see
e.g. Nolan) to get

P(Cn,m|H1) = P

(
Ŝ m

n <
2

π
− z1−q/2

√
σ2
π

n

)
+ P

(
Ŝ m

n >
2

π
+ z1−q/2

√
σ2
π

n

)

≃ 1− C (α, q)

n
2
α−1
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On the choice of m

On the probability density vm of the normalized sum
Zm := A

m1/α

∑m
i=1 Xi :

Theorem (Basu, Maejima and Patra)
Let (Xj) be a sequence of i.i.d. random variables with common probability
density v1. Suppose that they are centered and belong to the domain of
attraction of a stable law of index 1 < α < 2 whose probability density is
denoted by vα. Suppose that their characteristic function belongs to
Lr (R) with r ≥ 1. Finally, suppose that

∫
R x2 |v1(x)− vα(x)| dx <∞.

Then, for some positive number A, for any m large enough,

sup
x
(1 + |x |α) |vm(x)− vα(x)| = O(

1

m
2
α−1

)



Introduction From reminders on stable laws to our strategy Our hypothesis test Insights on the choices of m and n Empirical evidence

In our case we deduce that

P(|Xm| > ϵ) = P(|Zm| > Aϵ m1− 1
α )

≤
∫
|x|>Aϵm1− 1

α

vα(x) dx +O(
1

m
2
α−1

),

from which, by using Gairing and Imkeller’s tail estimates for centered
stable random variables,

P(|Xm| > ϵ) ≤ C

ϵα mα−1
+

C

m
2
α−1

Conclusion: m needs to be chosen much larger than n , especially when
α is close to 2. Actually, Xm can be seen as a random perturbation term

in Ŝ m
n whose expectation needs to be small enough.

Remark: Numerical experiments tend to show that the preceding
estimates are sub-optimal .
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IV. Empirical evidence
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Fig. 6: Empirical distribution of standardized Ŝ m
n for r = 0.4. The value of m

increases from 105 on the top row up to 109 in the bottom row. The value of n
increases from 101 on the left column up to 104 in the right column.
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Comments on the figure

1 Under H0, when n is too large one is zooming in too much and sees
the discontinuities that Zm has by construction.

2 Under H0 and H1 the test provides satisfying ersults for moderately
large n and m.

3 Our theoretical and numerical results apply to some cases of weakly
dependent data .
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On weak dependence cases

Using limit theorems due to Tyran-Kamińska (2010) and Shao (1993)
one can check that our preceding results hold true e.g. when the sample
is stationary, k-dependent and satisfies the two following conditions:

sup
{
|Corr(f , g)| : f ∈ L2(σ(X1)), g ∈ L2(σ(X2,X3, . . .))

}
< 1

and

∀ϵ > 0, ∀2 ≤ j ≤ k , lim
m→∞

P (|Xj | > ϵcm/|X1| > ϵcm) = 0
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Fig. 7: Empirical distribution of standardized Ŝ m
n for a 1-dependent sequence

of random variables when r = 0.3. The value of m increases from 105 on the
top row up to 108 in the bottom row. The value of n increases from 101 on the
left column up to 104 in the right column.
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To conclude

Suppose you observe a sample with large empirical expectation. Our test
helps you to decide whether the sampled probability distribution belongs
to the domain of attraction of a Gaussian law or of a stable law with
index lower than 2 (then, its second moment is infinite.)

Our non stringent condition: The observations belong to the domain of
attraction of a stable law.

To define our statistics we use the sample to construct a discretized path
of a stochastic process. We have analyzed the convergence and
convergence rate of the discretized process to its limit in the weak sens in
the spirit of the inspiring G.N. Milstein’s works.
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