Simulation of SDEs and mean-field SDEs: some recent results

Gonçalo dos Reis

University of Edinburgh (UK) & CMA/FCT/UNL (PT)

joint work with X. Chen & Z. Wilde (Edinb), and W. Stockinger (Imperial)

Milstein's method: 50 years on Nottingham, 01 Jul 2025

Partial funding by UIDB/00297/2020 and UIDP/00297/2020

Outline

- Mean-field equations and Propagation of chaos
- A setting of interest: super-linear Interaction MF kernel
 - Our results
 - Numerical results
- Another setting of interest: Mean-field Langevin
 - Our results
 - Numerical results

Outline

- Mean-field equations and Propagation of chaos
- A setting of interest: super-linear Interaction MF kerne
 - Our results
 - Numerical results
- Another setting of interest: Mean-field Langevin
 - Our results
 - Numerical results

McKean-Vlasov stochastic differential equations

MV-SDE* are SDE whose coefficients depend on the law of the solution:

$$dX_t = \widehat{b}(t, X_t, \mu_t)dt + \sigma(t, X_t, \mu_t)dW_t, \quad X_0 \in L_0^p(\mathbb{R}^d), \quad (MV - SDE)$$

where μ_t is the law of X_t , and W is a standard \mathbb{R}^d -BM. \longrightarrow All in \mathbb{R}^d .

 $W_2(\mu,\nu)$ is the 2-Wasserstein distance between μ,ν over space of finite 2nd moment prob. measure $\mathcal{P}_2(\mathbb{R}^d)$.

McKean-Vlasov stochastic differential equations

MV-SDE* are SDE whose coefficients depend on the law of the solution:

$$dX_t = \widehat{b}(t, X_t, \mu_t)dt + \sigma(t, X_t, \mu_t)dW_t, \quad X_0 \in L_0^p(\mathbb{R}^d), \quad (MV - SDE)$$

where μ_t is the law of X_t , and W is a standard \mathbb{R}^d -BM. \longrightarrow All in \mathbb{R}^d .

 $W_2(\mu,\nu)$ is the 2-Wasserstein distance between μ,ν over space of finite 2nd moment prob. measure $\mathcal{P}_2(\mathbb{R}^d)$.

Example (Convolution kernel MV-SDE)

$$X_t = X_0 + \int_0^t \left\{ -X_s^3 + \left(\mathbb{E}[X_s] - X_s \right) \right\} ds + \sigma W_t$$

McKean-Vlasov stochastic differential equations

MV-SDE* are SDE whose coefficients depend on the law of the solution:

$$\mathrm{d}X_t = \widehat{b}(t, X_t, \mu_t) \mathrm{d}t + \sigma(t, X_t, \mu_t) \mathrm{d}W_t, \quad X_0 \in L^p_0(\mathbb{R}^d), \tag{MV-SDE}$$

where μ_t is the law of X_t , and W is a standard \mathbb{R}^d -BM. \longrightarrow All in \mathbb{R}^d .

 $W_2(\mu,\nu)$ is the 2-Wasserstein distance between μ,ν over space of finite 2nd moment prob. measure $\mathcal{P}_2(\mathbb{R}^d)$.

Example (Convolution kernel MV-SDE)

$$X_t = X_0 + \int_0^t \left\{ -X_s^3 + \left(\mathbb{E}[X_s] - X_s \right) \right\} ds + \sigma W_t$$

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \int_{\mathbb{R}^d} K(X_s - y) d\mu_s(y) ds + \int_0^t \sigma(s, X_s, \mu_s) dW_s$$

In particle dynamics: *b* is *Confining Potential* and *K* is *Interaction Kernel*

Approximation of MV-SDE – the IPS

LLN & Monte Carlo idea:
$$\mathbb{E}[X_t] \approx \frac{1}{N} \sum_{j=1}^{N} X_t^{j,N}$$

This is in $(\mathbb{R}^d)^N$

¹Sznitman, "Topics in propagation of chaos", 1991.

Approximation of MV-SDE – the IPS

LLN & Monte Carlo idea:
$$\mathbb{E}[X_t] \approx \frac{1}{N} \sum_{j=1}^{N} X_t^{j,N}$$
 This is in $(\mathbb{R}^d)^N$

A common technique for simulating MV-SDEs: interacting particle system:

$$\mathrm{d}X_t^{i,N} = \widehat{b}\Big(t,X_t^{i,N},\mu_t^{X,N}\Big)\mathrm{d}t + \sigma\Big(t,X_t^{i,N},\mu_t^{X,N}\Big)\mathrm{d}W_t^i, \quad \longrightarrow \boxed{\text{This is in } (\mathbb{R}^d)^N}$$

$$\mu_t^{X,N}(\mathrm{d}x) := \frac{1}{N} \sum_{j=1}^N \delta_{X_t^{j,N}}(\mathrm{d}x), \qquad i = 1, \cdots, N$$

where $\delta_{X_t^{j,N}}$ is the Dirac measure at point $X_t^{j,N}$, and the Brownian motions W^i , i = 1, ..., N are independent.

Approximation of MV-SDE – the IPS

LLN & Monte Carlo idea:
$$\mathbb{E}[X_t] \approx \frac{1}{N} \sum_{j=1}^{N} X_t^{j,N}$$
 This is in $(\mathbb{R}^d)^N$

A common technique for simulating MV-SDEs: interacting particle system:

$$\mathrm{d}X_t^{i,N} = \widehat{b}\Big(t,X_t^{i,N},\mu_t^{X,N}\Big)\mathrm{d}t + \sigma\Big(t,X_t^{i,N},\mu_t^{X,N}\Big)\mathrm{d}W_t^i, \longrightarrow \boxed{\text{This is in } (\mathbb{R}^d)^N}$$

$$\mu_t^{X,N}(\mathrm{d}x) := \frac{1}{N} \sum_{j=1}^N \delta_{X_t^{j,N}}(\mathrm{d}x), \qquad i = 1, \dots, N$$

where $\delta_{\chi_t^{j,N}}$ is the Dirac measure at point $X_t^{j,N}$, and the Brownian motions $W^i, i = 1, ..., N$ are independent. "Propagation of chaos" (Sznitman '91)¹: under appropriate conditions, as $N \to \infty$, for every i, the process $X^{i,N}$ converges to X^i , the solution of the MV-SDE driven by the Brownian motion W^{i} .

$$\lim_{N\to\infty} \sup_{1\le i\le N} \mathbb{E}\big[\sup_{0\le t\le T} |X_t^{i,N}-X_t^i|^2\big] = 0.$$

[&]quot;Topics in propagation of chaos", 1991

Strong and weak Quantitative PoC

Strong PoC (based on²)

$$(\text{in } L^p, \ p > 4) \qquad \sup_{1 \le i \le N} \mathbb{E} \big[\sup_{0 \le t \le T} |X^i_t - X^{i,N}_t|^2 \big] \stackrel{!}{\le} C \begin{cases} N^{-1/2} & \text{if } d < 4, \\ N^{-1/2} \log(N) & \text{if } d = 4, \\ N^{-2/d} & \text{if } d > 4. \end{cases}$$

²Carmona and Delarue, *Probabilistic Theory of Mean Field Games with Applications I*, 2017.

³Chassagneux, Szpruch, and Tse, "Weak quantitative propagation of chaos via differential calculus on the space of measures", 2022.

⁴Haji-Ali, Hoel, and Tempone, "A simple approach to proving the existence, uniqueness, and strong and weak convergence rates for a broad class of McKean–Vlasov equations", 2021.

⁵Bernou and Duerinckx, "Uniform-in-time estimates on the size of chaos for interacting Brownian particles", 2024.

Strong and weak Quantitative PoC

Strong PoC (based on²)

$$(\text{in } L^p, \ p > 4) \qquad \sup_{1 \le i \le N} \mathbb{E} \Big[\sup_{0 \le t \le T} |X_t^i - X_t^{i,N}|^2 \Big] \stackrel{!}{\le} C \begin{cases} N^{-1/2} & \text{if } d < 4, \\ N^{-1/2} \log(N) & \text{if } d = 4, \\ N^{-2/d} & \text{if } d > 4. \end{cases}$$

Weak PoC is much harder:

$$\sup_{h \in \mathfrak{F}} \left| \mathbb{E} \left[h(X^i) \right] - \mathbb{E} \left[\frac{1}{N} \sum_{k=1}^N h(X^{k,N}) \right] \right| \stackrel{!}{=} \mathcal{O} \left(\frac{1}{N} \right)$$
 (for some class \mathfrak{F})

- For $T < \infty$: Chassagneux et al '22³ and Haji-Ali et al '21⁴
- For $T \ge 0$: Bernou & Duerinckx '24⁵ (so called "*Uniform in time PoC*")

²Carmona and Delarue, *Probabilistic Theory of Mean Field Games with Applications I*, 2017.

³Chassagneux, Szpruch, and Tse, "Weak quantitative propagation of chaos via differential calculus on the space of measures", 2022.

⁴Haji-Ali, Hoel, and Tempone, "A simple approach to proving the existence, uniqueness, and strong and weak convergence rates for a broad class of McKean–Vlasov equations", 2021.

⁵Bernou and Duerinckx, "Uniform-in-time estimates on the size of chaos for interacting Brownian particles", 2024.

Outline

- Mean-field equations and Propagation of chaos
- A setting of interest: super-linear Interaction MF kernel
 - Our results
 - Numerical results
- Another setting of interest: Mean-field Langevin
 - Our results
 - Numerical results

Our setting: Super linear

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \int_{\mathbb{R}^d} K(X_s - y) d\mu_s(y) ds + \int_0^t \sigma(s, X_s, \mu_s) dW_s$$

Wrap up: σ is unif. Lip. in space-measure;

Drift: $b := b + K \star \mu$ such that: b is superlinear in space & Lip is measure; K is odd & superlinear growth (one-sided Lipschitz)

Assumption ("super-measure-super-space")

• $\exists L > 0$ such that for a.a. $s \in [0, T]$, $\forall \mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ and $\forall x, y \in \mathbb{R}^d$,

$$\begin{split} & \langle b(s,x,\mu) - b(s,y,\mu), x - y \rangle \leq L \|x - y\|^2, \\ & \|\sigma(s,x,\mu) - \sigma(s,y,\mu)\| \leq L \|x - y\|, \\ & \|b(s,x,\mu) - b(s,x,\nu)\| + \|\sigma(s,x,\mu) - \sigma(s,x,\nu)\| \leq L W_2(\mu,\nu). \end{split}$$

• $\exists L > 0, \exists \alpha \in (0,1]$ such that $\forall s, t \in [0,T], \forall \mu \in \mathcal{P}_2(\mathbb{R}^d)$ and $\forall x \in \mathbb{R}^d$,

$$\|\sigma(t, x, \mu) - \sigma(s, x, \mu)\| \le L\|t - s\|^{\alpha}.$$

• K(0) = 0, K(x) = -K(-x) and $\exists L \in \mathbb{R}$ such that $\forall x, y \in \mathbb{R}^d$, $\langle K(x) - K(y), x - y \rangle \leq L \|x - y\|^2$, $\|K(x) - K(y)\| \leq C \|x - y\| (1 + \|x\|^{r-1} + \|y\|^{r-1})$, $\|K(x)\| \leq C (1 + \|x\|^r)$.

More on PoC – dimension independent PoC in L^2

Detour slide: Under the Vlasov kernel structure

$$\overline{b}(t, x, \mu) = \int_{\mathbb{R}^d} f(x, y) \mu(dy) + b(t, x)$$
 and $\overline{\sigma}(s, x, \mu) = \int_{\mathbb{R}^d} g(x, y) \mu(dy) + \sigma(t, x)$

one can avoid altogether the Wasserstein-2 approximation result.

Theorem (Soni, Neelima, Kumar and GdR (2025))

Let $X_0 \in L^q$ with q sufficiently large, let $p > \ge 2$. Then,

$$\sup_{i \in \{1,\dots,N\}} \sup_{t \in [0,T]} \mathbb{E} \left[|X^i_t - X^{i,N}_t|^p \right]^{\frac{1}{p}} \leq K \frac{1}{\sqrt{N}}$$

where K > 0 is a constant independent of $N \in \mathbb{N}$.

(Proof builds on result/trick used in⁶.)

⁶Belomestny and Schoenmakers, "Projected particle methods for solving McKean-Vlasov stochastic differential equations", 2018.

The simulation problem

- Wellposedness//stability//PoC//invariant distribution//LDPs:
 - Growing collection of results under varied conditions⁷, ⁸, ⁹
- Numerics
 - PDE/FPE¹⁰, ¹¹
 - Stochastic Euler schemes: Malrieu '03¹², Malrieu & Talay '06¹³ Fully implicit scheme under strong structural assumptions (σ const)
 - If $\mu \mapsto \widehat{b}(\cdot, \cdot, \mu)$ is unif. Lip. then the answer is known

⁷Zhang, "Existence and non-uniqueness of stationary distributions for distribution dependent SDEs", 2021.

⁸Dos Reis, Salkeld, and Tugaut, "Freidlin-Wentzell LDP in path space for McKean-Vlasov equations and the functional iterated logarithm law", 2019.

⁹Adams et al., "Large Deviations and Exit-times for reflected McKean-Vlasov equations with self-stabilizing terms and superlinear drifts", 2020.

¹⁰Baladron et al., "Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons", 2012.

¹¹Goddard et al., "Noisy bounded confidence models for opinion dynamics: the effect of boundary conditions on phase transitions", 2022.

¹²Malrieu, "Convergence to equilibrium for granular media equations and their Euler schemes", 2003.

¹³Malrieu and Talay, "Concentration inequalities for Euler schemes", 2006.

MV-SDEs with super linear growth and standard Euler

The MV-SDE in \mathbb{R}^d for $p \geq 2$

$$\mathrm{d} X_t = \widehat{b}(t,X_t,\mu_t^X)\mathrm{d} t + \sigma(t,X_t,\mu_t^X)\mathrm{d} W_t, \quad X_0 \in L^p_0(\mathbb{R}^d),$$

The particle approximation in $(\mathbb{R}^d)^N$

$$dX_t^{i,N} = \widehat{b}\Big(t, X_t^{i,N}, \mu_t^{X,N}\Big)dt + \sigma\Big(t, X_t^{i,N}, \mu_t^{X,N}\Big)dW_t^i, \quad \mu_t^{X,N}(dx) := \frac{1}{N}\sum_{j=1}^N \delta_{X_t^{j,N}}(dx)$$

where $\delta_{X_t^{j,N}}$ is the Dirac measure at point $X_t^{j,N}$, and the Brownian motions $W^i, i=1,\ldots,N$ are independent.

MV-SDEs with super linear growth and standard Euler

The MV-SDE in \mathbb{R}^d for $p \geq 2$

$$\mathrm{d} X_t = \widehat{b}(t,X_t,\mu_t^X)\mathrm{d} t + \sigma(t,X_t,\mu_t^X)\mathrm{d} W_t, \quad X_0 \in L_0^p(\mathbb{R}^d),$$

The particle approximation in $(\mathbb{R}^d)^N$

$$dX_t^{i,N} = \widehat{b}\left(t, X_t^{i,N}, \mu_t^{X,N}\right)dt + \sigma\left(t, X_t^{i,N}, \mu_t^{X,N}\right)dW_t^i, \quad \mu_t^{X,N}(dx) := \frac{1}{N}\sum_{j=1}^N \delta_{X_t^{j,N}}(dx)$$

where $\delta_{X_t^{j,N}}$ is the Dirac measure at point $X_t^{j,N}$, and the Brownian motions $W^i, i=1,\ldots,N$ are independent.

Given a time partition $\{t_k\}_{k=0,\dots,M}$, the **explicit** Euler scheme:

$$\bar{X}_{t_{k+1}}^{i,N,M} = \bar{X}_{t_k}^{i,N,M} + \hat{b}\Big(t_k, \bar{X}_{t_k}^{i,N,M}, \bar{\mu}_{t_k}^{X,N}\Big)h + \sigma\Big(t_k, \bar{X}_{t_k}^{i,N,M}, \bar{\mu}_{t_k}^{X,N}\Big)\Delta W_{t_k}^i,$$

where $ar{\mu}_{t_k}^{X,N}(\mathrm{d}x):=rac{1}{N}\sum_{j=1}^N \delta_{ar{X}_{t_k}^{j,N,M}}(\mathrm{d}x),\, \Delta W_{t_k}^i:=W_{t_{k+1}}^i-W_{t_k}^i\,\,\mathrm{and}\,\,ar{X}_0^{i,N,M}:=X_0^i.$

Euler goes wrong

The stochastic Ginzburg Landau equation and with added mean field term,

$$\mathrm{d}X_t = \left(\frac{\sigma^2}{2}X_t - X_t^3 + c\mathbb{E}[X_t]\right)\mathrm{d}t + \sigma X_t\mathrm{d}W_t, \quad X_0 = x.$$

N = 5000 particles, h = 0.05, T = 2 and $X_0 = 1$; also $\sigma = 3/2$, c = 1/2.

Figure: 'Particle corruption': the dashed particle oscillates taking ever larger values than other particles. (*Detour Obs*:¹⁴ $\triangleright dX_t = (X_t(-2 - |X_t|) + \mathbb{E}X_t) dt + \frac{1}{2} |X_t|^{\frac{3}{2}} dB_t.)$

¹⁴Yuanping et al., "Explicit numerical approximations for McKean-Vlasov stochastic differential equations in finite and infinite time", 2024.

Split-Step method (SSM)

$$\mathrm{d}X_t = \left[b(t,X_t,\mu_t^X) + v(t,X_t,\mu_t^X)\right]\mathrm{d}t + \sigma(t,X_t,\mu_t^X)\mathrm{d}W_t, \quad X_0 \in L^p_0(\mathbb{R}^d),$$
 with $v(t,x,\mu) = (K\star\mu)(x)$ conv. kernel.

Split-Step method (SSM)

$$\mathrm{d}X_t = \left[b(t,X_t,\mu_t^X) + v(t,X_t,\mu_t^X)\right]\mathrm{d}t + \sigma(t,X_t,\mu_t^X)\mathrm{d}W_t, \quad X_0 \in L_0^p(\mathbb{R}^d),$$

with $v(t, x, \mu) = (K \star \mu)(x)$ conv. kernel.

The Split-Step method (SSM) scheme

$$Y_{t_k}^{i,\star,N} = \hat{X}_{t_k}^{i,N} + hv(t_k, Y_{t_k}^{i,\star,N}, \mu_{t_k}^{X,N}), \qquad \hat{\mu}_{t_k}^{Y,N}(dx) := \frac{1}{N} \sum_{j=1}^N \delta_{Y_{t_k}^{j,\star,N}}(dx) \quad (1)$$

$$\hat{X}_{t_{k+1}}^{i,N} = Y_{t_k}^{i,\star,N} + b(t_k, Y_{t_k}^{i,\star,N}, \hat{\mu}_{t_k}^{Y,N}) h + \sigma(t_k, Y_{t_k}^{i,\star,N}, \hat{\mu}_{t_k}^{Y,N}) \Delta W_n^i.$$
 (2)

In a nutshell: solve super-linear/convolution component implicitly, then in (2), use the empirical measure of $Y_{t_{\iota}}^{i,\star,N}$ and deal with other terms.

Split-Step method (SSM)

$$dX_t = \left[b(t, X_t, \mu_t^X) + v(t, X_t, \mu_t^X)\right] dt + \sigma(t, X_t, \mu_t^X) dW_t, \quad X_0 \in L_0^p(\mathbb{R}^d),$$

with $v(t, x, \mu) = (K \star \mu)(x)$ conv. kernel.

The Split-Step method (SSM) scheme

$$Y_{t_k}^{i,\star,N} = \hat{X}_{t_k}^{i,N} + hv(t_k, Y_{t_k}^{i,\star,N}, \mu_{t_k}^{X,N}), \qquad \hat{\mu}_{t_k}^{Y,N}(dx) := \frac{1}{N} \sum_{j=1}^N \delta_{Y_{t_k}^{j,\star,N}}(dx) \quad (1)$$

$$\hat{X}_{t_{k+1}}^{i,N} = Y_{t_k}^{i,\star,N} + b(t_k, Y_{t_k}^{i,\star,N}, \hat{\mu}_{t_k}^{Y,N})h + \sigma(t_k, Y_{t_k}^{i,\star,N}, \hat{\mu}_{t_k}^{Y,N}) \Delta W_n^i.$$
 (2)

In a nutshell: solve super-linear/convolution component implicitly, then in (2), use the empirical measure of $Y_{t_k}^{i,\star,N}$ and deal with other terms.

Some advantages

- Implicit method for the bad drift components → more stable than explicit method.
- ullet Time step restriction for solvability of implicit step is *artificial*: just $\pm \gamma x$
- (This is a type of Lie-Trotter splitting method)

Outline

- Mean-field equations and Propagation of chaos
- A setting of interest: super-linear Interaction MF kernel
 - Our results
 - Numerical results
- Another setting of interest: Mean-field Langevin
 - Our results
 - Numerical results

Convergence results: Lipschitz diffusion

Theorem (Chen & GdR '22: SSM's MSE Conv (I))

Under monotonicity + Holder in time hold + $X_0 \in L^m(\mathbb{R}^d)$ and σ unif. Lip

Let X^i be the solution to the MV-SDE (driven by W^i), and $X^{i,N,M}$ be the SSM scheme. Then we obtain the following convergence result

$$\mathit{MSE} := \sup_{1 < i < N} \mathbb{E}[\sup_{0 < t < T} |X_t^{i,N} - X_t^{i,N,M}|^2] \le Ch^{1-\varepsilon}, \quad \varepsilon > 0.$$

- Its very difficult to obtain L^p -moment bounds (p > 2) for the scheme.
 - \bullet critical to have $\mathsf{sup}_\mathsf{time}$ inside expectation is that somewhere we use:

$$\mathbb{1}_{|X^{i},N,M|>R} + \mathbb{1}_{|X^{i},N,M|\leq R}$$

Convergence results: Lipschitz diffusion

Theorem (Chen & GdR '22: SSM's MSE Conv (I))

Under monotonicity + Holder in time hold + $X_0 \in L^m(\mathbb{R}^d)$ and σ unif. Lip

Let X^i be the solution to the MV-SDE (driven by W^i), and $X^{i,N,M}$ be the SSM scheme. Then we obtain the following convergence result

$$\mathit{MSE} := \sup_{1 < i < N} \mathbb{E}[\sup_{0 < t < T} |X_t^{i,N} - X_t^{i,N,M}|^2] \le Ch^{1-\varepsilon}, \quad \varepsilon > 0.$$

- Its very difficult to obtain L^p -moment bounds (p > 2) for the scheme.
 - critical to have \sup_{time} inside expectation is that somewhere we use: $\mathbb{1}_{|X^i,N,M|>R} + \mathbb{1}_{|X^i,N,M|< R}$
- Exploit convolution structure but use that K is an odd function 🕾

Convergence results: super linear growth diffusion

Theorem (Chen, GdR, & Stockinger '23: SSM's MSE Conv (II))

Under monotonicity + Holder in time hold + $X_0 \in L^m(\mathbb{R}^d)$ and σ polynomial \odot

Let X^i be the solution to the MV-SDE (driven by W^i), and $X^{i,N,M}$ be the SSM scheme. Then we obtain the following convergence result

$$MSE_{sup\ outside} := \sup_{1 \le i \le N} \sup_{0 \le t \le T} \mathbb{E}[|X_t^{i,N} - X_t^{i,N,M}|^2] \le Ch.$$

- Its much easier to obtain this result. One gets away with just L² estimates.
- We can have additionally a polynomial growth diffusion map

Other schemes: Tamed Euler scheme & Time-adaptive

• Taming: tamed Euler explicit scheme. 15 With the notation above consider the following scheme h := T/M

$$\begin{split} \bar{X}_{t_{k+1}}^{i,N,M} &= \bar{X}_{t_k}^{i,N,M} + \frac{\widehat{b}\left(t_k, \bar{X}_{t_k}^{i,N,M}, \bar{\mu}_{t_k}^{X,N}\right)}{1 + h^{\alpha} \left|\widehat{b}\left(t_k, \bar{X}_{t_k}^{i,N,M}, \bar{\mu}_{t_k}^{X,N}\right)\right|} h \\ &+ \sigma\left(t_k, \bar{X}_{t_k}^{i,N,M}, \bar{\mu}_{t_k}^{X,N}\right) \Delta W_{t_k}^i, \end{split}$$

where
$$\bar{\mu}_{t_k}^{X,N}(\mathrm{d}x)=\frac{1}{N}\sum_{j=1}^N\delta_{\bar{X}_{t_k}^{j,N,M}}(\mathrm{d}x)$$
 and $\alpha\in(0,1/2]$ with $\bar{X}_0^{i,N,M}=X_0^i$.

 Time-adaptive.¹⁶ Just like standard explicit Euler. Timestep h is now h(x) such that $|\hat{b}(t,x,\mu)h(x)| < C(1+|x|).$

¹⁵Reis, Engelhardt, and Smith, "Simulation of McKean-Vlasov SDEs with super-linear growth", Jan. 2021.

¹⁶Reisinger and Stockinger, "An adaptive Euler-Maruyama scheme for McKean SDEs with super-linear growth and application to the mean-field FitzHugh-Nagumo model", 2020.

Outline

- Mean-field equations and Propagation of chaos
- A setting of interest: super-linear Interaction MF kernel
 - Our results
 - Numerical results
- Another setting of interest: Mean-field Langevin
 - Our results
 - Numerical results

Double-well with Multiplicative noise

$$dX_t = (v(X_t, \mu_t^X) + X_t)dt + X_t dW_t \text{ with } v(x, \mu) = -\frac{1}{4}x^3 + \int_{\mathbb{R}^d} -(x - y)^3 \mu(dy)$$

Figure: N = 1000 < h = 0.01 at times T = 1, 3, 10. Last Fig $t \in [0, 3]$ and with $X_0 \sim \mathcal{N}(3, 9)$. (Newton method $w = \sqrt{h}$)

Outline

- Mean-field equations and Propagation of chaos
- A setting of interest: super-linear Interaction MF kernel
 - Our results
 - Numerical results
- Another setting of interest: Mean-field Langevin
 - Our results
 - Numerical results

Mean-field Langevin equations

We consider the 1-d mean-field Langevin (MFL) equation for $(X_t)_{t\geq 0} \in \mathbb{R}^1$:

$$X_t = \xi - \int_0^t \left(\nabla U(X_s) + \nabla V * \mu_s(X_s) \right) ds + \sigma W_t, \tag{3}$$

where μ_t is the law of X_t , and W is a 1-d Brownian motion.

For functions *U*, *V* with some suitable regularity and convexity then

- X_t admits a unique stationary distribution μ^* , i.e., $\text{Law}(X_t) \stackrel{d}{\to} \mu^*$ as $t \to \infty$
- \bullet μ^* has well-known implicit form

$$\mu^*(x) \propto \exp\left(-\frac{2}{\sigma^2}U(x) - \frac{2}{\sigma^2}\int_{\mathbb{R}}V(x-y)\mu^*(\mathrm{d}y)\right).$$
 (4)

Thus,

 \triangleright how sample from μ^* better than Euler/Milstein? (What is "better"?)

Preparation for main result

The IPS to (3) is for $i = 1, \dots, N$

$$X_t^{i,N} = \xi^{i,N} - \int_0^t \left(\nabla U(X_s^{i,N}) + \frac{1}{N} \sum_{i=1}^N \nabla V(X_s^{i,N} - X_s^{i,N}) \right) \mathrm{d}s + \sigma W_t^i.$$

Preparation for main result

The IPS to (3) is for $i = 1, \dots, N$

$$X_t^{i,N} = \xi^{i,N} - \int_0^t \left(\nabla U(X_s^{i,N}) + \frac{1}{N} \sum_{j=1}^N \nabla V(X_s^{i,N} - X_s^{j,N}) \right) \mathrm{d}s + \sigma W_t^i.$$

Or written as a \mathbb{R}^N -valued map B as

$$\begin{split} \mathbb{R}^N \ni \boldsymbol{x} &= (x_1, \dots, x_N) \mapsto \boldsymbol{B}(\boldsymbol{x}) := \big(B_1(x_1, \dots, x_N), \dots, B_N(x_1, \dots, x_N)\big), \\ \text{with} \quad B_i(\boldsymbol{x}) &= B_i(x_1, \dots, x_N) := -\nabla U(x_i) - \frac{1}{N} \sum_{i=1}^N \nabla V(x_i - x_j), \end{split}$$

and we **re-write the IPS** for $(\boldsymbol{X}_t^N)_{t\geq 0}\coloneqq (X_t^{1,N},\dots,X_t^{N,N})_{t\geq 0}$ as

$$\boldsymbol{X}_{t}^{N} = \boldsymbol{\xi} + \int_{0}^{t} B(\boldsymbol{X}_{s}^{N}) \mathrm{d}\boldsymbol{s} + \sigma \boldsymbol{W}_{t}$$
 (5)

(Euler Scheme)
$$\Rightarrow \quad \boxed{\boldsymbol{X}_{i+1}^{N,h} = \boldsymbol{X}_{i}^{N,h} + hB(\boldsymbol{X}_{i}^{N,h}) + \sigma\Delta \boldsymbol{W}_{i+1}}$$
 (6)

The non-Markovian Euler scheme

The scheme introduced in Leimkuhler et al '14 17 for our IPS as a \mathbb{R}^N -valued SDE

$$\boldsymbol{X}_{t}^{N} = \boldsymbol{\xi} + \int_{0}^{t} B(\boldsymbol{X}_{s}^{N}) ds + \sigma \boldsymbol{W}_{t}$$

$$(\text{n-ME Scheme}) \Rightarrow \boldsymbol{X}_{i+1}^{N,h} = \boldsymbol{X}_{i}^{N,h} + hB(\boldsymbol{X}_{i}^{N,h}) + \sigma \frac{1}{2} (\Delta \boldsymbol{W}_{i+1} + \Delta \boldsymbol{W}_{i}).$$
(7)

¹⁷Leimkuhler, Matthews, and Tretyakov, "On the long-time integration of stochastic gradient systems", 2014.

The results for standard SDEs

Results for SDEs¹⁸ \rightarrow setting $\nabla V = 0$ in our case; $U \in C^7$ (in \mathbb{R}^d)

$(\sigma = c I_d)$	Strong ($T < \infty$)	Weak $(T < \infty)$	Weak $(T = \infty)$
Euler / Milstein	1	1	1
non-ME			

Weak Error^{Euler}
$$(h; T) = C_T h + \mathcal{O}(h^2)$$
 where $\lim_{T \to \infty} C_T = \text{Const} > 0$.

¹⁸Leimkuhler, Matthews, and Tretyakov, "On the long-time integration of stochastic gradient systems", 2014.

¹⁹Ibid.

The results for standard SDEs

Results for SDEs¹⁸ \rightarrow setting $\nabla V = 0$ in our case; $U \in C^7$ (in \mathbb{R}^d)

$(\sigma = cl_d)$	Strong $(T < \infty)$	Weak $(T < \infty)$	Weak $(T = \infty)$
Euler / Milstein	1	1	1
non-ME		1	2

Weak Error^{Euler}
$$(h; T) = C_T h + \mathcal{O}(h^2)$$
 where $\lim_{T \to \infty} C_T = \text{Const} > 0$.

but for the non Markovian scheme (Theorem 3.4¹⁹)

$$\lim_{T\to\infty} C_T = 0 \quad \Rightarrow \quad \lim_{T\to\infty} \text{Weak Error}^{\text{non-Mark. Euler}}(h; T) = \mathcal{O}(h^2),$$

¹⁸Leimkuhler, Matthews, and Tretyakov, "On the long-time integration of stochastic gradient systems", 2014.
¹⁹Ibid.

The results for standard SDEs

Results for SDEs¹⁸ \rightarrow setting $\nabla V = 0$ in our case; $U \in C^7$ (in \mathbb{R}^d)

$(\sigma = cI_d)$	Strong $(T < \infty)$	Weak $(T < \infty)$	Weak $(T = \infty)$
Euler / Milstein	1	1	1
non-ME	1/2	1	2

Weak Error^{Euler}
$$(h; T) = C_T h + \mathcal{O}(h^2)$$
 where $\lim_{T \to \infty} C_T = \text{Const} > 0$.

but for the non Markovian scheme (Theorem 3.4¹⁹)

$$\lim_{T\to\infty} C_T = 0 \quad \Rightarrow \quad \lim_{T\to\infty} \text{Weak Error}^{\text{non-Mark. Euler}}(h;T) = \mathcal{O}(h^2),$$

Lemma (Proposition 2.2)

^a Under Lip. the non-ME <u>pointwise</u> strong error is 1/2 (also when $\nabla V \neq 0$)

^aChen et al., "Improved weak convergence for the long time simulation of Mean-field Langevin equations", 2024.

¹⁸Leimkuhler, Matthews, and Tretyakov, "On the long-time integration of stochastic gradient systems", 2014.

¹⁹lbid.

How to understand the results?

The SDE

$$dX(t) = B(X(t))dt + \sigma dW(t), \quad X(0) = X_0$$

New view: Vilmart '15²⁰ conceptualised "*Postprocessed Integrators*" to study algorithms as $T \to \infty$. Instead of

$$\bar{X}_{n+1} = \bar{X}_n + hB\left(\bar{X}_n\right) + \frac{1}{2}\sigma\sqrt{h}\left(\xi_n + \xi_{n+1}\right)$$

²⁰Vilmart, "Postprocessed integrators for the high order integration of ergodic SDEs", 2015.

How to understand the results?

The SDE

$$dX(t) = B(X(t))dt + \sigma dW(t), \quad X(0) = X_0$$

New view: Vilmart '15²⁰ conceptualised "*Postprocessed Integrators*" to study algorithms as $T \to \infty$. Instead of

$$\bar{X}_{n+1} = \bar{X}_n + hB\left(\bar{X}_n\right) + \frac{1}{2}\sigma\sqrt{h}\left(\xi_n + \xi_{n+1}\right)$$

rewrite it as a "predictor-corrector" (postprocessed) method

$$\begin{split} X_{n+1} &= X_n + hB\left(X_n + \frac{1}{2}\sigma\sqrt{h}\xi_n\right) + \sigma\sqrt{h}\xi_n, \\ \bar{X}_{n+1} &= X_{n+1} + \frac{1}{2}\sigma\sqrt{h}\xi_{n+1} \end{split}$$

Intuition... Gilles spilled the beans:)

²⁰Vilmart, "Postprocessed integrators for the high order integration of ergodic SDEs", 2015.

Outline

- Mean-field equations and Propagation of chaos
- A setting of interest: super-linear Interaction MF kernel
 - Our results
 - Numerical results
- Another setting of interest: Mean-field Langevin
 - Our results
 - Numerical results

Assumptions

Assumption 1:

Let The potentials $U, V \in C^2(\mathbb{R})$. Further suppose that

① *U* is uniformly convex : there exists $\lambda > 0$ such that for all $x, y \in \mathbb{R}$,

$$(\nabla U(x) - \nabla U(y))(x - y) \ge \lambda |x - y|^2.$$
 (8)

② V is even (thus ∇V is odd), and convex, i.e., for all $x, y \in \mathbb{R}$,

$$(\nabla V(x) - \nabla V(y))(x - y) \ge 0,$$

and there exists $K_V > 0$ such that $|\nabla^2 V|_{\infty} \le K_V$.

Assumption 2:

- ① The potentials $U, V \in \mathcal{C}^7(\mathbb{R})$, and all derivatives of $\nabla U, \nabla V$ are uniformly bounded, with λ, K_V satisfy $\lambda \geq 7K_V$.
- ② Let $N \in \mathbb{N}$ with $N \gg 6$. For any $n \leq 6$ and $(\gamma_1, \ldots, \gamma_{|\gamma|}) = \gamma \in \bigcup_{k=1}^n \Pi_k^N$, with integers $\gamma_j \in \{1, \ldots, N\}$, the function $g : \mathbb{R}^N \to \mathbb{R}$, satisfies $|\partial_{x_{\gamma_1}, \ldots, x_{\gamma_{|\gamma|}}}^{|\gamma|} g|_{\infty} = \mathcal{O}(N^{-\hat{\mathcal{O}}(\gamma)})$, with an implied constant independent of N.

Weak error and the test functions g

We analyse the weak error:

$$\mathbb{E}[g(\boldsymbol{X}_{T}^{N})] - \mathbb{E}[g(\boldsymbol{X}_{T}^{N,h})], \qquad \boldsymbol{X}_{T}^{N}, \boldsymbol{X}_{T}^{N,h} \in \mathbb{R}^{N}$$

Typical test functions g are

$$g(\mathbf{x}) = \tilde{g}\left(\frac{1}{N}\sum_{i=1}^{N}f(x_i)\right),$$
 for some nice diff $f, \tilde{g},$

using the associated Backward Kolmogorov equation²¹,²²

How does g behave? (more difficult than the weak PoC test functions)

- $\bullet |\partial^3_{x_1,x_2,x_3}g|_{\infty} = \mathcal{O}(N^{-3})$
- $|\partial_{x_1,x_1,x_3}^3 g|_{\infty} = \mathcal{O}(N^{-2}).$
- If $f=\operatorname{id}$ then for any $|\gamma|$ -order derivative, one has automatically $|\partial_{\mathbf{x}_{\gamma_1},...,\mathbf{x}_{\gamma_{|\gamma|}}}^{|\gamma|}g|_{\infty}=\mathcal{O}(N^{-|\gamma|}).$

²¹Talay and Tubaro, "Expansion of the global error for numerical schemes solving stochastic differential equations", 1990.

²²Milstein and Tretyakov, Stochastic numerics for mathematical physics, 2004.

Main result

Theorem

Let Assumptions hold, let $\xi \in L^{10}(\Omega, \mathbb{R})$ and let $0 < h \ll \min\{1/2\lambda, 1\}$. Then

$$\left|\mathbb{E}[g(oldsymbol{\mathcal{X}}_{T}^{N})] - \mathbb{E}[g(oldsymbol{\mathcal{X}}_{T}^{N,h})]\right| pprox oldsymbol{\mathsf{K}} \exp(-\lambda_0 \, oldsymbol{\mathcal{T}}) oldsymbol{h} + oldsymbol{\mathsf{K}} h^{3/2} + \mathcal{O}(h^2),$$

where $g: \mathbb{R}^N \to \mathbb{R}$ is the weak-error test function for some positive constants λ_0, K independent of h, T, M and N.

▶ Main difficulties:

Start point:
$$\mathbb{R}^N \ni \mathbf{x} \mapsto u(t, \mathbf{x}) = \mathbb{E} \big[g(\mathbf{X}_T^{N,t,\mathbf{x}}) \mid X_t^{N,t,\mathbf{x}} = \mathbf{x} \big].$$
 \triangleright Taylor expansions

- (a) K, λ_0 independent of N, T + exponentially decay over time and
- (b) across 6-variation orders of $u(t, \mathbf{x})$

thus

$$\mathbb{R}^N \ni \mathbf{X} \mapsto \mathbf{X}_T^{N,x}$$
, i.e., $\nabla_x \mathbf{X}_T^{N,x}$, $\nabla_{xx}^2 \mathbf{X}_T^{N,x}$...

Some results

Proposition

$$\begin{aligned} &|\partial_{\chi_{j},x_{k}}^{2}u(t,\boldsymbol{x})|^{2} \\ &= \left|\mathbb{E}\left[\sum_{i=1}^{N}\partial_{\chi_{i}}g(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N})X_{T,\chi_{j},x_{k}}^{t,x_{i},i,N}\right] + \mathbb{E}\left[\sum_{i=1}^{N}\sum_{i'=1}^{N}\partial_{\chi_{i},\chi_{i'}}^{2}g(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N})X_{T,\chi_{i}}^{t,x_{i},i,N}X_{T,\chi_{k}}^{t,x_{i'},i',N}\right]\right|^{2} \\ &= \left|\mathbb{E}\left[\sum_{\alpha,\beta\in\bigcup_{k=0}^{n-1}\prod_{k}^{N}\sum_{i=1}^{N}\left(\partial_{\chi_{i}}g(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N})\right)_{\chi_{\alpha_{1}},...,\chi_{\alpha_{|\alpha|}}}\left(X_{T,\chi_{\gamma_{1}}}^{t,x_{i},i,N}\right)_{\chi_{\beta_{1}},...,\chi_{\beta_{|\beta|}}}\right]\right|^{2}. \end{aligned}$$

For the first variation process (K indep. of N)

$$\sum_{i=1}^{N} \mathbb{E}\Big[|X_{s,x_{i}}^{t,x_{i},i,N}|^{p}\Big] \leq Ke^{-\lambda p(s-t)}, \ and \ \sum_{i=1}^{N} \mathbb{E}\Big[|X_{s,x_{i}}^{t,x_{i},i,N}|^{p}\Big] \leq \frac{K}{N^{p-1}}e^{-\lambda_{1}p(s-t)}.$$

Outline

- Mean-field equations and Propagation of chaos
- A setting of interest: super-linear Interaction MF kernel
 - Our results
 - Numerical results
- Another setting of interest: Mean-field Langevin
 - Our results
 - Numerical results

A basic example

Take the linear example:

$$dX_t = \left(-\alpha (X_t - \mathbb{E}[X_t]) - X_t\right) dt + \sigma dW_t, \quad X_0 \in L^{10}(\Omega, \mathbb{R}),$$
 (9)

where $\alpha, \sigma > 0$. We have $\mathbb{E}[X_t] = \mathbb{E}[X_0]e^{-t}$ and

$$\mu^*(x) = \frac{1}{Z} \exp\left(-\frac{\alpha + 1}{\sigma^2} x^2\right), \qquad Z := \int_{\mathbb{R}} \mu^*(x) \mathrm{d}x. \tag{10}$$

We compute the relative entropy error and the L_2 -Error (of the density)

Relative Entropy Error
$$=\sum_{i=1}^{N_{\text{bins}}} \mu_i^{\text{true}} \ln \left(\frac{\mu_i^{\text{true}}}{\mu_i^{\text{approx}}} \right)$$

$$L_2(\mathbb{R})\text{-Error } = \sqrt{\sum_{i=1}^{N_{\text{bins}}} |\mu_i^{\text{true}} - \mu_i^{\text{approx}}|^2},$$

where $N_{\rm bins} \sim 100$ is partition of \mathbb{R} .

Numerical results in a stylised (linear) example

Figure: Simulation of the linear MV-SDE with $\alpha=0.5, \sigma=0.8, N=10^7, h=0.16$, and $X_0 \sim \mathcal{N}(\pi,1)$. (a) Entropy Error of the Euler method and non-Markovian method in log-scale over time. (b) L_2 -Error of the Euler method and non-Markovian method in log-scale over time. (c) L_2 -Error in particle size N of the Euler method and non-Markovian method in log-scale with different N at T=9.

Numerical results in a stylized (linear) example

Figure: Simulation of the linear MV-SDE with $\alpha=0.5, \sigma=0.8, N=10^7, h=0.16$, and $X_0\sim\mathcal{N}(\pi,1)$. (a) Weak error in particle size N of the Euler method and non-Markovian method in log-scale with different N at T=1 (b) L_2 -Error in particle size N of the Euler method and non-Markovian method in log-scale with different N at T=7.

Error in number of particles

α	σ	а	b	N _{bins}	N	Entropy Error		L ₂ -Error	
						Euler	NM	Euler	NM
0.5	0.8	-1.8	1.8	72	10 ³	-	-	2.89E-02	3.28E-02
					10 ⁴	-	-	1.01E-02	1.04E-02
					10 ⁵	8.21E-04	4.83E-04	4.29E-03	3.10E-03
					10 ⁶	2.74E-04	4.66E-05	2.31E-03	1.26E-03
					10 ⁷	2.33E-04	4.71E-06	2.37E-03	3.56E-04

Table: Simulation results for MV-SDE (9) with h=0.04 and T=8.64 for increasing numbers of particles N. (As for Fig. 3: $X_0 \sim \mathcal{N}(\pi,1)$ and both schemes run on the exact same samples of the initial condition and Brownian increments.)

Thank you!

Thank you for your time!

²³ CHEN, XINGYUAN, AND GDR, (2024) Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully super-linear growth drifts in space and interaction. IMA Journal of Numerical Analysis 44, no. 2 (2024): 751-796.

▷ preprint arXiv:2208.12772, ▷ DOI:10.1093/imanum/drad022

²⁴ Chen, Xingyuan, GDR, Wolfgang Stockinger, and Zac Wilde, (2025) Improved weak convergence for the long time simulation of Mean-field Langevin equations. EJP, 30 (2025): 1-81.

▷ preprint arXiv:2405.01346, ▷ DOI:10.1214/25-EJP1344

 24 Chen et al., "Improved weak convergence for the long time simulation of Mean-field Langevin equations", 2024

²³Chen and Dos Reis. "Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully super-linear growth drifts in space and interaction", 2024.

Extra Slides

The Wasserstein metric

Wasserstein distance $W^{(2)}(\mu, \nu)$.

Over \mathbb{R}^d , set the space of probability measures as $\mathcal{P}(\mathbb{R}^d)$ and its subset $\mathcal{P}_2(\mathbb{R}^d)$ of those with finite second moment.

The Wasserstein distance metricizes the weak convergence of probability measures and is defined as

$$W_2(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \left(\int_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^2 \pi(dx,dy) \right)^{\frac{1}{2}}, \quad \mu,\nu \in \mathcal{P}_2(\mathbb{R}^d),$$

where $\Pi(\mu,\nu) \subset \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d)$ is the set of couplings for μ and ν such that $\pi \in \Pi(\mu,\nu)$ is a probability measure on $\mathbb{R}^d \times \mathbb{R}^d$ such that $\pi(\cdot \times \mathbb{R}^d) = \mu$ and $\pi(\mathbb{R}^d \times \cdot) = \nu$.

Applications

These equations appear in many places.

- Controlling MV-SDE leads to Mean-field games
 - Finance, interacting agents in economics or opinion networks
 - Statistical mechanics, Molecular and fluid dynamics, Plasma Physics,
 - Dynamics of granular materials,
 - Chemistry of crystallisation
- Machine Learning:
 - MV-SDE as limits of (Deep) Neural networks
 - Generative Adversarial Networks (GAN): MFGs have the structure of GANs; and GANs are MFGs under the Pareto Optimality.

Applications

These equations appear in many places.

- Controlling MV-SDE leads to Mean-field games
 - Finance, interacting agents in economics or opinion networks
 - Statistical mechanics, Molecular and fluid dynamics, Plasma Physics,
 - Dynamics of granular materials,
 - Chemistry of crystallisation
- Machine Learning:
 - MV-SDE as limits of (Deep) Neural networks
 - Generative Adversarial Networks (GAN): MFGs have the structure of GANs; and GANs are MFGs under the Pareto Optimality.

Less trivial than it looks.

① No Flow property in \mathbb{R}^d but in $L^2(\Omega, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ or $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$:

$$X_t^{0,x} \neq X_t^{s,X_s^{0,x}}, \text{ for } t \in [0,\infty], \ r \in [0,t)$$

2 This leads to infinite dimensional calculus and difficult "PDEs"

$$[0,T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \ni (t,x,\mu) \mapsto u(t,x,\mu) \quad \Rightarrow \quad \text{What is } \partial_\mu u ?$$

Weak error methodologies

How does one go about showing weak errors?

- Talay-Tubaro²⁵ but see Milstein Tretyakov book (2nd edition 2021)²⁶
 - ⊳ Feynman-Kac and exogenous PDE result
- Itô-Taylor expansions²⁷
 - ▷ Expansions of drift and diffusion using the SDE itself and over a simplex
- Malliavin calculus + Duality²⁸
 - ▷ Integration by parts, and pathwise analysis
- Parametrix expansions²⁹
 - $\, \triangleright \, \text{Expansion of the densities} \,$
- ad-hoc // by hand

²⁵Talay and Tubaro, "Expansion of the global error for numerical schemes solving stochastic differential equations", 1990.

²⁶Milstein and Tretyakov, Stochastic numerics for mathematical physics, 2004.

²⁷Kloeden and Platen, *Numerical solution of stochastic differential equations*, 1992.

²⁸Clément, Kohatsu-Higa, and Lamberton, "A duality approach for the weak approximation of stochastic differential equations", 2006.

²⁹Konakov and Menozzi, "Weak error for stable driven stochastic differential equations: Expansion of the densities", 2011.

Kolmogorov backward equation

We introduce $\boldsymbol{X}_{s}^{t,x,N} = (X_{s}^{t,x_{1},1,N}, \dots, X_{s}^{t,x_{N},N,N})$, where for $i \in \{1,\dots,N\}$

$$X_s^{t,x_i,i,N} = x_i + \int_t^s B_i(X_u^{t,x_1,1,N},\ldots,X_u^{t,x_N,N,N}) du + \sigma(W_s^i - W_t^i).$$

The generator for is defined by

$$\mathcal{L}_N = \sum_{i=1}^N B_i \partial_{x_i} + \frac{1}{2} \sigma^2 \partial_{x_i, x_i}^2,$$

We introduce the Kolmogorov backward equation:

$$\partial_t u + \mathcal{L}_N u = 0, \quad t \in [0, T), \quad u(T, \mathbf{x}) = g(\mathbf{x}),$$
 (11)

for the above test function $g: \mathbb{R}^N \to \mathbb{R}$, by the Feynman-Kac formula the solution of the above PDE is given by

$$u(t, \mathbf{x}) = \mathbb{E}\left[g(\mathbf{X}_T^N) \mid X_t^{i,N} = x_i, i \in \{1, \dots, N\}\right]. \tag{12}$$

Weak-Error expansions

$$\mathbb{E}\left[g(\boldsymbol{X}_{T}^{N})\right] - \mathbb{E}\left[g(\boldsymbol{X}_{T}^{N,h})\right] = h^{2}\mathbb{E}\left[\sum_{m=0}^{M-1}L(t_{m},\boldsymbol{X}_{t_{m}}^{N,h})\right] + \mathbb{E}\left[\sum_{m=0}^{M-1}R(t_{m},\boldsymbol{X}_{t_{m}}^{N,h})\right],$$
(13)

where the map $L: \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}$ is defined via the maps u and $(B_i)_{i \in \{1,...,N\}}$:

$$L(t, \mathbf{x}) = \frac{1}{2} \left[\sum_{i,j=1}^{N} B_{j}(\mathbf{x}) \partial_{x_{j}} B_{i}(\mathbf{x}) \partial_{x_{i}} u(t, \mathbf{x}) + \frac{\sigma^{2}}{2} \sum_{i,j=1}^{N} \partial_{x_{j}} B_{i}(\mathbf{x}) \partial_{x_{i},x_{j}}^{2} u(t, \mathbf{x}) + \frac{\sigma^{2}}{2} \sum_{i,j=1}^{N} \partial_{x_{j},x_{j}}^{2} B_{i}(\mathbf{x}) \partial_{x_{i}} u(t, \mathbf{x}) \right].$$

$$(14)$$

The remainder term $R(\cdot, \cdot)$ will later be written as a linear combination of 8 remainder terms, we need to control all the summations...

Kolmogorov backward equation Examples

Consider the first derivatives, by chain rule, we need to analysis the derivatives of g and the variation processes

$$\begin{split} &|\partial_{x_{j}} u(t,\boldsymbol{x})|^{2} \\ &= \left| \mathbb{E} \left[\sum_{i=1}^{N} \left(\partial_{x_{i}} g(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N}) \right) \cdot \left(\boldsymbol{X}_{T,x_{j}}^{t,\boldsymbol{x},i,N} \right) \right] \right|^{2} \\ &\leq 2 \left| \mathbb{E} \left[|\partial_{x_{j}} g(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N})| \; |\boldsymbol{X}_{T,x_{j}}^{t,\boldsymbol{x},j,N}| \right] \right|^{2} + 2 \left| \mathbb{E} \left[\sum_{i=1, \; i \neq j}^{N} \left(\partial_{x_{i}} g(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N}) \right) \cdot \left(\boldsymbol{X}_{T,x_{j}}^{t,x_{i},i,N} \right) \right] \right|^{2} \\ &\leq \frac{K}{N^{2}} \mathbb{E} \left[|\boldsymbol{X}_{T,x_{j}}^{t,x_{j},N}|^{2} \right] + KN \sum_{i=1, \; i \neq j}^{N} \mathbb{E} \left[\left| |\partial_{x_{i}} g(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N})| \; |\boldsymbol{X}_{T,x_{j}}^{t,x_{i},i,N}| \right|^{2} \right] \\ &\leq \frac{K}{N^{2}} \mathbb{E} \left[|\boldsymbol{X}_{T,x_{j}}^{t,x_{j},N}|^{2} \right] + \frac{K}{N} \sum_{i=1, \; i \neq j}^{N} \mathbb{E} \left[|\boldsymbol{X}_{T,x_{j}}^{t,x_{i},i,N}|^{2} \right], \end{split}$$

where we want $\partial_{x_i} u(t, \mathbf{x}) \sim \mathcal{O}(1/N)$ so that $|\partial_{x_i} u(t, \mathbf{x})|^2 \sim \mathcal{O}(1/N^2)$

Kolmogorov backward equation Examples-3

Similarly for the second derivatives

$$\begin{aligned} &|\partial_{x_{j},x_{k}}^{2}u(t,\boldsymbol{x})|^{2} \\ &= \left| \mathbb{E}\left[\sum_{i=1}^{N} \partial_{x_{i}}g(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N})X_{T,x_{j},x_{k}}^{t,x_{i},i,N}\right] + \mathbb{E}\left[\sum_{i=1}^{N} \sum_{i'=1}^{N} \partial_{x_{i},x_{i'}}^{2}g(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N})X_{T,x_{i}}^{t,x_{i},i,N}X_{T,x_{k}}^{t,x_{i'},i',N}\right] \right|^{2} \end{aligned}$$

The *n*-th derivatives

$$\begin{aligned} &|\partial_{\boldsymbol{x}_{\gamma_{1}},...,\boldsymbol{x}_{\gamma_{n}}}^{n}\boldsymbol{u}(t,\boldsymbol{x})|^{2} \\ &= \left| \mathbb{E} \left[\sum_{\substack{\alpha,\beta \in \bigcup_{k=0}^{n-1} \Pi_{k}^{N}, \ i=1}} \sum_{i=1}^{N} \left(\partial_{x_{i}} \boldsymbol{g}(\boldsymbol{X}_{T}^{t,\boldsymbol{x},N}) \right)_{\boldsymbol{x}_{\alpha_{1}},...,\boldsymbol{x}_{\alpha_{|\alpha|}}} \left(\boldsymbol{X}_{T}^{t,\boldsymbol{x}_{i},i,N} \right)_{\boldsymbol{x}_{\beta_{1}},...,\boldsymbol{x}_{\beta_{|\beta|}}} \right] \right|^{2} \end{aligned}$$

Basically, we need to analysis and take many summations so to match all the orders in derivatives of g and the variation processes....

Orders: Properly grouping + Jensen's inequality

Consider now the specific two-dimensional example of $x_{\gamma_1,\gamma_2} = N^{1-\hat{\mathcal{O}}(\gamma)}$ (corresponding to a 2 × 2 matrix with diagonal entries 1 and otherwise 1/N).

$$\begin{split} \Big| \sum_{\gamma \in \Pi_2^N} x_{\gamma_1, \gamma_2} \Big|^2 &= N^4 \Big| \frac{1}{N^2} \sum_{\gamma \in \Pi_2^N} x_{\gamma_1, \gamma_2} \Big|^2 \leq N^2 \sum_{i,j=1}^N |x_{i,j}|^2 \\ &= N^2 \sum_{i=1}^N |x_{i,i}|^2 + N^2 \sum_{i,j=1, i \neq j}^N |x_{i,j}|^2 = N^3 + N^2 \leq 2N^3. \end{split}$$

This estimate is too naive and can be improved, as we can instead consider

$$\begin{split} \Big| \sum_{\gamma \in \Pi_2^N} x_{\gamma_1, \gamma_2} \Big|^2 & \leq 2 \Big| \sum_{i=1}^N x_{i,i} \Big|^2 + 2 \Big| \sum_{i,j=1, i \neq j}^N x_{i,j} \Big|^2 \leq 2N \sum_{i=1}^N |x_{i,i}|^2 + 2N^2 \sum_{i,j=1, i \neq j}^N |x_{i,j}|^2 \\ & = 2N^2 + \frac{2N^3(N-1)}{N^2} \leq 4N^2, \end{split}$$

which is indeed a sharper upper bound.

The variation processes

The first variation process of $(\boldsymbol{X}_s^{t,\boldsymbol{x},N})_{s\geq t\geq 0}$ is given by

$$X_{s,x_j}^{t,x_i,i,N} = \delta_{i,j} + \int_t^s \sum_{l=1}^N \partial_{x_l} B_i(\boldsymbol{X}_u^{t,\boldsymbol{x},N}) X_{u,x_j}^{t,x_i,l,N} \mathrm{d}u,$$

The *n*-variation process of $(\boldsymbol{X}_s^{t,\boldsymbol{x},N})_{s\geq t\geq 0}$ is given by

$$X_{s,x_{\gamma_{1}},...,x_{\gamma_{n}}}^{t,x_{i},i,N} = \int_{t}^{s} \left(\sum_{l=1}^{N} \partial_{x_{l}} B_{i}(\boldsymbol{X}_{u}^{t,\boldsymbol{x},N}) X_{u,x_{\gamma_{1}}}^{t,x_{i},l,N} \right)_{x_{\gamma_{2}},...,x_{\gamma_{n}}} du$$

$$= \int_{t}^{s} \sum_{l=1}^{N} \partial_{x_{i}} B_{i}(\boldsymbol{X}_{u}^{t,\boldsymbol{x},N}) X_{u,x_{\gamma_{1}},...,x_{\gamma_{n}}}^{t,x_{i},l,N} du$$

$$+ \sum_{\alpha,\beta \in \bigcup_{k=0}^{n-1} \prod_{k}^{N},} \int_{t}^{s} \sum_{l=1}^{N} \left(\partial_{x_{i}} B_{i}(\boldsymbol{X}_{u}^{t,\boldsymbol{x},N}) \right)_{x_{\alpha_{1}},...,x_{\alpha_{|\alpha|}}} \left(X_{u,x_{\gamma_{1}}}^{t,x_{i},l,N} \right)_{x_{\beta_{1}},...,x_{\beta_{|\beta|}}} du,$$

$$(15)$$

Some interesting results of the variation processes

Under the assumptions we have with the the starting positions $x_i \in L^2(\Omega,\mathbb{R})$ are \mathcal{F}_t -measurable random variables that are identically distributed over all $i \in \{1,\ldots,N\}$. For each $1 \leq n \leq 6$, there exist constants $\lambda_0^{(n)} \in (0,\lambda)$ and K>0 (both independent of s,t,T and N) such that for any $m \in \{1,\ldots,n+1\}$, we have

$$\sum_{\gamma \in \Pi_{n+1}^N, \ \hat{\mathcal{O}}(\gamma) = m} \mathbb{E}\Big[|X_{s, x_{\gamma_2}, \dots, x_{\gamma_{n+1}}}^{t, x_{\gamma_1}, \gamma_1, N}|^{p} \Big] \leq \frac{K}{N^{p(m-1)-m}} e^{-\lambda_0^{(n)} p(s-t)}.$$

This implies that, for all $\gamma \in \Pi_{n+1}^N$, such that $\hat{\mathcal{O}}(\gamma) = m, \ m \in \{1, \dots, n+1\}$:

$$\mathbb{E}\Big[|X^{t,x_{\gamma_1},\gamma_1,N}_{s,x_{\gamma_2},\dots,x_{\gamma_{n+1}}}|^p\Big] \leq \frac{K}{N^{p(m-1)}}e^{-\lambda_0^{(n)}p(s-t)}.$$

Example (The first variation process)

$$\sum_{i=1}^{N} \mathbb{E}\Big[|X_{s,x_{i}}^{t,x_{i},i,N}|^{p}\Big] \leq Ke^{-\lambda p(s-t)}, \text{ and } \sum_{i=1,i\neq i}^{N} \mathbb{E}\Big[|X_{s,x_{i}}^{t,x_{i},i,N}|^{p}\Big] \leq \frac{K}{N^{p-1}}e^{-\lambda_{1}p(s-t)}.$$

More results

There exists a constant K>0 (independent of t,T,N), such that for any $n\in\mathbb{N},1\leq n\leq 6,\,\gamma\in\Pi_n^N$, and $\boldsymbol{x}\in\mathbb{R}^N$

$$\begin{split} &|\partial_{x_{\gamma_1},\dots,x_{\gamma_n}}^n u(t,\boldsymbol{x})|^2 \\ &\leq K \sum_{m=0}^n \sum_{\substack{\ell \in \bigcup_{k=1}^n \Pi_k^N, \\ \hat{\mathcal{O}}(\ell \cup \gamma) = \hat{\mathcal{O}}(\gamma) + m}} N^{m-2\hat{\mathcal{O}}(\ell)} \sum_{\substack{\alpha_1,\dots,\alpha_{|\ell|} \in \bigcup_{k=1}^n \Pi_k^N, \\ \bigcup_{i=1}^{|\ell|} \alpha_i \simeq \gamma}} \mathbb{E}\Big[\prod_{i=1}^{|\ell|} \left|X_{T,\alpha_{i,1},\dots,\alpha_{i,|\alpha_i|}}^{t,x_{\ell_i},\ell_i,N}\right|^2\Big], \end{split}$$

where
$$\alpha_i = (\alpha_{i,1}, \dots, \alpha_{i,|\alpha_i|})$$
 and $\alpha_{i,j} \in \{1, \dots, N\}$ for $j \in \{1, \dots, |\alpha_i|\}$.

Further, assuming that the starting points x_i are \mathcal{F}_t -measurable random variables in $L^2(\Omega, \mathbb{R})$ sampled from the same distribution for all $i \in \{1, \dots, N\}$, we have

$$\mathbb{E}\Big[\big|\partial^n_{\mathbf{x}_{\gamma_1},...,\mathbf{x}_{\gamma_n}}\mathbf{\textit{u}}(t,\mathbf{\textit{x}})\big|^2\Big] \leq \textit{Ke}^{-\lambda_0(T-t)}\textit{N}^{-2\hat{\mathcal{O}}(\gamma)}.$$

Detour Slides

A short detour

Solution and mean field approximation theory for the dynamics

$$\begin{cases} dX_t = (K * \mu_t)(X_t) dt + \sigma dW_t, & \mu_t = \mathcal{L}(X_t) \\ X_0 = X_0, & \mathcal{L}(X_0) \in \mathcal{P}(\mathbb{R}^d) \end{cases}$$

where * stands for the convolution operator $K*\mu(z):=\int_{\mathbb{R}^d}K(z-y)\mu(dy).$

Solution theory: *W* is a BM and ask for existence, uniqueness and continuity in $\mathcal{L}(x_0)$ of the solution $\mu \in \mathcal{P}(\mathcal{C}_T)$

Particle approximation: if $(x_0^i, W^i)_{i=1}^N \to (x_0, B)$ suitably, then μ is similarly approximated by solutions to

$$\begin{cases} dX_t^i = \left(K * \mu_t^N\right) \left(X_t^i\right) dt + \sigma dW_t^i, \mu_t^N := \frac{1}{N} \sum_{j=1}^N \delta_{X_t^j} \\ X_0^i = X_0^i, \mathcal{L}\left(X_0^i\right) \in \mathcal{P}\left(\mathbb{R}^d\right) \end{cases}$$