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° Mean-field equations and Propagation of chaos

e A setting of interest: super-linear Interaction MF kernel
@ Our results
@ Numerical results

e Another setting of interest: Mean-field Langevin
@ Our results
@ Numerical results
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° Mean-field equations and Propagation of chaos
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McKean-Vlasov stochastic differential equations

MV-SDE* are SDE whose coefficients depend on the law of the solution:

~

dX; = b(t, X, pue)dt + o (t, X, e)dWs,  Xo € LE(RY), (MV — SDE)

where 1 is the law of X;, and W is a standard R9-BM. — | All in R? |.

Wa(u, v) is the 2-Wasserstein distance between p, v over space of finite 2nd
moment prob. measure P»(R).
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McKean-Vlasov stochastic differential equations

MV-SDE* are SDE whose coefficients depend on the law of the solution:

~

dXt = b(ta Xt,/.lt)dt + U(tv Xthu’f)dWTv XO € L'g(Rd)? (MV - SDE)

where 1 is the law of X;, and W is a standard R9-BM. — | All in R? |.

Wa(u, v) is the 2-Wasserstein distance between i, v over space of finite 2nd
moment prob. measure P»(R).

Example (Convolution kernel MV-SDE)

t
Xt:X0+/ {—X§+(E[Xs]—XS)}ds+UWt
0
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McKean-Vlasov stochastic differential equations

MV-SDE* are SDE whose coefficients depend on the law of the solution:

~

dXt = b(ta Xt,/.lt)dt + U(tv Xthu’f)dwfv XO € Lg(Rd)v (MV - SDE)

where 1 is the law of X;, and W is a standard R9-BM. — | All in R? |.

Wa(u, v) is the 2-Wasserstein distance between i, v over space of finite 2nd
moment prob. measure P»(R).

Example (Convolution kernel MV-SDE)

t
Xt:X0+/ {—X§+(E[Xs]—XS)}ds+UWt
0

t t t
Xi =X + / b(s, Xs, j15)ds + / / K(Xs ~ y)dus(y)ds + / (8, X, 1) AW
0 0 JR 0

In particle dynamics: b is Confining Potential and K is Interaction Kernel
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Approximation of MV-SDE — the IPS

N
1 ' .
LLN & Monte Carlo idea: E[X;] ~ N XN This is in (RY)N
=
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Approximation of MV-SDE — the IPS

N
XN | This is in (RY)N

1
LLN & Monte Carlo idea: E[X;] ~ N

j=1
A common technique for simulating MV-SDEs: interacting particle system:

XN =Bt XN, N )dt 4+ o (80N, N ) AW, — | This is in (R

N
1
X,N _ E: i —
t (d —N‘1§X{,N(dX), l—1,~-~,N
l:

where 4,, v is the Dirac measure at point X{’N, and the Brownian motions
. t
W' i=1,... N are independent.

Goncalo dos‘Rels (U’of Edin. +CMA)‘ .
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Approximation of MV-SDE — the IPS

N
LLN & Monte Carlo idea: E[X;] ~ %I XN This is in (RY)N
j=1
A common technique for simulating MV-SDEs: interacting particle system:

XN =Bt XN, N )dt 4+ o (80N, N ) AW, — | This is in (R

N
1
X,N . § : :
H (dX) = N —1 6X{’N(dx)7 =1, N
l:

where 4,, v is the Dirac measure at point X{’N, and the Brownian motions
. t
Wi i=1,...,N are independent. “Propagation of chaos” (Sznitman '91)" :

under appropriate conditions, as N — oo, for every /, the process XN
converges to X', the solution of the MV-SDE driven by the Brownian motion

lim sup E[ sup |X{" - X{[?] =0.
N—oo1<i<N  ~0<t<T

Nottingham 1 Jul 2025



Strong and weak Quantitative PoC

Strong PoC (based on?)

| N~1/2 if d < 4,
(in L, p > 4) éqENIE[Oil:ET IX{ = XNP] < C{N-V2l0g(N) ifd =4,
== s N—2/d ifd > 4.

2Carmona and Delarue, Probabilistic Theory of Mean Field Games with Applications I, 2017.

3Chassagneux, Szpruch, and Tse, “Weak quantitative propagation of chaos via differential calculus on the
space of measures”, 2022.

4Haji-Ali, Hoel, and Tempone, “A simple approach to proving the existence, uniqueness, and strong and
weak convergence rates for a broad class of McKean-Vlasov equations”, 2021.

5Bernou and Duerinckx, “Uniform-in-time estimates on the size of chaos for interacting Brownian particles”,
2024.
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Strong and weak Quantitative PoC

Strong PoC (based on?)

N—1/2 if d < 4,
(in P, p > 4) sup E[ sup |X{ — X{"?] <c{n12 log(N) ifd=4,
1IN ostsT N2/ ifd > 4.
Weak PoC is much harder:
1 N 1
El[h X’ h(X*N L0o(= for some class §
sup [B[A(X)] ~ B[ 3 hx“)]| = 0 () ( )

@ For T < oo: Chassagneux et al '22° and Haji-Ali et al '214
@ For T > 0: Bernou & Duerinckx '24% (so called "Uniform in time PoC")

2Carmona and Delarue, Probabilistic Theory of Mean Field Games with Applications I, 2017.

3Chassagneux, Szpruch, and Tse, “Weak quantitative propagation of chaos via differential calculus on the
space of measures”, 2022.

4Haji-Ali, Hoel, and Tempone, “A simple approach to proving the existence, uniqueness, and strong and
weak convergence rates for a broad class of McKean-Vlasov equations”, 2021.

5Bernou and Duerinckx, “Uniform-in-time estimates on the size of chaos for interacting Brownian particles”,
2024.

Goncalo dos Reis (U. of Edin. + CMA) Numerics for SDEs and Mean-field SDEs Nottingham 1 Jul 2025



e A setting of interest: super-linear Interaction MF kernel
@ Our results
@ Numerical results
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Our setting: Super linear

Xe = Xo + [y b(S, Xs, 115)dS + [y froa K(Xs — ¥)dpus(y)ds + [ o (8, Xs, p1s)dWs

Wrap up: o is unif. Lip. in space-measure;

Drift: b:= b+ K % u such that: b is superlinear in space & Lip is measure;
K is odd & superlinear growth (one-sided Lipschitz)

Assumption (“super-measure-super-space”)

@ 3L > 0 suchthat fora.a. s € [0, T], Vu, v € Po(RY) and Vx, y € RY,
<b(Sa XHU‘) - b(s7y7/—")’x_y> S L”X _y”27
llo(s, x, n) = o(s,y, )|l < Lllx =yl
||b(37 X, ,u‘) - b(S,X, V)H + ||U(S7qu') - U(Sv X, V)” < LW2(:“‘7 V)'
@ 3L > 0,3a € (0,1] such that Vs, t € [0, T], Vu € Po(RY) and Vx € RY,
llo(t, x, 1) —a(s,x, w)|| < L||t— s[|*.

@ K(0) =0, K(x) = —K(—x) and 3L € R such thatVx, y € RY,
(K(x) = K(y),x = y) < LlIx —yl%,

IK(x) = KW < Clix =yl (1 + Xl + Iy,

KGO < (1 + [Ix]7).-

Goncalo dos Reis (U. of Edin. + CMA)
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More on PoC — dimension independent PoC in L2

Detour slide: Under the Vlasov kernel structure
Bltxp) = [ feyutey) + bt and a(soxm = [ gbey)u(ey) +o(tx)
one can avoid altogether the Wasserstein-2 approximation result.

Theorem (Soni, Neelima, Kumar and GdR (2025))

Let Xy € L7 with q sufficiently large, letp >> 2.
Then,

7 . 1
sup sup E[|X/ — XNIP]P < K
ie{1,...,N} te[0,T]

3=

where K > 0 is a constant independent of N € N.

(Proof builds on result/trick used in®.)

6Belomestny and Schoenmakers, “Projected particle methods for solving McKean—Vlasov stochastic
differential equations”, 2018.
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The simulation problem

@ Wellposedness//stability//PoC//invariant distribution//LDPs:

e Growing collection of results under varied conditions’ 8,°

@ Numerics
e PDE/FPE™ !
@ Stochastic Euler schemes: Malrieu *03'2, Malrieu & Talay '06'3
Fully implicit scheme under strong structural assumptions (o const)
o If pr— B(-, -, ) is unif. Lip. then the answer is known
> Standard Euler, > Randomised Milstein
> Taming, > Time-adaptive, Truncated Euler, > Split-Step methods

7Zhang, “Existence and non-uniqueness of stationary distributions for distribution dependent SDEs”, 2021.

8Dos Reis, Salkeld, and Tugaut, “Freidlin-Wentzell LDP in path space for McKean—Vlasov equations and the
functional iterated logarithm law”, 2019.

9Adams et al., “Large Deviations and Exit-times for reflected McKean-Vlasov equations with self-stabilizing
terms and superlinear drifts”, 2020.

9Baladron et al., “Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and
FitzHugh-Nagumo neurons”, 2012.

""Goddard et al., “Noisy bounded confidence models for opinion dynamics: the effect of boundary conditions
on phase transitions”, 2022.

2Malrieu, “Convergence to equilibrium for granular media equations and their Euler schemes”, 2003.

3Malrieu and Talay, “Concentration inequalities for Euler schemes”, 2006.
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MV-SDEs with super linear growth and standard Euler

The MV-SDE in R? for p > 2
dXt = B(ta va /“L?()dt + J(tv va M?()tha XO € Lg(Rd)’

The particle approximation in (R9)V
o ‘ N
XN = B8 XN, N )dt o (8 XN, N )W, N dx) = Z (d

where 4,,~ is the Dirac measure at point X{"N, and the Brownian motions
i t
W' i=1, ..., N are independent.
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MV-SDEs with super linear growth and standard Euler

The MV-SDE in R? for p > 2
dXt = B(tv va M?()dt + J(tv va M?()tha XO € Lg(Rd)a

The particle approximation in (R9)V

XN = B8 XN, N )dt o (8 XN, N )W, N dx) = Syin(d

||M2

where 4,,~ is the Dirac measure at point X{’N, and the Brownian motions
. t
W' i=1, ..., N are independent.
Given a time partition {t}x—o,... v, the explicit Euler scheme:
XiNM _ )-(i,N,M+b( X/NM XN)h+O_(tk XINM XN)AW/
t )

tt1 feo

where iV (dx) = Z/’L Sgnm(dx), AW, == W] — W] and XNM = Xt
I
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Euler goes wrong

The stochastic Ginzburg Landau equation and with added mean field term,

2
dX = (%X, — X34 cE[Xt]>dt +oXdWs,  Xo = x.

N = 5000 particles, h=0.05, T =2and X, = 1;also 0 =3/2,c =1/2.

Realisations in the particle system

Value of each particle

—Other Particles
- Corrupt Particle|

I I ,
0 0.2 0.4 0.6 0.8 1 12
Time

Figure: ‘Particle corruption’: the dashed particle oscillates taking ever larger values
than other particles. (Detour Obs:'* >dX; = (X; (—2 — | Xi|) + EX;) dt + § X2 dBy.)

"“Yuanping et al., “Explicit numerical approximations for McKean-Vlasov stochastic differential equations in
finite and infinite time”, 2024.
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Split-Step method (SSM)

ax, = [b(n X, 1) + v(t, Xt,uf)] dt + o (t, X, pX)dWs, X, € LE(RY),

with v(t, x, 1) = (K % 1)(x) conv. kernel.
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Split-Step method (SSM)

dX; = [ Bt Xi, i) + vt X 1) dt + o (8, X, 1)V, Xo € LR(RY),
with v(t, x, 1) = (K % 1)(x) conv. kernel.

The | Split-Step method (SSM) | scheme

YN = XN+ hv (e, YN, g, fiy N (dx) = N Zay, w(ax) (1)
N =N bt YN N+ ot Y, g N)A w;. 2)

In a nutshell: solve super-linear/convolution component implicitly, then in (2), use the
empirical measure of Yt’k’*’N and deal with other terms.
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Split-Step method (SSM)

ax; = [b(n X, 1) + v(t, X,,uf)}du o(t, X, uX)dWs,  Xo € LE(RY),
with v(t, x, 1) = (K % 1)(x) conv. kernel.

The | Split-Step method (SSM) | scheme

YN = XN+ hv (e, YN, g, iy M (ak) = Za pn(d) (1)
N =N bt YN N+ ot Y, g N)A w;. 2)

In a nutshell: solve super-linear/convolution component implicitly, then in (2), use the
empirical measure of Yt’k’*’N and deal with other terms.

Some advantages
@ Implicit method for the bad drift components — more stable than explicit method.
@ Time step restriction for solvability of implicit step is artificial: just £yx
@ (This is a type of Lie-Trotter splitting method)
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e A setting of interest: super-linear Interaction MF kernel
@ Our results
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Convergence results: Lipschitz diffusion

Theorem (Chen & GdR ’22: SSM’'s MSE Conv (l))

Under monotonicity + Holder in time hold + X, € L™(RY) and

Let X' be the solution to the MV-SDE (driven by W), and X'"N-M pe the SSM
scheme. Then we obtain the following convergence result

MSE := sup E[ sup |X/" — X{NM21 < Ch'¢, e>0.
1<i<KN 0<t<T

@ lts very difficult to obtain LP-moment bounds (p > 2) for the scheme.

e critical to have sup,,,. inside expectation is that somewhere we use:
Lixinmsg+ Lixinm<g
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Convergence results: Lipschitz diffusion

Theorem (Chen & GdR ’22: SSM’'s MSE Conv (l))

Under monotonicity + Holder in time hold + X, € L™(RY) and

Let X' be the solution to the MV-SDE (driven by W), and X'"N-M pe the SSM
scheme. Then we obtain the following convergence result

MSE := sup E[ sup |X/" — X{NM21 < Ch'¢, e>0.
1<i<KN 0<t<T

@ lts very difficult to obtain LP-moment bounds (p > 2) for the scheme.
e critical to have sup,,,. inside expectation is that somewhere we use:
Lixinmsg+ Lixinm<g

@ Exploit convolution structure but use that K is an odd function ®

Goncalo dos Reis (U. of Edin. + CMA) Numerics for SDEs and Mean-field SDEs Nottingham 1 Jul 2025 15/51



Convergence results: super linear growth diffusion

Theorem (Chen, GdR, & Stockinger '23: SSM’s MSE Conv (Il))

Under monotonicity + Holder in time hold + Xo € L™(RY) and ‘ o polynomial © ‘

Let X' be the solution to the MV-SDE (driven by W), and X'"N:M be the SSM
scheme. Then we obtain the following convergence result

i\N i,N,M
MSEsup outside -— SUP  sSUPp E“th - th |2] < Ch.
1<i<NO<t<T

V.

@ Its much easier to obtain this result. One gets away with just L2 estimates.
@ We can have additionally a polynomial growth diffusion map
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Other schemes: Tamed Euler scheme &

Time-adaptive

e Taming: tamed Euler explicit scheme.'®> With the notation above

consider the following scheme h:= T/M

B(tk’xl N,M M?,f N)

b(tk7 )—(t/k,N,M7 ljtk’N> ‘ h

JrU(tlﬁ)(/N/\/I XN)AWtk’

XI N,M )‘(i,N,M

fic41

14 o

where i M(dx) = & S, o5;mu(dx) and a € (0,1/2] with XyNM = Xxi.

e Time-adaptive.'®
Just like standard explicit Euler. Timestep his now h(x) such that

Ib(t, x, w)h(x)| < C(1 + |x]).

'SReis, Engelhardt, and Smith, “Simulation of McKean-Vlasov SDEs with super-linear growth”, Jan. 2021.
'®Reisinger and Stockinger, “An adaptive Euler-Maruyama scheme for McKean SDEs with super-linear
growth and application to the mean-field FitzHugh-Nagumo model”, 2020.
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e A setting of interest: super-linear Interaction MF kernel

@ Numerical results
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Double-well with Multiplicative noise

dXt = (V(Xt, /14?() + Xt) at + Xtth with V(X, /J) = —%Xs + fRd —(X — y)sﬂ(dy)

nnnnnnnnnnn

Jrp—

w
et - g .

Zas

g0 ER- '

&os - o0
w
Fa

w0 F
o

i

idd

;;;;;;; o » 1 3
X

(a) Density with X ~ A(0, 1) (b) Density with Xo ~ N(2,1)

Figure: N = 1000< h = 0.01 attimes T = 1,3, 10. Last Fig t € [0, 3] and with
Xo ~ N(3,9). (Newton method w = v/h)
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e Another setting of interest: Mean-field Langevin
@ Our results
@ Numerical results
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Mean-field Langevin equations

We consider the 1-d mean-field Langevin (MFL) equation for (X;)t>o € R':

t
X, :,g_/ (VUXS) + TV = s(Xe) ) ds + o W, @3)
0
where 1 is the law of X;, and W is a 1-d Brownian motion.

For functions U, V with some suitable regularity and convexity then
@ X; admits a unique stationary distribution p*, i.e., Law(X;) A past— oo
@ * has well-known implicit form

e xes (- UK - [ Vo-yw@). @

Thus,
> how sample from p* better than Euler/Milstein? (What is "better"?)

Goncalo dos Reis (U. of Edin. + CMA) Numerics for SDEs and Mean-field SDEs Nottingham 1 Jul 2025



Preparation for main result

The IPSto (3)isfori=1,--- /N

. ) t . 1N ) . .
iN N i,N iN _ yi,N
Xt =¢ /0 (V UXs™) + N j§_1 VV(Xs Xs ))ds +oW.
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Preparation for main result

The IPSto (3)isfori=1,--- /N

. ) t . 1N ) . .
iN N i,N iN _ yi,N
Xt =¢ /0 (V UXs™) + N /-2_1 VV(Xs Xs ))ds +oW.

Or written as a RV-valued map B as

RNBXZ(X1,...,XN)'—> B(X) = (B1(X1,...,XN),...,BN(X1,...,XN)),

N
. 1
with  Bi(x) = Bi(x1,.... xn) = ~VU(x) - 1 > V(X - xp),
j=1

and we re-write the IPS for (XY);>0 = (X", ..., X¥N) 50 as

t

XY =¢+ / B(XY)ds + oW, (5)
0

(Euler Scheme) = Xﬁrf = X,N’h + hB(X,N’h) +oAW, . (6)

Goncalo dos Reis (U. of Edin. + CMA) Numerics for SDEs and Mean-field SDEs Nottingham 1 Jul 2025



The non-Markovian Euler scheme

The scheme introduced in Leimkuhler et al *14'7 for our IPS as a RN-valued
SDE

t
XY =¢ +/ B(XY)ds + oW,
0

1

(0-ME Scheme) = | X7 = XM 4 hB(XN") + o 5(AWis + AW).| (7)

7 Leimkuhler, Matthews, and Tretyakov, “On the long-time integration of stochastic gradient systems”, 2014.

Goncalo dos Reis (U. of Edin. + CMA) Numerics for SDEs and Mean-field SDEs Nottingham 1 Jul 2025



The results for standard SDEs

Results for SDEs'® — setting VV = 0 in our case; U € C” (in RY)
(c=cly) | Strong (T <) | Weak (T < x) | Weak (T = x)

Euler / Milstein 1 1 1
non-ME

Weak Error™ " (h; T) = Crh+ O(h?) where Tlim Cr = Const > 0.
—00

18| eimkuhler, Matthews, and Tretyakov, “On the long-time integration of stochastic gradient systems”, 2014.
lbid.
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The results for standard SDEs

Results for SDEs'® — setting VV = 0 in our case; U € C7 (in RY)
(c=cly) | Strong (T <) | Weak (T < x) | Weak (T = x)

Euler / Milstein 1 1 1
non-ME 1 5

Weak Error™ " (h; T) = Crh+ O(h?) where Tlim Cr = Const > 0.
—00

but for the non Markovian scheme (Theorem 3.419)
7_Iim Cr=0 = lim Weak Error"™™*Eler(p Ty — O(H?),
— 00

T—o0

18| eimkuhler, Matthews, and Tretyakov, “On the long-time integration of stochastic gradient systems”, 2014.
lbid.
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The results for standard SDEs

Results for SDEs'® — setting VV = 0 in our case; U € C7 (in RY)
(c =clg) | Strong (T < o) | Weak (T < o) | Weak (T = )

Euler / Milstein 1 1 1
non-ME 1/2 1 5

Weak Error™ " (h; T) = Crh+ O(h?) where Tlim Cr = Const > 0.
—00

but for the non Markovian scheme (Theorem 3.4'9)
Tlim Cr=0 = lim Weak Error"™™*Eler(p Ty — O(H?),
— 00

T—o0

Lemma (Proposition 2.2)
2 Under Lip. the non-ME pointwise strong error is 1/2 (also when V'V £ 0)

4Chen et al., “Improved weak convergence for the long time simulation of Mean-field Langevin equations”,
2024.

'8 eimkuhler, Matthews, and Tretyakov, “On the long-time integration of stochastic gradient systems”, 2014.
194
Ibid.
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How to understand the results?

The SDE
aX(t) = B(X(1))dt + cdW(t), X(0) = Xy

New view: Vilmart '15%° conceptualised "Postorocessed Integrators" to study
algorithms as T — oo. Instead of

< < < 1
Xny1 = Xn + hB (Xn) + EUﬁ(fn +&ni1)

20vilmart, “Postprocessed integrators for the high order integration of ergodic SDEs”, 2015.
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How to understand the results?

The SDE
aX(t) = B(X(1))dt + cdW(t), X(0) = Xq

New view: Vilmart '15%° conceptualised "Postorocessed Integrators" to study
algorithms as T — oo. Instead of

Xni1 = Xn+ hB (Xn) + %Uﬁ(fn + &nv1)
rewrite it as a "predictor-corrector” (postprocessed) method
Xni1 = Xp + hB (Xn + %aﬁgn> + oV hén,
Xn1 = Xo1 + %U\/ﬁfnﬂ

Intuition... Gilles spilled the beans :)

20vilmart, “Postprocessed integrators for the high order integration of ergodic SDEs”, 2015.
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e Another setting of interest: Mean-field Langevin
@ Our results
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Assumption 1:
Let The potentials U, V € C3(R). Further suppose that
@ U is uniformly convex : there exists A > 0 such that for all x,y € R,

(VU() = VUW)) (x —y) = Alx = y[2. (8)
@ Vs even (thus VV is odd), and convex, i.e., for all x, y € R,

(VV(x) = VV())(x—y) =0,

and there exists Ky > 0 such that |V2V|,, < Ky.

Assumption 2:

@ The potentials U, V € C’(R), and all derivatives of VU, VV are uniformly
bounded, with A\, Ky satisfy A > 7Kj,.

@ LetNeNwith N>>6. Forany n<6and (v1,...,7,) =7 € Uz MY,
with integers +; € {1,..., N}, the function g : RN — R, satisfies

|8)|(Z1‘ ,,,,, X dlee = O(N-9M), with an implied constant independent of .
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Weak error and the test functions g

We analyse the weak error:
Elg(XP)] - E[g(X7"].  X¥.X7" e RN

Typical test functions g are
9(x)=g 1 Z f(xi) |, for some nice diff f, g,

using the associated Backward Kolmogorov equation?!,22
How does g behave? (more difficult than the weak PoC test functions)
° |8§1,x2,xag|oo = O(N_S)
° |a§1,x1,xsg|oo = O(Niz)
@ If f = id then for any |y|-order derivative, one has automatically
|8)|(Z1‘ Xy g|oo = O(N_l’)ll)'

21Talay and Tubaro, “Expansion of the global error for numerical schemes solving stochastic differential
equations”, 1990.

22Milstein and Tretyakov, Stochastic numerics for mathematical physics, 2004.
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Main result

Let Assumptions hold, let ¢ € L'°(Q,R) and let0 < h < min{1/2),1}.
Then

[Elg(X¥)] - Elg(X}")]| ~ K exp(~AoT)h + K2 + O(1P),

where g : RN — R is the weak-error test function for some positive constants
o, K independent of h, T, M and N.

> Main difficulties:
Start point: RN 5 x > u(t, x) = E[g(X}7") | X" = x].
> Taylor expansions

(a) K, \p independent of N, T + exponentially decay over time and
(b) across 6-variation orders of u(t, x)
thus

RN 5 x s XP¥ e, V XPX, V2 X7
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Some results

0% u(t, X)[?
N N N L
t,x,N t,xi,i,N t,x,N t,xi,i,N vt X, /7
— B[ aa0F XY + B[ YD 08, gk X
i=1 i=1i"=1
07, Ut X)[2
N 2
_ t,x,N t,xi,i,N
= B Z Z <8XIQ(XT ))x s X (XT’X"” )Xﬂ1 ’“"Xﬁﬁ‘|
O‘vﬂEUZ;(; nm i=1 Y o
Y\(11)€Eawp
For the first variation process (K indep. of N)
N , N : K
SE[IXNP] < Kee0, and Y B[IXERIVP] < e Ret.
i=1 i=1,i#j
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e Another setting of interest: Mean-field Langevin

@ Numerical results
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A basic example

Take the linear example:
ax; = ( —a(X; — E[X]) — Xt>dt FodW, X e L'O(Q,R), (9)
where a, 0 > 0. We have E[X;] = E[X;]e~! and
. 1 a+1 , o N
M(X)—Eexp(— = x), Z._/Ru(x)dx. (10)

We compute the relative entropy error and the Lo-Error (of the density)

mes true

Relative Entropy Error = Z /Lm]e In (%)
Hi

Noins
LQ(R)-EITO[‘ = \J Z |Mtrue approx ’

where N,s ~ 100 is partition of R.
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Numerical results in a stylised (linear) example

10° 10°
—— Euler —— Euler
10-t —— non-Markovian —— non-Markovian
107t
1072
1073 1072
1074 _,| —— Euler
1073 1074 . non-Markovian
10-5 + Order 0.5
. . 10-5] 777 Order 1.0
07 4 6 8 10 2 4 6 8 10° 10* 10° 10° 107
Time Time N
(a) Relative Entropy Error (b) Lo-Error (c) PoC Lp-Error (log-scale)

Figure: Simulation of the linear MV-SDE with o = 0.5,0 = 0.8, N = 107, h = 0.16, and
Xo ~ N(m,1). (a) Entropy Error of the Euler method and non-Markovian method in
log-scale over time. (b) Lo-Error of the Euler method and non-Markovian method in
log-scale over time. (c) Lo-Error in particle size N of the Euler method and
non-Markovian method in log-scale with different Nat T = 9.
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Numerical results in a stylized (linear) example

1072 -
1073 e
1073 7
1074 -7
1074
-5
10-5 —— Euler 10 < —— Euler
—— Non-Markov —— Non-Markov
——= Order 1.0 10-61 = ——= Order 1.0
106, Order 2.0 M Order 2.0
103 102 1073 1072
Time step Time step
(a) Weak err.att =1 (b) Weakerr.att =7

Figure: Simulation of the linear MV-SDE with « = 0.5,0 = 0.8, N = 107, h = 0.16, and
Xo ~ N(m,1). (a) Weak error in particle size N of the Euler method and non-Markovian
method in log-scale with different N at T = 1 (b) Lo-Error in particle size N of the Euler
method and non-Markovian method in log-scale with different Nat T = 7.
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Error in number of particles

) Entropy Error L-Error
@ o a b M N g NM Euler NM
108 - - 2.89E-02  3.28E-02

10% - - 1.01E-02  1.04E-02
05 08 —-18 1.8 72 10°> 8.21E-04 4.83E-04 4.29E-03 3.10E-03
10° 2.74E-04 4.66E-05 2.31E-03 1.26E-03
107 2.33E-04 4.71E-06 2.37E-03 3.56E-04

Table: Simulation results for MV-SDE (9) with h = 0.04 and T = 8.64 for increasing
numbers of particles N. (As for Fig. 3: Xo ~ N (m, 1) and both schemes run on the
exact same samples of the initial condition and Brownian increments.)
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Thank you!

Thank you for your time!

2 CHEN, XINGYUAN, AND GDR, (2024) Euler simulation of interacting particle systems
and McKean—Vlasov SDEs with fully super-linear growth drifts in space and
interaction. IMA Journal of Numerical Analysis 44, no. 2 (2024): 751-796.

> preprint arXiv:2208.12772, > DOI:10.1093/imanum/drad022

24 CHEN, XINGYUAN, GDR, WOLFGANG STOCKINGER, AND ZAC WILDE, (2025)
Improved weak convergence for the long time simulation of Mean-field Langevin
equations. EJP, 30 (2025): 1-81.

> preprint arXiv:2405.01346, > DOI:10.1214/25-EJP1344

23Chen and Dos Reis, “Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully
super-linear growth drifts in space and interaction”, 2024.

%Chenetal., “Improved weak convergence for the long time simulation of Mean-field Langevin equations”,
2024.
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The Wasserstein metric

Wasserstein distance W®(u, v).

Over RY, set the space of probability measures as P(RY) and its subset
P2(RY) of those with finite second moment.

The Wasserstein distance metricizes the weak convergence of probability
measures and is defined as

1
Wi(u) = inf ([ x=ylen(anan)s e Pa(eO)
X

m€N(p,v)

where M(u, v) € P(RY x RY) is the set of couplings for 1 and v such that
7 € M, v) is a probability measure on R? x R? such that 7(- x RY) = x and
7R x -) = v.
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Applications

These equations appear in many places.

@ Controlling MV-SDE leads to Mean-field games
e Finance, interacting agents in economics or opinion networks
o Statistical mechanics, Molecular and fluid dynamics, Plasma Physics,
e Dynamics of granular materials,
o Chemistry of crystallisation

@ Machine Learning:
e MV-SDE as limits of (Deep) Neural networks
o Generative Adversarial Networks (GAN): MFGs have the structure of GANSs;

and GANs are MFGs under the Pareto Optimality.
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Applications

These equations appear in many places.

@ Controlling MV-SDE leads to Mean-field games
e Finance, interacting agents in economics or opinion networks
o Statistical mechanics, Molecular and fluid dynamics, Plasma Physics,
e Dynamics of granular materials,
o Chemistry of crystallisation

@ Machine Learning:
e MV-SDE as limits of (Deep) Neural networks
o Generative Adversarial Networks (GAN): MFGs have the structure of GANSs;

and GANs are MFGs under the Pareto Optimality.

Less trivial than it looks,
@ No Flow property in RY but in L2(Q, (Fi)i>0, P) or RY x Pp(RY):
X0 £ X% fort € [0,00], r € [0, 1)
@ This leads to infinite dimensional calculus and difficult “PDEs”

[0, T] x RY x Po(RY) 5 (t, X, u) = u(t,x,u) = Whatis ,u?
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Weak error methodologies

How does one go about showing weak errors?

@ Talay-Tubaro®® but see Milstein Tretyakov book (2nd edition 2021)28
> Feynman-Kac and exogenous PDE result

@ It6-Taylor expansions?’
> Expansions of drift and diffusion using the SDE itself and over a simplex

@ Malliavin calculus + Duality®®
> Integration by parts, and pathwise analysis

@ Parametrix expansions®®
> Expansion of the densities

@ ad-hoc // by hand

25Talay and Tubaro, “Expansion of the global error for numerical schemes solving stochastic differential
equations”, 1990.

28Milstein and Tretyakov, Stochastic numerics for mathematical physics, 2004.

2’Kloeden and Platen, Numerical solution of stochastic differential equations, 1992.

28Clément, Kohatsu-Higa, and Lamberton, “A duality approach for the weak approximation of stochastic
differential equations”, 2006.

2Konakov and Menozzi, “Weak error for stable driven stochastic differential equations: Expansion of the
densities”, 2011.
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Back to the Analysis: Kolmogorov backward equation
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Kolmogorov backward equation

We introduce XL*N = (i N o xEwNNY ‘where for i € {1,..., N}
. S . .
X s [ B XY s (W W)
t

The generator for is defined by

N
1
Ly=> By + 5 0265, .
i=1

We introduce the Kolmogorov backward equation:
ou+Lyu=0, tel0,T), u(T,x)=g(x), (11)

for the above test function g : RV — R, by the Feynman-Kac formula the
solution of the above PDE is given by

u(t,x):]E[g(X’}’)}X{’N:x,,ie{L...,N} . (12)
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Weak-Error expansions

E[g(X)| - E[g(X}")] = tPE [MZ L(tm, X3")

m=0

M—1
E | A( tm,xN”]
m=0

(13)

where the map L : R, x RN — R is defined via the maps u and (Biiet,...Ny -

N N
1 2
L(t.x) = 5 [ 3" Bi(x)dy Bi(x)dx u(t, X) + % Y 0y Bi(x)92 , u(t, X)
ij=1 i,j=1
0'2 N
+% /2 2 4 BixX)d,u(t x)|. (14)

The remainder term R(-, -) will later be written as a linear combination of 8
remainder terms, we need to control all the summations...
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Kolmogorov backward equation Examples

Consider the first derivatives, by chain rule, we need to analysis the
derivatives of g and the variation processes

|0 u(t, x)[?

N , 2
’ [Z By 9( thN (X;J,)()éj,/,N)”

i=1

< 2[E [l axi )| ey |+ 2l S (angxim) ][

i=1, i#j
_N2 [|th,/N ]+KN Z “|3x, (X7 |X§)§IN|”
i=1, i#j
p . K N g
e, 2 B
=1, 1#]

where we want dy,u(t, x) ~ O(1/N) so that [0, u(t, X)|? ~ O(1/N?)
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Kolmogorov backward equation Examples-3

Similarly for the second derivatives

0% u(t, X)[?

N N N 2
t,x,Ny yot.x;,i,N 2 t,x,Ny vt.x;,i,N vt X ,i" ,N
= ’E { Z 9% 9(X7 )XT,)Q,-,xk ] + E[ E E 5 x, 9(X7 )XT,)Q,- XT'x }
i=1 =1 i’=1

The n-th derivatives
07 u(t X))

N
El D (ax,.g(x;’"v’v)) (X5, ,...,xﬁB]

_ P qur“vxot
a,BeUpsy MY, =1 e
N(y1)€awp

2

Basically, we need to analysis and take many summations so to match all the
orders in derivatives of g and the variation processes....
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Orders: Properly grouping + Jensen’s inequality

Consider now the specific two-dimensional example of x,, -, = N'~°0)
(corresponding to a 2 x 2 matrix with diagonal entries 1 and otherwise 1/N).

2 4] 1 2 2 L 2
’ Z Xyiv2| = N ’W Z Xyie| S N Z |X,‘,j|
yeny ~eny ij=1
N N
= N2 il N2y [xgF = NG NE < 2N,
i=1 =1,

This estimate is too naive and can be improved, as we can instead consider

5 N N
‘ Z Xy1,72 < 2} ZX/ /‘ + 2’ Xij| < QNZ |X,'7,'|2 +2N? Z |X,'7j|2
veny 1j=1,i#f =1 I,j=1,i#]
ONB(N — 1)
_ 2 2
=2N*° + —NE < 4N-,

which is indeed a sharper upper bound.
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The variation processes

The first variation process of (X5*")s>10 is given by
XN =615+ / ZOX,B, (XEN XN du,
The n—variation process of (Xﬁ;’“N)SZtZo is given by

XN, = [ (Zax, (XLENXEEY)  aw (15)

XygyeesXyp

S
_ / ZaX,B(x“‘N)xjig’,N o du
t _

+ 3 / Z By Bi(X5X N))

a,8eUps, MY,
|a|>0, 7\(71)60¢u-lﬁ

t,X I,N
(Xu’,x;1’ du,
XD‘1"”’X°‘\0¢| X51,..A,Xﬁ‘ﬂ‘
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Some interesting results of the variation processes

Under the assumptions we have with the the starting positions x; € L?(Q, R)
are Fi-measurable random variables that are identically distributed over all

ie{1,...,N}. Foreach 1 < n <6, there exist constants AE,”) € (0,A) and
K > 0 (both independent of s, t, T and N) such that for any
me{1,...,n+ 1}, we have
Vs ~1.N K M st
Z [l sx:; Xy |p] < We o P(s=D),

'Yenmrw é('\/)*m
This implies that, for all v € Hn+1, such that (’5(7) =m me{l,....,n+1}:

|Xt RRA Pl < K =N p(s—1)
Sy Xyg s+ Xy Np(m—1) :

Example (The first variation process)

i N

t.xi,i,N | p ap(s— Ex N K -
2 [|Xs§j’ | } < Ke=P(s=0  and 12# {ngl |p] < e Ap(s—1)
= i=1,ij
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More results

There exists a constant K > 0 (independent of ¢, T, N), such that for any
neN,1<n<6,ycny, and x ¢ RN

0% oo, Ut X) 2

€|
<KZ PO D D [H\ X

el Y, oty €Uy
O(eU7)=0(y)+m UL amy

)

where a; = (aj1,...,qj ) and ajj € {1,... N} forje {1,... |al}.

Further, assuming that the starting points x; are F;-measurable random
variables in L2(Q2, R) sampled from the same distribution for all i € {1,..., N},
we have

]Eﬂan XWU(LX)IZ} < Keo(T-0N-20()

Xy rees
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A short detour

Solution and mean field approximation theory for the dynamics

dXt = (K*,ut) (Xt) dt+0'th, MUt = E(X;)
Xo = Xo, ﬁ(Xo) epP (Rd)
where « stands for the convolution operator K « 1(2) := [44 K(z — y)u(dy).

Solution theory: W is a BM and ask for existence, uniqueness and continuity
in £ (xo) of the solution 1 € P (Ct)

Particle approximation: if (x{, W")I.Ii1 — (X0, B) suitably, then 1 is similarly
approximated by solutions to
. . . N
dXt’ = .(K*,u?’) (X{) dt + cdW}, ul¥ .= & e 5X{
Xy =x5, L (X(’)) eP (Rd)

Starting point: > Wellposedness for the MV-SDE & Particle system,
> Propagation of Chaos (Conv. as #Particles — o)
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