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Introduction

Given a scalar autonomous SDE

dXt = /,L(Xt) dt+ dVVt-7 t e [0, 1],

1
() Xo=x €R

with drift coefficient ;: R — R and scalar Brownian motion W.
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Introduction

Given a scalar autonomous SDE

dXt = /,L(Xt) dt+ dVVt-7 t e [0, 1],

1
() Xo=x €R

with drift coefficient ;: R — R and scalar Brownian motion W.

Approximate X; by
Xn’]_ = U(th, ey Wt,,)7

where t;,...,t, €[0,1] and u: R” — R is measurable, w.r.t. L,-error

E[1X, — X1/P] "
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Typical upper bound: There exists ¢ > 0 such that for all n € N,

E[1X; — XpalP]"? < =

= o
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Typical upper bound: There exists ¢ > 0 such that for all n € N,

pl/p < <
} 7na'

E[|X, — )A(n,1

Typical lower bound: There exists ¢ > 0 such that for all n € N,

. 1/p C
fOE[X — u(W,..., W, )IP]P > =
tl,...,lt?e[o,l], H 1 — u(W )| ] < B
u measurable
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Typical upper bound: There exists ¢ > 0 such that for all n € N,

E[1X; — XpalP]"? < =

s
Typical lower bound: There exists ¢ > 0 such that for all n € N,
inf  E[IX; — u(We, ..., W,)P]V? > =

t1,...,ta€[0,1], —nf
u measurable

Ideally: o = 5.

In this talk: p is Holder continuous or of fractional Sobolev regularity.
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|I. Holder continuous drift

Approximation of SDEs with Hélder continuous pu:

Gyongy, Rasonyi (2011), Pamen, Taguchi (2017),
Ngo, Taguchi (2017, 2019), Bao, Huang, Yuan (2019),

Dareiotis, Gerencsér (2020), Butkovsky, Dareiotis, Gerencsér (2021),

Neuenkirch, Szélgyenyi (2021), Dareiotis, Gerencsér, Lé (2023),
Gerencsér, Lampl, Ling (2023+).
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Upper error bounds

Euler scheme. For neNand /=0,...,n—1,

- - 1 o~
XIE(EJrl)/n = lef/n + - M(X,fe/n) + Wieg1y/n — Weyn-

5/14



Upper error bounds

Euler scheme. For neNand /=0,...,n—1,

n

- - 1 o~
XE,(4+1)/n = lef/n + - M(X,fe/n) + Wieg1y/n — Weyn-

Theorem 1 (Butkovsky, Dareiotis, Gerencsér 2021).

Let o € (0, 1] and assume that u is bounded with € C*. Then for all
e >0 and p € [1,0) there exists ¢ > 0 such that for all n € N,
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Upper error bounds
Euler scheme. For neNand /=0,...,n—1,
XEO — X(),

~

1~
XIE(EJrl)/n = Xn,e/n + - M(X,fe/n) + Wieg1y/n — Weyn-

Theorem 1 (Butkovsky, Dareiotis, Gerencsér 2021).

Let o € (0, 1] and assume that u is bounded with € C*. Then for all
e >0 and p € [1,0) there exists ¢ > 0 such that for all n € N,

E[|X; — XE,|P]» < —=
n

Remark. Gerencsér, Lampl, Ling (2023+): L,-error rate 1*‘“ — ¢ for the
Milstein scheme for SDEs with 4 as in Theorem 1 and d|fFu5|on coefficient
o € C2 with |o| > ¢ > 0.
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Upper error bounds
Euler scheme. For neNand /=0,...,n—1,

~

- 1 o~
XIE(EJrl)/n = lef/n + - M(X,fe/n) + Wieg1y/n — Weyn-

Theorem 1 (Butkovsky, Dareiotis, Gerencsér 2021).

Let o € (0, 1] and assume that u is bounded with € C*. Then for all
e >0 and p € [1,0) there exists ¢ > 0 such that for all n € N,

E[|X; — XE,|P]» < —=
n

Remark. Gerencsér, Lampl, Ling (2023+): L,-error rate 1*‘“ — ¢ for the
Milstein scheme for SDEs with 4 as in Theorem 1 and d|fFu5|on coefficient
o € C2 with |o| > ¢ > 0.

Question. Existence of a method )A<,,71 = u(Wy, ..., W,,) that achieves a

better L,-error rate than 427
5/14



Lower error bounds

Theorem 2 (Miiller-Gronbach 2004, Hefter, Herzwurm, Miiller-Gronbach
2019).

Assume that SDE (1) has a strong solution X and that there exist an open
interval J C R and ¢, € [0, 1] such that

(i) P(X, € J) >0,
(i) w is three times continuously differentiable on J with inf,c,|p/(x)| > 0.

Then there exists ¢ > 0 such that for all ne N

inf E[|X1_U(Wt17...,th)
ty,...,tn€[0,1]
u: R"—R measurable

=

SHNe)
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Lower error bounds

Theorem 2 (Miiller-Gronbach 2004, Hefter, Herzwurm, Miiller-Gronbach
2019).

Assume that SDE (1) has a strong solution X and that there exist an open
interval J C R and ¢, € [0, 1] such that

(i) P(X, € J) >0,
(i) w is three times continuously differentiable on J with inf,c,|p/(x)| > 0.

Then there exists ¢ > 0 such that for all ne N

inf E|| X1 — u(Wy,..., W, >
tl,...,ltr:e[o,l] (1% = (W, Wi, )I] 2
u: R"—R measurable

SHNe)

Remark. Assumptions of Theorem 2 are satisfied for the SDE (1) with
p = cos and xo = 7/2, to =0 and J = (7/3,27/3).

Note: p is bounded and p € C® for all « € (0,1].
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Theorem 3 (Ellinger, Miiller-Gronbach, Y 2025+).

For every a € (0,1) there exist p, € C* bounded and ¢ > 0 such that for
all ne N,

inf E(|X] — u(Wy,,..., W, >
n,...,ltne[o,u 1% = u(Wey,. ., W )] n's
u: R"—R measurable

7/14



Theorem 3 (Ellinger, Miiller-Gronbach, Y 2025+).

For every a € (0,1) there exist p, € C* bounded and ¢ > 0 such that for
all ne N,

inf E(|X] — u(Wy,,..., W, > .
tl,...,ItI":,E[O,l] H 1 U( t1s ) tn)|:| nHTa
u: R"—R measurable

Remark. Possible choice of i, in Theorem 3: the WeierstraB function

oo
Ha(x) = Z2‘aj cos(2x), xR
j=1
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Sketch of proof of Theorem 3
For simplicity: mean squared error and t; =i/n, i=0,...,n.

Coupling of noise (see Miiller-Gronbach, Y 2023)
Construct a Brownian motion W" such that Wt’] =W, fori=1,...,nand

Let X" denote the solution of SDE (1) with driving Brownian motion W".
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Sketch of proof of Theorem 3
For simplicity: mean squared error and t; =i/n, i=0,...,n.

Coupling of noise (see Miiller-Gronbach, Y 2023)
Construct a Brownian motion W" such that Wt’] =W, fori=1,...,nand

Let X" denote the solution of SDE (1) with driving Brownian motion W".

Then, for every measurable u: R" — R,
E[1X) — u(We, ..., W, )]

E[1Xi — u(Wa, ..., We)P]Y? +E[IX7 — u(W,..., W)Y

(E
E[1X; — X7[2]Y2.

I\J\r—\m\n—n
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Analysis of E[|X; — X7].
1. ‘Xl ‘/ Ha Xt) Ma

*ZE[

(1060 (K ))dti J
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Analysis of E[|X; — X7].
1. ‘Xl ‘/ Ha Xt) Ma

- ZE[ [ a0 = o ))dt| J

2. Fori>n/2,

E|

[ a6 = oo

~E|

ti — — 2
/ (Ha(Xey + We = We ) — pa(Xe, + WY — Wt?—l))dt’ } —o(7)
ti—1
ti — — 2
> /ap(X)EH / (ﬂa(X+ Wy — W) — pa(x + W — Wt’?_l))dt‘ }dx — o(nz%)
R ti—1

1 s
thU
n —m'JO

1 — 2
/ (e (x L W) — b (x + W) | o] — o (ko).
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3. Recall: pia(y) = 27 cos(2y) 2522 (€27 + e 2¥). Thus,

.
iy

E{/_: /Ol(ua(x—&- %Wt) — pa(x + ﬁW}))dtrdx}

Z %Aj . esgn(j)iZ‘j‘x

jez\{0}

=E[or Y 34

Jj€zZ\{0}

=227 /1 /1 2e_§(3jﬁ)2(u_s)(1 — e_%(y )2(25_2su)) duds
0 s

1
ne’

S

=

. ! sgn(j )|2| / W, sgn(J)l
where A; = 2"1‘”/ (e vt )dt and j* = |logy(v/n)].
0
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Il. Drift of fractional Sobolev regularity

Fractional Sobolev regularity. For a € (0,1) and p € [1, 0),

— P
W“*P:{M:R%Rmeasurable | / deal}’<oo}-
rJr X —y[iter
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Il. Drift of fractional Sobolev regularity

Fractional Sobolev regularity. For a € (0,1) and p € [1, 0),

— P
WP = {u: R — R measurable | / lux) = n)l? dxdy < OO}-
R JR

[x — y[tFer

Remark. If 1 € C* and has compact support then

NS ﬂ WP = WP

0<s<a

for all p € [1,00).
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Upper error bounds

Theorem 4 (Dareiotis, Gerencsér, L& 2023).

Let a € (0,1) and p € [2,00). Assume that p is bounded with © € Wr.
Then for every ¢ > 0 there exists ¢ > 0 such that for all n e N,
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Upper error bounds

Theorem 4 (Dareiotis, Gerencsér, L& 2023).

Let a € (0,1) and p € [2,00). Assume that p is bounded with © € Wr.
Then for every ¢ > 0 there exists ¢ > 0 such that for all n e N,

Remark. Neuenkirch, Szélgyenyi (2021): Ly-error rate as in Theorem 4 for
p=a+ b with a€ C2, b bounded and b € W2 L; for (non-equidistant)
Euler scheme.
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Lower error bounds

Theorem 5 (Ellinger, Miiller-Gronbach, Y 2023+).

For every a € (1/2,1) there exist u, € W2 bounded and ¢ > 0 such that
for all n e N,
: 2 c
inf E[|X; — u(We, ..., W,)[2]Y

ti,...,t,€[0,1] n—z2
u: R"—R measurable
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Lower error bounds

Theorem 5 (Ellinger, Miiller-Gronbach, Y 2023+).

For every a € (1/2,1) there exist u, € W2 bounded and ¢ > 0 such that
for all n e N,

inf E[|X; — u(W,,..., W, )P]"? > ——.
tl,...,ltr:e[o,l] (1% = u(Wey, o, W )T 2 nts*
u: R"—R measurable

Remark. Possible choice of p, in Theorem 5: i, = % h,, where

1

hy: RO R, xr— — .
SCERF R
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Lower error bounds

Theorem 5 (Ellinger, Miiller-Gronbach, Y 2023+).

For every a € (1/2,1) there exist u, € W2 bounded and ¢ > 0 such that
for all n e N,

inf E[|X; — u(W,,..., W, )P]"* > —
tl,...,ltr:e[o,l] U 1o (W, oo, W) ] nz
u: R"—R measurable

Remark. Possible choice of p, in Theorem 5: i, = % h,, where

1

hy RoR x —
X (11 [x|)or1r2

See also Altmeyer (2021) for lower error bounds for approximation of
occupation time functionals fol w(W;) dt.

Note: X; = Xo + fO Xt dt + Wi.

13/14



Lower error bounds

Theorem 5 (Ellinger, Miiller-Gronbach, Y 2023+).

For every a € (1/2,1) there exist u, € W2 bounded and ¢ > 0 such that
for all n e N,

inf E[|X; — u(W,,..., W, )P]"? > ——.
tl,...,ltr:e[o,l] U 1 u(We, W)l ] nz
u: R"—R measurable

Remark. Possible choice of p, in Theorem 5: i, = % h,, where

1

hy RoR x —
X (11 [x|)or1r2

Question: a matching lower bound for o € (0,1/2] and p > 27
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Lower error bounds

Theorem 6 (Ellinger, Miiller-Gronbach, Y 2025+).

For every a € (0,1) and every p € [1,00) there exist p, € W* P bounded
and ¢ > 0 such that for all n €N,
inf E[IX; — u(We, ..., W,,)P]YP > ——.

ti,...,tn€[0,1] n—z2
u: R"—R measurable
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Lower error bounds
Theorem 6 (Ellinger, Miiller-Gronbach, Y 2025+).
For every a € (0,1) and every p € [1,00) there exist p, € W* P bounded
and ¢ > 0 such that for all n € N,

. 1
inf E[IX; — u(We, ..., W,,)P]YP > ——.
ti,...,tn€[0,1] n2
u: R"—R measurable

Remark. Possible choice of i, in Theorem 6:

Na(X) = 1[—3#/2,3#/2] (X) ' szozj COS(ZjX)a x €R.
=1
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