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0. Motivation — Numerics for Backward SDE’s
orward-Backward SDE Problem:

Let T >0. Find R™ x R™9-valued (Y, Z) of the backward SDE
—dYt = f(t,Xt,Yt,Zt)dt—thWt te [07 T]
Y7 = &(X7).

where R9-valued X solves an SDE with Lipshitz functions (b, o).

Stochastic Analysis:

= Bismut '73: ‘stoch. version of Pontryagin’s max-principle’ (stochastic control)
= 3! solution tuple: Y (adapted) and Z (progr. meas. — 'steers the system’)

" m=1 y(t,x) = Y/* =E[®(XT) + [, f(s, Xs, Ys, Zs)ds] solves semil. PDE
(0 + Le)v(t,%) + F(£,%, v(£,%), (Vv(t,x)a(£,%)) ) = 0

v(T,x) = ®(X7),
on [t, T] x R9, with X!* = x (‘nonlinear Feynman-Kac').

Problem: Discretization of BSDE & Guaranteed Convergence!

1. Convergence with Rates for a Discretization of B-SDE.

2. Implementation: ... role of Conditional Expectations for dim’s g, d large!
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Numerics for Backward SDE's [Survey '23: Chessari et al ]

A ‘Backward Methods’: solve backwards in time & Conditional Expect’s appear !

EXpliCit Euler [Chevance '97, Zhang '04, Bouchard & Touzi '04]:
Let {t;}; < [0,] be of size 7. Compute iterates (Y7, Z/) via:

Zi= %]E[Yj”AjH W|#y )

Y/ = E[YJ+1 + Tf(tj,xj7 Yjv Zj)lytj] .

= Analysis by Zhang '04, Bouchard & Touzi '04: Convergence with Rates
= [mplementation: Simulate Cond’l Expect’s by Statist. Learning Meth’s!
= LS Regression by Gobet et al. ['05, '06,...,"16]: get Estimators!

= accurate computation: large .#-samples of {X/' "} M ~ .,.d_1+3

= Reliable Simulations: up to d <10 .

Part A: Statistical methods to Simulate Conditional Expectation’s

1. Statist. Learning: Clever methods needed to simulate in higher dimensions!

2. COD — also for Related Meth’s: Quantiz'n, tree based or cubature meth's,...
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0. Motivation — Numerics for BSDE's (...continued)

B ‘forward methods’: avoid simulation of conditional expect's :

= solve PDE above at fixed (t,x) to approximate solutions (Y, Z).
C ‘deep learning based methods’: to allow high-dimensional state spaces R9:

Conclusions drawn for Stochastic Control ...but NOW with SPDE’s!
. Analysis: An oco-dimensional SDE: g = o0, and d > 1

Numerical Analysis: Rates of Convergence for a Discretization

. Simulation: How to simulate Conditional Exp’s — due to COD?

Subject of my Talk: Stochastic Linear-Quadratic Problem (SLQ)
1. Problem: involves linear heat eqn. SPDE with linear noise term
2. NA with Rates — driven by Efficient Implementability:

a) Gradient descent algorithm based on Pontryagin Max. Principle
b) Direct approach based on Riccati eqn — avoiding Cond’l Exp’s!

3. Cond’l Exp’s in a) — a new Recursive Formula that avoids SL! (A. Chaudhary)
(.
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I. Aim — Numerics for Optimal Control Problem with linear SPDE

SLQ Problem:

Let T >0, and o, 8> 0. Find a minimizer (X*, U*) of
1 T —~ =
06U = SE [ 1% = X2 + Vsl ds + al X7 - X722

s.t. dX; = [AXc + Upldt + [o0 + BXcJdWs, X0 = 0.

Data and Objects:
= X:Qx Dy — R ‘desired profile. o= {ot}t: Q2 x Dt - R given
= W = {W,;}: Wiener process on probability space (2,.7,{.%}+=0,P).
= Solution: 3! (X*,U*) on it: in particular, adapted to {.Zt}+s0!

Question: How to approximate it numerically: Role of complexity of algorithms !
= Algo 1- via PM : a) Space-time discretization of optimality conditions
b) Gradient descent method gives sequence of controls
® involves BSPDE — (LS-)estimator for conditional expectations
= data-dependent regression s estimator for high-dim’l state space!

© Strong rates for space-time discretization error: ~ O(\/T + h)
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1. AlgO 1 — Numerics based on PM (Complexity & Rates of Convergence)

= Optimality Conditions via Pontryagin Maximum principle :

ax; = [ax;+ur]aes [oce BX7 Jaws  vee(0,T)
dy: = [—AYt— BZ: + X} ]dt+thWt Vte(0,T),
U:f = Yy Yte(0,T)

X; = Xo,  Yr=-aXi,

with solution (X*, Y.,Z, U*) [Bensoussan, 83].
= Problems:
= a coupled FB-SPDE: decoupling via Gradient descent method
= ‘Solve B-SPDE part’ is what is numerically challenging, since it

requires to compute conditional expectations !
= Motivation that algorithm is highly complex:
= Space: FEM gives FE-space V, c H} — of high dimension L > 1 .
= Time: Implicit Euler (Bouchard, Touzi, '04 — where BSDES are simulated)

(2} ) = ZE[2W (Y™, én)|Fy ]

(Vi @n) + 7(VY3, Von) = B[O en)lE] +67(Z), 1)

—_—

via LS-regression estimator

= Partitioning est: Gobet & al., 05, '14 — practicable for g <3
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1. AlgO 1 — Numerics based on PM (...Rates of Convergence )

= Complexity: .#-sample {{Xj Ji1<m< .//}!

h,mJ j=0"
= Q: How estimate E[(Yi+1,¢h)| X/ ] via partitioning esti. — for g large ?
—
..dim Vj =q
= A: data-dependent partitioning esti. — ‘adaptive mesh’ instead of uniform!

= Dunst, P., '17: this SL-Algo for controlled SPDE’s applicable, but
Costly — see e.g. page 1 (d =10).
= Proof of strong consistency (still) open...

Binary Tree - Level 1 Binary Tree - Level 2
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1. AlgO 1 — Numerics based on PM (...Rates of Convergence: [Wang, P.,'21])

= NA of BSPDE — Part 1: FEM — discretization in space...
dYy(t) (AR Yn(t) - BZy)dt + Z,d W (t) Vte[0,T],
Yo(T) YT -

A) strong stability inherited by limiting BSPDE
B) error estimate:

sup E[HY(r)—vh(t)uiz]%[fTHv[wr)—n(r)]n;z+\|Z(r>—zh(r)u§zdt] < ch.
te[0,T] 0

= NA of FBSPDE — Part 2: FEM —the coupled problem
A) ‘control-to-state’ map S, from SPDE: X} = S,(Uj).
B) The reduced functional 7(Uh) = J(Sh(Uh), Uh)

. S[;JPT]E[HX*(t) =X (D72 + 1Y () = Ya(0)2]

+IE[]0T IU* (8) = Uy ()22 + V[ Y (£) = Ya(0)]122 + 11 Z(t) = Zu(t) |22 dt] < CH*.
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1. AlgO 1 — Numerics based on PM (...Rates of Convergence: [Wang,

NA of FBSPDE — Part 3: time discretization for FEM-discretization above
A) requires bound: E[|Z,(t) - Zi(s)|?,] < Clt - 5|

(uniform in h)

obtained via Malliavin calculus and Riccati equation

P +AyP+B°P+1d-P°=0

Vte(0,T), P(T)=ald.

Then: X; = P, Uy — ¢, and Zy = D, Yy,
B) modified implicit Euler: based on discretization of Problem
B;) First write down (SLQ); , — set X = 0:

1 N «@ .
Jr X Unr) = 57 3 B[ X,r 72 + [Un, 7 2] + S E[1Xr (T) 2] —> min!
n=1

s.t.

Xp,r (tar1) = Xn,+ (tn) = T(AhXh,T(tn+1) + Uh,’r(tn)) + (Xh,T(tn) + Ut,,)An+1 w

B;) derive ‘discrete PM’ — modified implicit Euler

Result for PM-based Space-Time -Discretization of SLQ:

[P., Wang, "21]

E[JX" (6) - X5 (el + > [

1U*(2) = Uy - (81172 dtl] < C(7 + b)
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I1l. Algo 2 — Numerics via Riccati eqn (Complexity & Rates: [Wang, P.,'23])

= Algo 1: e Statistical tools for high dimensions to compute cond.| expect’s

e gradient descent method

= Tools for Theory:
= Malliavin Calculus & Riccati equation to get Rates:

P’ +AP+PA+BP+1d-P*=0 Vte(0,T), P(T)=oald.

= |dea for Algo 2 : make Riccati equation relevant part of another Algorithm!

(a) PDE;: solve the Riccati equation above to get {P(t)}0. Then
(b) PDE:: get {n(t)}es0 via

n'=-An+ Ppn-BPoc Vte(0,T), n(T)=0.
(c) Insert in SPDE the Feedback law for minimizer U":
U'=—-pPX'-1m VYte(0,T).

©® no BSPDE, no minimization! To solve SPDE comparably easy!
© Discretization of 2 PDE's and 1 SPDE : we expect order O(\/T)

® restricted now to SLQ. Riccati has operator-valued solution!
Andreas Prohl (U Tiibingen)
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IV. Deterministic LQ: A review of Riccati-based approach

NA of LQ — the deterministic counterpart of SLQ:

= Key is NA of Riccati-equation : its analysis e.g. in [Lasiecka & Triggiani, '00]

1. FEM-Semi-Discretization of Riccati equation to solve LQ [Kroller & Kunisch, '91]

= Optimal Rates
= Tool: Role of P in LQ ‘.. not just PDE sol : minimum of J representable with help of P...

2. |E -Semi-Discretization of Riccati equation [Hansen & stillfjord, '14]

= Sub-Optimal Rate %

= Tool: Use IE for PDE Only: *...use monotonicity properties & [Rulla, '96]..."

3. BDF-based time discretizations: . heuristic evidence in works by [Benner et al.] ..’

Question/Motivation:

= Construct optimally convergent space-time Discretization — even for LQ!

= |dea for construction: properly address in NA the role of P in (S)LQ!

= Standpoint: Results/NA tools below for SLQ also address LQ !
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: Constr. via Difference Riccati-eqn

A) Concepts to get an optimally convergent Difference Riccati equation:

= Starting point: (slightly mod.) Riccati-equation also for SLQ!

" Difference Riccati eqn: Discretization for P matters! [ait Rami, Chen, Zhou, '02]
= Not just discretize Riccati equation by IE, but address SLQ !
= Scheme: Denote Ao = (Id - TAh)_l. Then get {P;}), via

2
Py =(1+ %)Z(AOPEHAO = TAoPrs1A0AoP i1 Ag) +7Id Py = ald. (1)

Result 1 for FEM-version of Riccati (1):

[P., Wang, 23]

Let 7 < 19(c, ). Then

e 1
HP(tg)—PgHL(Lz)sC(h2+7—)( +|n;) (0<l<N-1).
— b

ty

= Tools: [Ait Rami, Chen, Zhou, '02], (discrete) semigroup methods,
(discrete) stability, induction arguments
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IV. ...now SLQ: Constr. via Difference Riccati-eqn  [P., Wang, '23]

B): Construction of an optimally conv. Discr. for SLQ

Problem (SLQ) with 2) Problem (LQ)%y, with 3) Problem (LQ)L" with
J in (L.1) and SPDE (1.2) Gin (27) and PDE (28) |77 Gy, in (2.13) and PDE (2.12)

1-1) Riceati cquation P() (2.5) K/ 5) simplificd discrete ' [4) discrete Riceati equation
! Riceati equation P. in (3.27) ' P.in (2.14)

6) discrete 1. (4.3) ‘

T

‘ 1-2) PDE (") (4.2)

7) discrete foedback law (4.4)
U =P X —n

8) discretized SPDE (4.5) 3

Result 2 for Space-Time -Discret. of SLQ: [p. wang, 23]

Let 7 < 79(e,8). Then

1.2
* *112 * *12 2 2
max B[IX" (6) = X7 12, + 1U* () = U7 ] < C(|(82 + ) 2+ 627)

= Tools: Result 1, stability, tools for SPDE-conv. analysis (no Malliavin calc.!)
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Summary of Talk

Numerical Analysis of SLQ:

1) Algo 1 — an algorithm that uses PM-principle:

. an iterative method that uses gradient descent and BSPDEs
. construction: suitable for general minimization methods.

. space-time discretization: optimal rate of convergence

. Discretization of BSPDE costly!

= A. Chaudhary: A Recursive Formula to get {Y'}; Avoiding SL!

OO O =

2) Algo 2 — an algorithm that uses Riccati equation for (S)LQ

= construction: Key for optimal scheme: Riccati serves minimization!
© Simulation: problem on page 1 — at a fraction of time !
© : space-time discretization: optimal rate of convergence
3) Whatever way we choose for (SLQ): take optim. viewpoint for discretization!

= only discretization of BSPDE or Riccati might be sub-optimal!
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