Numerics for SLQ problems with SPDE's

A. Prohl (U Tübingen, Germany), Y. Wang (Southwest U, China)

June 28, 2025

0. Motivation — Numerics for **Backward** SDE's

Forward-Backward SDE Problem:

Let T > 0. Find $\mathbb{R}^m \times \mathbb{R}^{m \times d}$ -valued (Y, Z) of the **backward** SDE

$$-dY_t = f(t, X_t, Y_t, Z_t)dt - Z_t dW_t \qquad t \in [0, T]$$
$$Y_T = \Phi(X_T).$$

where \mathbb{R}^q -valued X solves an SDE with Lipshitz functions (b, σ) .

Stochastic Analysis:

- Bismut '73: 'stoch. version of Pontryagin's max-principle' (stochastic control)
- \exists ! solution tuple: Y (adapted) and Z (progr. meas. 'steers the system')

Problem: Discretization of BSDE & Guaranteed Convergence!

- 1. Convergence with Rates for a Discretization of B-SDE.
- 2. Implementation: ... role of Conditional Expectations for dim's q, d large!

0. Motivation — Numerics for Backward SDE's [Survey '23: Chessari et al.]

A 'Backward Methods': solve backwards in time & Conditional Expect's appear!

Explicit Euler [Chevance '97, Zhang '04, Bouchard & Touzi '04]:

Let $\{t_i\}_i \subset [0,]$ be of size τ . Compute iterates (Y^j, Z^j) via:

$$\begin{split} Z^{j} &= \frac{1}{\tau} \mathbb{E} \left[\mathbf{Y}^{j+1} \Delta_{j+1} W \middle| \underline{\mathcal{F}_{t_{j}}} \right] \\ \mathbf{Y}^{j} &= \mathbb{E} \left[\mathbf{Y}^{j+1} + \tau f \left(t_{j}, X^{j}, \mathbf{Y}^{j}, Z^{j} \right) \middle| \mathcal{F}_{t_{j}} \right]. \end{split}$$

- Analysis by Zhang '04, Bouchard & Touzi '04: Convergence with Rates
- Implementation: Simulate Cond'l Expect's by Statist. Learning Meth's!
 - LS Regression by Gobet et al. ['05, '06,...,'16]: get Estimators!
 - **accurate computation**: large \mathcal{M} -samples of $\{X^{j,m}\}_m$: $\mathcal{M} \approx \frac{1}{\tau^{d+3}}$
 - Reliable Simulations: up to $d \le 10$.

Part A: Statistical methods to Simulate Conditional Expectation's

- 1. Statist. Learning: Clever methods needed to simulate in higher dimensions!
- 2. COD also for Related Meth's: Quantiz'n, tree based or cubature meth.'s,...

0. Motivation — Numerics for BSDE's (...continued)

- B 'forward methods': avoid simulation of conditional expect's:
 - solve PDE above at **fixed** (t, \mathbf{x}) to approximate solutions (Y, Z).
- C 'deep learning based methods': to allow high-dimensional state spaces \mathbb{R}^q :

Conclusions drawn for Stochastic Control ...but NOW with SPDE's!

- 1. Analysis: An ∞ -dimensional SDE: $q = \infty$, and $d \gg 1$
- 2. Numerical Analysis: Rates of Convergence for a Discretization
- 3. Simulation: How to simulate Conditional Exp's due to COD?

Subject of my Talk: Stochastic Linear-Quadratic Problem (SLQ)

- 1. Problem: involves linear heat eqn. SPDE with linear noise term
- 2. NA with Rates driven by Efficient Implementability:
 - a) Gradient descent algorithm based on Pontryagin Max. Principle
 - b) Direct approach based on Riccati eqn avoiding Cond'l Exp's!
- 3. Cond'l Exp's in a) a new Recursive Formula that avoids SL! (A. Chaudhary)

I. Aim — Numerics for Optimal Control Problem with linear SPDE

SLQ Problem:

Let T > 0, and $\alpha, \beta \ge 0$. Find a minimizer (X^*, U^*) of

$$\begin{split} J(X,U) &= \frac{1}{2} \mathbb{E} \Big[\int_0^T \|X_s - \widetilde{\boldsymbol{X}}_s\|_{\mathbb{L}^2}^2 + \|U_s\|_{\mathbb{L}^2}^2 \, \mathrm{d}s + \alpha \|\boldsymbol{X}_T - \widetilde{\boldsymbol{X}}_T\|_{\mathbb{L}^2}^2 \Big] \\ &\mathrm{d}\boldsymbol{X}_t = \Big[\Delta \boldsymbol{X}_t + U_t \Big] \mathrm{d}t + \Big[\sigma_t + \beta \boldsymbol{X}_t \Big] \mathrm{d}\boldsymbol{W}_t, \qquad \boldsymbol{X}_0 = \boldsymbol{x}_0. \end{split}$$

Data and Objects:

s.t.

- $\widetilde{X}: \Omega \times D_T \to \mathbb{R}$ 'desired profile'. $\sigma = \{\sigma_t\}_t : \Omega \times D_T \to \mathbb{R}$ given
- $W \equiv \{W_t\}_t$ Wiener process on probability space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t\geq 0}, \mathbb{P})$.
- Solution: $\exists ! (X^*, U^*)$ on it: in particular, adapted to $\{\mathscr{F}_t\}_{t\geq 0}!$

Question: How to approximate it numerically: Role of complexity of algorithms !

- Algo 1 via PM: a) Space-time discretization of optimality conditions
 b) Gradient descent method gives sequence of controls
 - ☺ involves BSPDE (LS-)estimator for conditional expectations
 - data-dependent regression s estimator for high-dim'l state space!
 - © Strong rates for space-time discretization error: $\sim O(\sqrt{\tau} + h)$

II. Algo 1 — Numerics based on PM (Complexity & Rates of Convergence)

Optimality Conditions via Pontryagin Maximum principle :

$$\begin{split} \mathrm{d}X_t^* &= \left[\Delta X_t^* + U_t^*\right] \mathrm{d}t + \left[\sigma_t + \beta X_t^*\right] \mathrm{d}W_t & \forall \ t \in (0,T) \\ \mathrm{d}Y_t &= \left[-\Delta Y_t - \beta Z_t + X_t^*\right] \mathrm{d}t + Z_t \mathrm{d}W_t & \forall \ t \in (0,T) \,, \\ U_t^* &= Y_t & \forall \ t \in (0,T) \\ X_0^* &= X_0 \,, \quad Y_T = -\alpha X_T^* \,, \end{split}$$
 with solution (X^*, Y, Z, U^*) [Bensoussan, '83].

- Problems:
 - a coupled FB-SPDE: decoupling via Gradient descent method
 - 'Solve B-SPDE part' is what is numerically challenging, since it requires to compute conditional expectations!
 - Motivation that algorithm is highly complex:
 - Space: FEM gives FE-space $\mathbb{V}_h \subset \mathbb{H}^1_0$ of high dimension $L \gg 1$.
 - Time: Implicit Euler (Bouchard, Touzi, '04 where BSDEs are simulated)

$$\begin{aligned} (Z_h^j, \phi_h) &= \frac{1}{\tau} \mathbb{E} \left[\Delta_j W(Y_h^{j+1}, \phi_h) \middle| F_{t_j} \right] \\ (Y_h^j, \phi_h) &+ \tau \left(\nabla Y_h^j, \nabla \phi_h \right) &= \left[\mathbb{E} \left[(Y_h^{j+1}, \phi_h) \middle| F_j \right] \right. \\ + \beta \tau \left(Z_h^j, \phi_h \right) \end{aligned}$$

via LS-regression estimator

Partitioning est: Gobet & al., '05, '14 — practicable for $q \le 3$

II. Algo 1 — Numerics based on **PM** (...Rates of Convergence)

- Complexity: \mathcal{M} -sample $\{\{\mathbf{X}_{h,m}^j\}_{j=0}^J; 1 \leq m \leq \mathcal{M}\}$!
- Q: How estimate $\mathbb{E}[(\mathbf{Y}_h^{j+1}, \phi_h) | \underbrace{\mathbf{X}^j}_{\text{u.dim } \mathbb{V}_h = q}]$ via partitioning esti. for q large ?
- A: data-dependent partitioning esti. 'adaptive mesh' instead of uniform!
 - Dunst, P., '17: this SL-Algo for controlled SPDE's applicable, but Costly — see e.g. page 1 (d = 10).
 - Proof of strong consistency (still) open...

II. Algo 1 — Numerics based on PM (...Rates of Convergence: [Wang, P., '21])

■ NA of BSPDE — Part 1: FEM — discretization in space...

$$\begin{split} \mathrm{d}Y_h(t) &= \left(-\Delta_h Y_h(t) - \beta Z_h\right) \mathrm{d}t + Z_h \mathrm{d}W(t) \qquad \forall \ t \in \left[0, T\right], \\ Y_h(T) &= \left[Y_{T,h}\right]. \end{split}$$

- A) strong stability inherited by limiting BSPDE
- B) error estimate:

$$\sup_{t \in [0,T]} \mathbb{E} \Big[\big\| Y(t) - Y_h(t) \big\|_{\mathbb{L}^2}^2 \Big] + \mathbb{E} \Big[\int_0^T \big\| \nabla \big[Y(t) - Y_h(t) \big] \big\|_{\mathbb{L}^2}^2 + \big\| Z(t) - Z_h(t) \big\|_{\mathbb{L}^2}^2 \, \mathrm{d}t \Big] \leq C h^2 \,.$$

- NA of FBSPDE Part 2: FEM —the coupled problem
 - A) 'control-to-state' map S_h from SPDE: $\mathbf{X}_h^* = S_h(\mathbf{U}_h^*)$.
 - B) The reduced functional $\widehat{J}(U_h) = J(S_h(U_h), U_h)$

$$\begin{split} \sup_{t \in [0,T]} \mathbb{E} \Big[\big\| \boldsymbol{X}^*(t) - \boldsymbol{X}_h^*(t) \big\|_{\mathbb{L}^2}^2 + \big\| \boldsymbol{Y}(t) - \boldsymbol{Y}_h(t) \big\|_{\mathbb{L}^2}^2 \Big] \\ + \mathbb{E} \Big[\int_0^T \big\| \boldsymbol{U}^*(t) - \boldsymbol{U}_h^*(t) \big\|_{\mathbb{L}^2}^2 + \big\| \nabla \big[\boldsymbol{Y}(t) - \boldsymbol{Y}_h(t) \big] \big\|_{\mathbb{L}^2}^2 + \big\| \boldsymbol{Z}(t) - \boldsymbol{Z}_h(t) \big\|_{\mathbb{L}^2}^2 \, \mathrm{d}t \Big] \leq C h^2 \,. \end{split}$$

II. Algo 1 — Numerics based on PM (...Rates of Convergence: [Wang, P., '21])

- NA of FBSPDE Part 3: time discretization for FEM-discretization above
 - **A)** requires **bound**: $\mathbb{E}[\|Z_h(t) Z_h(s)\|_{L^2}^2] \le C|t s|$ (uniform in h) obtained via Malliavin calculus and Riccati equation

$$P' + \Delta_h P + \beta^2 P + \operatorname{Id} - P^2 = 0 \qquad \forall \ t \in (0,T) \,, \qquad P(T) = \alpha \operatorname{Id} \,.$$

Then: $X_h^* = P_h U_h^* - \phi$, and $Z_h = D_{\bullet} Y_h$.

- B) modified implicit Euler: based on discretization of Problem
 - \mathbf{B}_1) First write down $(\mathbf{SLQ})_{h,\tau}$ set $\widetilde{\mathbf{X}} = 0$:

$$J_{\tau}\left(X_{h,\tau},U_{h,\tau}\right) = \frac{1}{2}\tau\sum_{n=1}^{N}\mathbb{E}\left[\left\|X_{h,\tau}\right\|_{\mathbb{L}^{2}}^{2} + \left\|U_{h,\tau}\right\|_{\mathbb{L}^{2}}^{2}\right] + \frac{\alpha}{2}\mathbb{E}\left[\left\|X_{h,\tau}(T)\right\|_{\mathbb{L}^{2}}^{2}\right] \longrightarrow \min!$$

s.t.
$$X_{h,\tau}(t_{n+1}) - X_{h,\tau}(t_n) = \tau \Big(\Delta_h X_{h,\tau}(t_{n+1}) + U_{h,\tau}(t_n) \Big) + \Big(X_{h,\tau}(t_n) + \sigma_{t_n} \Big) \Delta_{n+1} W$$

B₂) derive 'discrete PM' — modified implicit Euler

Result for PM-based Space-Time -Discretization of SLQ: [P., Wang, '21]

$$\max_{0 \leq n \leq N} \mathbb{E} \Big[\| \boldsymbol{X}^*(t_n) - \boldsymbol{X}^*_{h,\tau}(t_n) \|_{\mathbb{L}^2}^2 + \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \| \boldsymbol{U}^*(t) - \boldsymbol{U}^*_{h,\tau}(t_k) \|_{\mathbb{L}^2}^2 dt \| \Big] \leq C (\tau + h^2)$$

III. Algo 2 — Numerics via Riccati eqn (Complexity & Rates: [Wang, P., '23])

- Algo 1: Statistical tools for high dimensions to compute cond.'I expect's
 gradient descent method
- Tools for Theory:
 - Malliavin Calculus & Riccati equation to get Rates:

$$P' + \Delta P + P\Delta + \beta^2 P + \operatorname{Id} - P^2 = 0 \quad \forall \ t \in (0, T), \qquad P(T) = \alpha \operatorname{Id}.$$

- Idea for Algo 2: make Riccati equation relevant part of another Algorithm!
 - (a) PDE₁: solve the Riccati equation above to get $\{P(t)\}_{t\geq 0}$. Then
 - **(b)** PDE₂: get $\{\eta(t)\}_{t\geq 0}$ via

$$\eta' = -\Delta \eta + P \eta - \beta P \sigma \quad \forall \ t \in (0, T), \qquad \eta(T) = 0.$$

(c) Insert in SPDE the **Feedback law** for minimizer U^* :

$$U^* = -PX^* - \eta \quad \forall \ t \in (0, T).$$

- no BSPDE, no minimization! To solve SPDE comparably easy!
- © Discretization of 2 PDE's and 1 SPDE: we expect order $O(\sqrt{\tau})$
- © restricted now to SLQ. Riccati has operator-valued solution!

IV. Deterministic LQ: A review of Riccati-based approach

NA of **LQ** — the **deterministic** counterpart of **SLQ**:

- Key is NA of Riccati-equation: its analysis e.g. in [Lasiecka & Triggiani, '00]
- 1. FEM-Semi-Discretization of Riccati equation to solve LQ [Kroller & Kunisch, '91]
 - Optimal Rates
 - Tool: Role of P in LQ: ... not just PDE sol: minimum of J representable with help of P...'
- 2. (IE -Semi-Discretization of Riccati equation [Hansen & Stillfjord, '14]
 - Sub-Optimal Rate ½
 - Tool: Use IE for PDE only: "...use monotonicity properties & [Rulla, '96]..."
- 3. BDF-based time discretizations: '...heuristic evidence in works by [Benner et al.] ...'

Question/Motivation:

- Construct optimally convergent space-time Discretization even for LQ!
- Idea for construction: properly address in NA the role of P in (S)LQ!
- Standpoint: Results/NA tools below for SLQ also address LQ!

A) Concepts to get an optimally convergent Difference Riccati equation:

- Starting point: (slightly mod.) Riccati-equation also for SLQ!
- Difference Riccati eqn: Discretization for P matters! [Ait Rami, Chen, Zhou, '02]
 - Not just discretize Riccati equation by IE, but address SLQ!
 - **Scheme**: Denote $A_0 = (\operatorname{Id} \tau \Delta_h)^{-1}$. Then get $\{P_\ell\}_{\ell=0}^N$ via

$$P_{\ell} = \left(1 + \frac{\beta^2 \tau}{2}\right)^2 \left(A_0 P_{\ell+1} A_0 - \tau A_0 P_{\ell+1} A_0 A_0 P_{\ell+1} A_0\right) + \tau \operatorname{Id} \quad P_N = \alpha \operatorname{Id}. \tag{1}$$

Result 1 for FEM-version of Riccati (1): [P., Wang, '23]

Let
$$\tau \leq \tau_0(\alpha, \beta)$$
. Then

$$\|P(t_{\ell}) - P_{\ell}\|_{L(\mathbb{L}^{2})} \le C(h^{2} + \tau) \left(\frac{\alpha}{t_{N} - t_{\ell}} + \ln \frac{1}{h}\right) \quad (0 \le \ell \le N - 1).$$

Tools: [Ait Rami, Chen, Zhou, '02], (discrete) semigroup methods, (discrete) stability, induction arguments

IV. ...now SLQ: Constr. via Difference Riccati-eqn [P., Wang, '23]

B): Construction of an optimally conv. Discr. for SLQ

Result 2 for Space-Time -Discret. of SLQ: [P., Wang, '23]

Let
$$\tau \leq \tau_0(\alpha, \beta)$$
. Then

$$\max_{0 \le n \le N} \mathbb{E} \Big[\| \boldsymbol{X}^*(t_n) - \boldsymbol{X}_n^* \|_{\mathbb{L}^2}^2 + \| \boldsymbol{U}^*(t_n) - \boldsymbol{U}_n^* \|_{\mathbb{L}^2}^2 \| \Big] \le C \Big(\big| (h^2 + \tau) \ln \frac{1}{h} \big|^2 + \beta^2 \tau \Big).$$

Tools: Result 1, stability, tools for SPDE-conv. analysis (no Malliavin calc.!)

Summary of Talk

Numerical Analysis of **SLQ**:

- 1) Algo 1 an algorithm that uses PM-principle:
 - : an iterative method that uses gradient descent and BSPDEs
 - © : construction: suitable for general minimization methods.
 - © : space-time discretization: optimal rate of convergence
 - : Discretization of BSPDE costly!
 - \Rightarrow A. Chaudhary: A Recursive Formula to get $\{Y^i\}_i$ Avoiding SL!
- 2) Algo 2 an algorithm that uses Riccati equation for (S)LQ
 - construction: Key for optimal scheme: Riccati serves minimization!
 - © **Simulation**: problem on page 1 at a fraction of time !
 - © : space-time discretization: optimal rate of convergence
- 3) Whatever way we choose for (SLQ): take optim. viewpoint for discretization!
 - only discretization of BSPDE or Riccati might be sub-optimal!