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Basic Calcium Model
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Basic Calcium Model
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Jseroa Sarco- and Endoplasmic Reticulum Calcium ATPase,

What are the flux terms?
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CICR in IP; Receptors

Flux through IP5 receptor is diffusive,

JIPR = gmaxPo<Csr — C)
where P, = S}, is the open probability.
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Bifurcation Diagram
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l But the data do not look like this at all!
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Onset of Oscillations

* At low IP35 concentrations, calcium release is infrequent and
highly irregular.
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* At low IP35 concentrations, calcium release is infrequent and
highly irregular.

* At medium IP3, calcium release is less rare and less
irregular.
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Onset of Oscillations

* At low IP35 concentrations, calcium release is infrequent and
highly irregular.

* At medium IP3, calcium release is less rare and less
irregular.

* At high IP3, calcium release is frequent and regular (a
periodic oscillation).

. Stochastic Calcium Oscillations — p.7/30



OO

Mathematical Biology
University of Utah

Onset of Oscillations

* At low IP35 concentrations, calcium release is infrequent and
highly irregular.

* At medium IP3, calcium release is less rare and less
irregular.

* At high IP3, calcium release is frequent and regular (a
periodic oscillation).

The data show no Hopf Bifurcations or sharp onset of oscilla-
tions.
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What went wrong?

There are (at least) two problems with this model:

1. Calcium is not spatially homogenious; channels are
controlled by local calcium concentration.

2. Channel openings are not deterministic.
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Discrete Release Sites
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with
x,, location of release sites separated by distance L,

D¢ spatial diffusion of calcium.
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Fire-Diffuse-Fire Model

Suppose calcium c is released from
* along line of evenly spaced release sites;

* Release of full contents o occurs when the local
concentration ¢ reaches threshold 6.

(9(: O%c o
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Fire-Diffuse-Fire-ll

The solution of the heat equation with -function initial data at
r = X and att =ty 1S

B (x — x0)*
AD(t — to)

c(z.t) = ! exp ket — 1))

0
————————————————
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Suppose known firing times are t; = jAt at position z; = jL,

j=—o00,---,n—1. Find t,,.
At x = x,, = nL,

(n—4)*L7 _ o
AD(t —t;) “ha(t =)= 7

xp(—

c(nL,t)

Z \/47TD(t —t;) °

F(DA tHP)
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DA th?
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0

This is easy to do graphically:

F(DA tH?)

4 5 6
DA th?

Fire-Diffuse-Fire-1V

vh/D

: T T T
2 014 016 018 02
6 h/C

Conclusion: Propagation fails for %L > 0* (i.e. If L is too large, 0

IS too large, or o is too small.)
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What went wrong?

There are two problems with this model:

1. Calcium is not spatially homogenious; channels are
controlled by local calcium concentration.

2. Channel openings are not deterministic.
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Calcium Sparks and Waves

AFIF

A zapalone

photolysis alone

A photolysis followed by zap At = 100 ms
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Discrete Release Sites

Cardiac Cell
4
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with
v, a random variable with values 0 or 1, with transition
probability that depends on local calcium concentration.
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Stochastic Fire-Diffuse-Fire Model

Suppose calcium c is released from
* along line of evenly spaced release sites;

* Release of full contents o is a stochastic process with
probability depending on the local calcium concentration.
dc 0%c B

o)
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Stochastic Analysis

Let P, () be the probability that site n has fired before time t¢.

Then
T = open(e(n, )(1 ~ Po)

where P,,(0) = 0, and

CN

kopeTL(C) — KM@N + N

Remark: c(z,t) is known as before

i 1 exp(— (x —x;)?
VATD(t — t;) AD(t — t5)

- kS(t - tj))

except that now the ¢; are continuous random variables.
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Site 1

. What happens at site 17

. . . .
5 02 025 03 035 04 045 05 0 1 2 3 4 5 6
kit c/6 L

pi(t) = 41, and my, = fo thp, (t)dt is the k" moment.
Therefore, my = P1(c0) is the probability of firing at all.

Observe: As 7 increases, firing occurs sooner and with less
variance.
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Suppose site zero fires at time ¢ = 0. What happens at site
n > 17 pn(t) satisfies the renewal equation (stochastic wave
equation):

pn(t) = /OOO p1(t — s)pn—1(s)ds.

P, (1)
p,(t)

o ; o _
a7 Small - wave fails a7 large - wave succeeds

l —p.20/30
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Extent of Propagation

Extent of propagation N, is exponentially distributed

P(Ne =n) =mg(1 —my).

E(N,)

6
c/6 L
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Whole cell calcium release events are governed by three things:

* |ocalized calcium release (sparks) - a Poisson process
* spark to wave transition - the rapid calcium transient

* removal of inactivation (a slow process).
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A Chapman-Kolmogorov Equation

Let h be fraction of sites that are not inhibited (0 < h < 1),

p(h,t) be the probability that fraction of uninhibited sites is h,

% = _ky 2 (1—h)p) — BMhp+ [} W, h) py,t)dn,
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A Chapman-Kolmogorov Equation

Let h be fraction of sites that are not inhibited (0 < h < 1),

p(h,t) be the probability that fraction of uninhibited sites is h,

% —| —ky-2 (1= h)p)|— BMhp+ [} W(n,h) piy,t)dn,

removal of inactivation at rate constant k;,, (a Markov process) ,
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A Chapman-Kolmogorov Equation

Let h be fraction of sites that are not inhibited (0 < h < 1),

p(h,t) be the probability that fraction of uninhibited sites is h,

% —| —ky-2 (1= h)p) |- [BMEp+ [} W) piy, t)dn,

removal of inactivation at rate constant k;,, (a Markov process) ,

rate of spark production M h,
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A Chapman-Kolmogorov Equation

Let h be fraction of sites that are not inhibited (0 < h < 1),

p(h,t) be the probability that fraction of uninhibited sites is h,

% —| —ky-2 (1= h)p) |- [BMEp + [ W, h) pe, t)dn,

removal of inactivation at rate constant k;,, (a Markov process) ,

rate of spark production M h,

probability of jumping n — h when there is a spark.
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A Chapman-Kolmogorov Equation

Let h be fraction of sites that are not inhibited (0 < h < 1),

p(h,t) be the probability that fraction of uninhibited sites is A,

% —| —ky-2 (1= h)p) |- [BMEp + [ W, h) pe, t)dn,

removal of inactivation at rate constant k;,, (a Markov process) ,

rate of spark production M h,

probability of jumping n — h when there is a spark.

For consistency,
BMh = ["W (h,n)dn + W (h,0).

W (h,0) = probability of whole cell release.
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There are three behaviors:

Whole Cell Calcium Release Events

Small h: Sparks do not propagate; (W (n,h)) ~ d(n — h))

Intermediate h: Truncated waves;
Large h: Whole cell release

W(n,0)

F=1.0

W(n,h)
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Firing time distribution is
1
P()=1- [ plhtyit,  p(h.0) = 5(h)
0

Solving C-K equation numerically:

firing time distibution

F=0.85

F=0.7

Whole Cell Calcium oscillations

Expected firing interval

4 ks 6
ht

Stochastic Calcium Oscillations — p.25/30



OO

Mathematical Biology
University of Utah

Spontaneous Spark Rate

Question: At what rate are spontaneous sparks produced?
One way to approach this question:

* Suppose the limiting deterministic dynamics are governed
by the bistable equation

e _
dt
What is the appropriate Fokker-Planck equation

f(c).

2
P T (1) + 5 (D)’

* Since f(c) is bistable it is the derivative of a double well
potential F'(¢) = f(c). What is the mean rate of escape from
the smaller of the two wells?
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For the stochastic differential equation

de 1
N zn:ynf(c) —g(c),
with
a(c)
yn : 0 1,
B(c)
the deterministic limit is
de Q

but, what is the spark rate?

Example
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The Fast Transition Limit

Two approaches:

* Fast uptake (Hinch, Hinch and Chapman, Coombes, Hinch
and Timofeeva), appropriate for cardiac cells;

* Fast transition rates:
Fokker-Planck equation is

% (20 - a0 )+ (3 s P )

This suggests a scaling law

AN

kspark ~ A eXp(_ T)a

for small h.
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Summary

Deterministic whole cell calcium models fail because:

* Release sites are discrete and diffusion is too slow:

* Release is a stochastic event for which the law of large
numbers does not apply.
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Summary

Deterministic whole cell calcium models fail because:

* Release sites are discrete and diffusion is too slow:

* Release is a stochastic event for which the law of large
numbers does not apply.

Consequently, not this

A 087 Stable oscillation
0.6 —
=) !
= 04 !
o ' unstable
: oscillation
%27 table steady stat [ stable_
' HB ””Sf____e_ffaf‘__x.s.‘f-e- -------------- v
W HB
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Summary

Deterministic whole cell calcium models fail because:

* Release sites are discrete and diffusion is too slow:

* Release is a stochastic event for which the law of large
numbers does not apply.

but this

Expected firing interval
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