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1 Scalar networks ­ no delay

Consider xi(t) ∈ R, t ≥ 0, i = 1, . . . , N , with Hopfield style dynamics:

d
dt

xi(t) = −xi(t) + f

 N∑
j=1

wijxj(t)

 . (1)

Here we shall assume that f is at least once differentiable and monotonically increasing (sigmoidal). The
network steady state is given by xi(t) = xi and is determined by the simultaneous solution of the system
of algebraic equations:

xi = f

 N∑
j=1

wijxj

 . (2)

Now consider linearising around the steady state by writing xi(t) = xi + ui(t) for some small set of
perturbations ui(t). Substitution into (1) and expanding to first order gives

d
dt

ui(t) = −ui(t) +

N∑
j=1

w̃ijuj(t), γi = f ′

 N∑
j=1

wijxj

 , w̃ij = γiwij . (3)

Solutions of the form ui(t) = Aieλt, λ ∈ C, for some non­zero amplitudes Ai, satisfy

λAi = −Ai +

N∑
j=1

w̃ijAj . (4)

Now consider the vector of amplitudes to be an eigenvector of w̃ such that

N∑
j=1

w̃ijA
p
j = µpA

p
i , p = 1, . . . , N, (5)
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where p is used to index the eigenvector. Equation (4) then takes the simpler form

[λ+ 1− µp]Ai = 0. (6)

This system of linear equations for the amplitudes has non­trivial solutions if E(λ; p) ≡ [λ + 1 − µp] = 0.
There is a bifurcation when Reλ = 0, namely when

Reµp = 1, (7)

for some value of p. If the eigenvalues of w̃ are real (which would be the case if w̃ were symmetric) then
we can order them such that µ1 > µ2 > · · · > µN . In this case λ would be real too and the first instance
where λ increases through zero from below would be for the eigenvector with eigenvalue µ1.

2 Scalar networks ­ delay

Consider (1) with the inclusion of a set of discrete delays:

d
dt

xi(t) = −xi(t) + f

 N∑
j=1

wijxj(t− τij)

 . (8)

The steady state equation is given by (2). Linearisation around the steady state yields

d
dt

ui(t) = −ui(t) +

N∑
j=1

w̃ijuj(t− τij). (9)

Solutions of the form ui(t) = Aieλt, λ ∈ C, for some non­zero amplitudes Ai, satisfy

λAi = −Ai +
N∑
j=1

w̃ije−λτijAj . (10)

Now introduce the complex matrix W (λ) with components Wij(λ) = w̃ije−λτij . Now assume a decom­
position of the form

Wij(λ) =

N∑
p=1

µp(λ)v
p
i u

p
j , (11)

where v and u are normalised right and left eigenvectors of w̃ respectively. In this case the coefficients
µp(λ) can be obtained by projection as

µp(λ) =
N∑
i=1

N∑
j=1

Wij(λ)v
p
ju

p
i . (12)

If we now consider the vector of amplitudes to be in the direction of v then (10) reduces to

[λ+ 1− µp(λ)] v
p
i = 0. (13)

This system of linear equations for the amplitudes has non­trivial solutions if E(λ; p) ≡ [λ+1−µp(λ)] = 0.
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The eigenvalues of the spectral problem can be practically constructed by considering the decom­
position λ = ν + iω and simultaneously solving the pair of equations G(ν, ω; p) = 0 and H(ν, ω; p) = 0,
where G(ν, ω; p) = Re E(ν + iω; p) and H(ν, ω; p) = Im E(ν + iω; p). A steady state solution is stable if
Reλ < 0. We distinguish two types of instability: i) when a real eigenvalue crosses from the left hand
complex plane to the right, with a bifurcation defined by E(0; p) = 0, and ii) when a complex conjugate
pair of eigenvalues cross from the left hand complex plane to the right, with a bifurcation defined by
E(iω; p) = 0. In either case the p value that ensures a bifurcation, say when p = pc, determines which
pattern of network activity (u ∼ vpc) is excited. If the bifurcation arises from the crossing of a complex
conjugate pair then the emergent spatial pattern will also oscillate in time with a frequency determined
by ωc with E(iωc; pc) = 0.

If τij = 0 for all i, j then W = w̃ and the spectral problem reduces to that in §1. If τij = τ > 0 for all
i, j then µp(λ) = e−λτµp, where µp is an eigenvalue of w̃.

3 Arbitrary nonlinear networks ­ no delay

Now consider x(t) = (x1(t), . . . , xm(t)) ∈ Rm, t ≥ 0, with local dynamics

d
dt

x = F (x) +G(wlocx), (14)

where F,G : Rm 7→ Rm, and wloc ∈ Rm×m. Now use this to construct a network of N interconnected
nodes according to

d
dt

xi = F (xi) +G(wlocxi + si), si =

N∑
j=1

wijH(xj) (15)

where i = 1, . . . , N , and H : Rm 7→ Rm selects which local component mediates interactions. For
example if interactions are only mediated by the first component of the local dynamics then we would
choose H(x) = (x1, 0, . . . , 0).

The network steady state is given by 0 = F (xi) +G(wlocxi + si), with si =
∑N

j=1wijH(xj). Linearise
around the steady state by writing xi(t) = xi + ui(t) for some small set of perturbations ui(t) ∈ Rm for
i = 1, . . . , N . Substitution into (15) and expanding to first order gives

d
dt

ui =
[
DF (xi) +DG(wlocxi + si)w

loc
]
ui +

N∑
j=1

DG(wlocxi + si)DH(xj)wijuj . (16)

Here DF,DG,DH ∈ Rm×m are Jacobians. It is now convenient to introduce the abbreviations DF̃i =

DF (xi)+DG(wlocxi+ si)w
loc and DG̃i = DG(wlocxi+ si)DH(xj) (realising that DH(xj) is independent

of the label j) to write (16) in the succinct form

d
dt

U =


DF̃1 0

. . .

0 DF̃N

U +


DG̃1 0

. . .

0 DG̃N

 (w ⊗ Im)U, (17)
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where U = (u11, . . . , u
m
1 , u12, . . . , u

m
2 , . . . , u1N , . . . , umN ) and Im is the m × m identity matrix. The tensor

product A⊗B of two matrices A ∈ Rn1×n2 and B ∈ Rn3×n4 is defined by

A⊗B =


A11B . . . A1n2B

... . . . ...
An11B . . . An1n2B

 . (18)

The following properties are readily established. If AB and CD exist then

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (19)

and if A and B are non­singular then

(A⊗B)−1 = A−1 ⊗B−1. (20)

Now introduce the matrix of normalised eigenvectors of w as P with a corresponding diagonal matrix of
eigenvalues Λ such that wP = PΛ and consider the change of variables V = (P ⊗ Im)−1U . In this case
(17) transforms to

d
dt

V = (P ⊗ Im)−1


DF̃1 0

. . .

0 DF̃N

 (P ⊗ Im)V

+ (P ⊗ Im)−1


DG̃1 0

. . .

0 DG̃N

 (w ⊗ Im)(P ⊗ Im)V. (21)

Assuming a homogeneous system such that xi is independent of i, which is natural for identical units
with a network connectivity with a row­sum constraint

∑N
j=1wij = const for all i, then we have the useful

simplification DF̃i = DF̃ and DG̃i = DG̃ for all i. It is simple to establish that for any block diagonal
matrix A, formed from N equal matrices of size m×m, that (P ⊗ Im)−1A(P ⊗ Im) = A. Moreover, from
(19) and (20) we have that (w ⊗ Im)(P ⊗ Im) = (wP )⊗ Im = (PΛ)⊗ Im = (P ⊗ Im)(Λ⊗ Im). Hence, if
we denote diag(Λ) = (µ1, . . . µN ) then (21) becomes

d
dt

V =


DF̃ 0

. . .

0 DF̃

V +


µ1DG̃ 0

. . .

0 µNDG̃

V. (22)

The system (22) is in a block diagonal form and so it is equivalent to the set of decoupled equations given
by

d
dt

ξp =
[
DF̃ + µpDG̃

]
ξp, ξp ∈ Cm, p = 1, . . . , N. (23)

This has solutions of the form ξp = Apeλt for some amplitude vector Ap ∈ Cm. For a non­trivial set of
solutions we require E(λ; p) = 0 where

E(λ; p) = det
[
λIm −DF̃ − µpDG̃

]
, p = 1, . . . , N. (24)
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3.1 Wilson­Cowan network example

Consider a Wilson­Cowan network consisting of an excitatory population Ei and an inhibitory population
Ii, for i = 1, . . . , N , with dynamics given by[

1 0

0 τ

]
d
dt

[
Ei

Ii

]
= −

[
Ei

Ii

]
+ f

([
wEEEi + wEIIi +

∑N
j=1wijEj

wIEEi + wIIIi

])
. (25)

This may be written in the form (15) with the identification xi = (Ei, Ii), H(x) = (E, 0), F (x) = −Γ−1x,
and G(x) = Γ−1f(x), where

Γ =

[
1 0

0 τ

]
, wloc =

[
wEE wEI

wIE wII

]
. (26)

The network steady state is given by 0 = −xi + f(wlocxi + si), with si =
∑N

j=1wijH(xj). We also have
that

DF̃i = −Γ−1
[
I2 −Df(wlocxi + si)

]
wloc, DG̃i = Γ−1Df(wlocxi + si)

[
1 0

0 0

]
. (27)

Here [Df(x)]ij = f ′(xi)δij . The spectral equation (24) can bewritten in the form E(λ; p) = det [λI2 −A(p)] =

0, where

A(p) = −

[
1 0

0 τ−1

]{
I2 −Df(wlocxp + sp)

[
wloc +

[
µp 0

0 0

]]}
. (28)

Hence the complete set of eigenvalues that determine the stability of the network steady state is given
by

λ±(p) =
1

2

[
TrA(p)±

√
TrA(p)2 − 4detA(p)

]
, p = 1, . . . , N. (29)

4 Arbitrary nonlinear networks ­ delay

In the presence of delays we let

si(t) →
N∑
j=1

wijH(xj(t− τij)). (30)

The steady state equation is precisely that of §3, with the spectral equation given by (24) under the
replacement µp → µp(λ) with

µp(λ) =
N∑
i=1

N∑
j=1

wije−λτijupi v
p
j . (31)

Here vp (up) is a right (left) normalised eigenvector of w.
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