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1 Scalar networks - no delay

Consider z;(t) e R, t > 0,7 =1,..., N, with Hopfield style dynamics:

d N
&mz‘(t) = —z;(t) + f (]Zl wz‘jxj(t)) ~ (1)

Here we shall assume that f is at least once differentiable and monotonically increasing (sigmoidal). The
network steady state is given by z;(t) = T; and is determined by the simultaneous solution of the system
of algebraic equations:

N
ZT; = f (Z wijxj) . (2)
j=1

Now consider linearising around the steady state by writing x;(t) = Z; + u;(t) for some small set of
perturbations u;(t). Substitution into (1) and expanding to first order gives

N N
d - _ .
&Ui(t) = —wi(t)+ Y Wgui(t), = f D> wiE |, @i = viwi. 3)
j=1 j=1
Solutions of the form w;(t) = A;eM, \ e C, for some non-zero amplitudes A;, satisfy
N
M = —A; + ) WA, (4)
j=1
Now consider the vector of amplitudes to be an eigenvector of w such that

N
j=1



where p is used to index the eigenvector. Equation (4) then takes the simpler form
A+ 1= 1] Ay = 0. (6)

This system of linear equations for the amplitudes has non-trivial solutions if £(A\;p) = [A+1 — p,] = 0.
There is a bifurcation when Re A = 0, namely when

Rew, = 1, ()

for some value of p. If the eigenvalues of w are real (which would be the case if w were symmetric) then
we can order them such that iy > po > --- > un. In this case A would be real too and the first instance
where ) increases through zero from below would be for the eigenvector with eigenvalue ;.

2 Scalar networks - delay

Consider (1) with the inclusion of a set of discrete delays:

N
d
gLit) = —zi(t) + f (Z wijz;(t — Tij)) : (8)
j=1
The steady state equation is given by (2). Linearisation around the steady state yields
d N
auz(t) = —Ui(t) + Z Ujijuj(t - Tij)- (9)
j=1

Solutions of the form u;(t) = A;eM, \ e C, for some non-zero amplitudes A;, satisfy

N
M; = —A; + ) e Ay, (10)
j=1

Now introduce the complex matrix W () with components W;;(\) = @ije‘”’ij. Now assume a decom-
position of the form

N
Wii(A) = (APl (11)
p=1

where v and u are normalised right and left eigenvectors of w respectively. In this case the coefficients
tp(A) can be obtained by projection as

(V) =D Y Wi(\vjuf. (12)

If we now consider the vector of amplitudes to be in the direction of v then (10) reduces to
A+ 1= pp(N)]of = 0. (13)
This system of linear equations for the amplitudes has non-trivial solutions if £(\; p) = [A+1— p,(A)] = 0.
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The eigenvalues of the spectral problem can be practically constructed by considering the decom-
position A = v + iw and simultaneously solving the pair of equations G(v,w;p) = 0 and H(v,w;p) = 0,
where G(v,w;p) = Re&(v + iw;p) and H(v,w;p) = ImE(v + iw; p). A steady state solution is stable if
Re A < 0. We distinguish two types of instability: i) when a real eigenvalue crosses from the left hand
complex plane to the right, with a bifurcation defined by £(0;p) = 0, and ii) when a complex conjugate
pair of eigenvalues cross from the left hand complex plane to the right, with a bifurcation defined by
E(iw;p) = 0. In either case the p value that ensures a bifurcation, say when p = p., determines which
pattern of network activity (u ~ vP<) is excited. If the bifurcation arises from the crossing of a complex
conjugate pair then the emergent spatial pattern will also oscillate in time with a frequency determined
by w. with & (iw.; p.) = 0.

If 7;; = 0 for all 7, j then W = w and the spectral problem reduces to that in §1. If 7;; = 7 > 0 for all
i,7 then p,(\) = e~ p,, where p, is an eigenvalue of w.

3 Arbitrary nonlinear networks - no delay

Now consider z(t) = (z!(t),...,2™(t)) € R™, t > 0, with local dynamics
d loc
&x:F($)+G(w x), (14)

where F,G : R™ — R™, and w'°° € R™*™. Now use this to construct a network of NV interconnected
nodes according to

N
d !
g% = Fla) + Gz +50), si = ;wmmm (15)
where i = 1,...,N, and H : R™ — R™ selects which local component mediates interactions. For

example if interactions are only mediated by the first component of the local dynamics then we would
choose H(z) = (z%,0,...,0).

The network steady state is given by 0 = F(Z;) + G(w'°°Z; + 5;), with 5; = Z;V:l w;jH(7;). Linearise
around the steady state by writing z;(t) = Z; + u;(t) for some small set of perturbations u;(t) € R™ for
i =1,..., N. Substitution into (15) and expanding to first order gives

N
%ui = |DF(%;) + DG(w'°z; + Ei)wloc} u; + Z DG (w"°°F; + 5;) DH (T} )w;ju;. (16)

j=1
Here DF,DG,DH € R™ ™ are Jacobians. It is now convenient to introduce the abbreviations DF, =

DF(Z;) + DG(w'°°T; 4+ 5;)w'°° and DG; = DG(w'°°z; +5;) DH(z;) (realising that DH (z;) is independent
of the label j) to write (16) in the succinct form

DE, 0 DG, 0

d

- = U+ (w @ In)U, (17)
0 DFy 0 DGy



where U = (ul,..., a7 ud,...,ul', ... ,uk,...,uR) and I, is the m x m identity matrix. The tensor
product A ® B of two matrices A € R"*"2 and B € R"3*"™ is defined by

AHB e A1n2B
A®B=| 1 - : : (18)
ApniB ... Apn,B
The following properties are readily established. If AB and C D exist then
(A® B)(C® D) = (AC) ® (BD), (19)
and if A and B are non-singular then
(Ao B)'=A"1e B L (20)

Now introduce the matrix of normalised eigenvectors of w as P with a corresponding diagonal matrix of
eigenvalues A such that wP = PA and consider the change of variables V = (P ® I,,,)'U. In this case
(17) transforms to

DF, 0
%V: (P® I,)~? (P® I,V
0 DFy
DG, 0
+(P®Iy)"" (w @ Iy) (P ® Iy)V. (21)
0 DGy

Assuming a homogeneous system such that z; is independent of i, which is natural for identical units
with a network connectivity with a row-sum constraint Z;-V:l w;; = const for all 4, then we have the useful
simplification DF; = DF and DG; = DG for all i. It is simple to establish that for any block diagonal
matrix A, formed from N equal matrices of size m x m, that (P ® I,,,) ' A(P ® I,,,) = A. Moreover, from
(19) and (20) we have that (w ® Ip,)(P ® Ip,) = (WP) ® I, = (PA) ® I, = (P ® I,)(A ® Iy,)). Hence, if
we denote diag(A) = (i1, ... 1) then (21) becomes

DF 0 11 DG 0
d
—V = g g s 22
ar’ A : |V (22)
0 DF 0 unDG
The system (22) is in a block diagonal form and so it is equivalent to the set of decoupled equations given

by
d - ~
6= [DF i M,,DG} &,  &eC™  p=1,...,N. (23)

This has solutions of the form ¢, = A,e* for some amplitude vector 4, € C™. For a non-trivial set of
solutions we require £(\; p) = 0 where

E(A;p) = det [Afm—Df—upD@ ;o p=1..,N (24)
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3.1 Wilson-Cowan network example

Consider a Wilson-Cowan network consisting of an excitatory population E; and an inhibitory population
I;,fori=1,..., N, with dynamics given by

1 0fd
HE o ) 25

This may be written in the form (15) with the identification x; = (E;, I;), H(z) = (E,0), F(z) = —T''x,
and G(z) =T~ f(x), where
= Lo wloc —
0 7|’

The network steady state is given by 0 = —7; + f(w'°°%; + 3;), with 5; = Z;V:l w;jH(Z;). We also have

that
10
) 27
. O] (27)

E;
I;

E;
I;

wEEEi + wEIIi + Zj\; wijE]’

’LUIEEI' + wIIIZ'

w]E wII (26)

wEE wEI]

DF; = -T7! [12 — Df(w'°°z; + gi)] w, DG =T 'Df(w'z; +3)

Here [Df(x)];; = f'(z)d;;. The spectral equation (24) can be written in the form £(\; p) = det [\ Is — A(p)] =

0, where
pp 0
: O” } 8)

Hence the complete set of eigenvalues that determine the stability of the network steady state is given
by

wloc +
0 71t

A(p) = — [1 0 ] {IQ - Df(w'ocfp +3p)

Ae(p) = 5 [TrAQ) £ VTTAGE —4detAR)|,  p=1,...N. (29)

4 Arbitrary nonlinear networks - delay

In the presence of delays we let
si(t) = > wiH(z;(t — 775)). (30)

The steady state equation is precisely that of §3, with the spectral equation given by (24) under the
replacement y, — p,(A) with
N N
ppN) = 303 wye s, (31)
i=1 j=1

Here vP (uP) is a right (left) normalised eigenvector of w.



