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Abstract

Ž .We discuss the notion of Liapunov exponent for integrate-and-fire IF type dynamical systems. In contrast to smooth
flows there is a contribution to the IF Liapunov exponent arising from the discontinuous nature of the firing mechanism.
Introducing the notion of an IF mode-locked state we are able to show that linear stability is consistent with the requirement
of a negative IF Liapunov exponent. We apply our results to IF systems that may be used to study the entrainment of
biological oscillators. q 1999 Elsevier Science B.V. All rights reserved.

PACS: 05.45.-a; 95.10.Fh; 87.10.qe
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1. Introduction

Neurodynamical models based on spiking neurons
are playing an increasing role in the interpretation of
neurophysiological data. Importantly the precise tim-
ing of firing events that can be generated by biologi-
cal neurons is thought to underly several different

w xforms of sensory processing 1 . Furthermore, it is
known that many biological rhythms can be gener-
ated in part by neurons or systems of neurons that

w xfire spikes 2 . The simplest and most popular exam-
ple of a spiking neuron is the so-called integrate-

1 E-mail: S.Coombes@Lboro.ac.uk

Ž . Ž w x.and-fire IF model see for example 3 . The state
of an integrate-and-fire neuron changes discontinu-

Ž .ously resets whenever it crosses some threshold
and fires, so that a complete description in terms of
smooth differential equations is no longer possible.
In this Letter we consider the effect of the resetting
and firing mechanisms upon the stability of periodic
spike trains. A dynamical systems approach is devel-
oped that complements existing studies of IF dynam-

Ž w x .ics see 4 for a review , since it allows one to
classify IF dynamics as periodic, quasi-periodic or
chaotic. This is achieved by the explicit construction

Ž .of i mode-locked or bursting spike trains in terms
Ž .of system parameters and ii a Liapunov exponent

that incorporates the effects of the firing and reset-
ting mechanism using ideas originally developed for

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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the study of impact oscillators. Moreover, a linear
stability analysis of the map of firing times is shown
to be consistent with the demands of a negative IF
Liapunov exponent. To illustrate our results we con-
sider a single driven IF oscillator, relevant to the
study of entrainment of biological oscillators and to
the generation of mode-locked rhythms. Periodic
modulation of a firing threshold is shown to lead
only to periodic or quasi-periodic dynamics, whilst
periodic modulation of a reset level allows the possi-
bility of chaotic dynamics. In both cases we con-
struct some of the so-called Arnold tongues for
mode-locking using our results. Direct numerical
simulations of the IF system are performed to sup-
port the analysis and to highlight the rich dynamical
behaviour that is possible in this particular model of
a spiking neuron.

In more detail, the IF mechanism may be re-
garded as a smooth dynamical system described by a
first order ordinary differential equation

dU U
s f U,t , f U,t sy qA t 1Ž . Ž . Ž . Ž .

d t t

subject to a resetting mechanism

U T n ' lim U T nye sh T n ,Ž . Ž . Ž .y
e™0

U T n ' lim U T nqe sg T n 2Ž . Ž . Ž . Ž .q
e™0

The firing times are defined as

n < ny1T s inf t U t Gh t ; tGT 3� 4Ž . Ž . Ž .

Ž .The state variable U t models the membrane poten-
tial of a biological neuron with decay constant t

Ž .whilst A t represents an externally injected current.
A detailed model of the refractory process seen in
biological neurons is sacrificed in favour of the reset

Ž .condition 2 which flags firing events as threshold
Ž .crossing times. The function h t is regarded as a
Ž .firing threshold function whilst g t , the reset level,

Ž .is the value that the state variable U t takes just
after it reaches threshold. Introducing the function

0 srtG t s e A tqs d s 4Ž . Ž . Ž .H
y`

Ž . trt w Ž . Ž .xand defining F t se G t yh t an implicit
map of the firing times may be obtained by integrat-

Ž .ing 1 between reset and threshold:

nnq1 n T rt n nF T sF T qe h T yg T 5Ž . Ž . Ž . Ž . Ž .
XŽ .If F is invertible, F t /0 for all t, and defined on

Ž . trt w Ž . Ž .xthe range of F t qe h t yg t , then we have
an explicit map of the form

T nq1sC T n ,Ž .
y1 trtC t sF F t qe h t yg t 6Ž . Ž . Ž . Ž . Ž .Ž .

If F is not invertible then the mapping T n¨T nq1

Ž .is defined according to 3 . For a theoretical analysis
explicit knowledge of the dynamics is desirable which

Ž .suggests working with the original dynamics 1 and
Ž .2 that underlies the map of firing times generated

Ž .by 3 . However, the analysis of IF dynamics is far
from trivial owing to the presence of harsh nonlin-
earities at reset. In the next section we focus on a
notion of Liapunov exponent that takes into account
these nonlinearities.

2. The Liapunov exponent for integrate-and-fire
type dynamics

Ž . Ž .If C t of Eq. 6 is well defined then it is
possible to define the Liapunov exponent of an orbit
as

N1
X n< <ls lim lnC T 7Ž . Ž .Ý

NN™` ns1

However, as seen from the last section, the map of
firing times is only implicitly defined so that such a
definition is not appropriate. The calculation of the
Liapunov exponent for the discontinuous dynamical

Ž . Ž .system defined by 1 and 2 is, however, possible
using recent ideas developed for the study of impact

˜w x Ž .oscillators 5 . Introduce a perturbed dynamics U t
and denote the deviation between perturbed and un-

Ž .perturbed trajectories as dU t . Now consider the
Ž .propagation of an initial perturbation dU 0 . First

consider the case when the unperturbed trajectory
reaches threshold first. Denoting the time of the k th
threshold crossing of the unperturbed trajectory as
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T k and that of the perturbed trajectory as T kqd k

we have

˜ k k k k k X k k0sU T qd yh T qd h T yh T dŽ . Ž . Ž . Ž .y

fU T k qdU T k q f U T kŽ . Ž . Ž .Žy y y

qdU T k ,T k d kyh T k yhX T k d kŽ . Ž . Ž ..y

Xk k k k kfdU T q f U T ,T yh T dŽ . Ž . Ž .Ž .y y

8Ž .

Hence the perturbation of the firing times is given by

dU T kŽ .ykd sy 9Ž .Xk k kf U T ,T yh TŽ . Ž .Ž .y

The difference between the two trajectories just after
the perturbed trajectory reaches threshold is simply

dU T kqd k sg T kqd k yU T kqd kŽ . Ž . Ž .q q

X k k k kf g T y f U T ,T dŽ . Ž .Ž .q

10Ž .

Ž .Using 9 , the perturbations are seen to satisfy

Xk kf U ,T yg TŽ .Ž .qk k kdU T qd s dU TŽ . Ž .Xq yk kf U ,T yh TŽ .Ž .y

11Ž .

The same expression is obtained by considering the
case when the perturbed trajectory reaches threshold
first. In general the Liapunov function for the flow is
given by

1 dU tŽ .
ls lim ln 12Ž .

t dU 0t™` Ž .
Ž .where the time evolution of dU t is obtained from

a linearisaton of the dynamics. In the IF case with
Ž .initial condition dU t at time t we have, between0 0

Ž . ytrt Ž .firing events, that dU t se dU t Hence, us-0
Ž .ing 11 the IF Liapunov exponent is given by

1 1
lsy q lim k 0t T yTk™` Ž .

=

Xj jk f U ,T yg TŽ .Ž .q
ln 13Ž .Ý Xj jf U ,T yh TŽ .Ž .yjs1

There are two contributions to l, one from the
smooth flow between successive firings and the other
from the discontinuous nature of the resetting mech-
anism.

3. Mode-locked solutions and linear stability

The full map of the firing times specifies the
output of the IF oscillator in terms of a spike train. It
is of interest to know where spikes occur in relation
to preceding spikes, and perhaps more importantly
for neural computation, where the spikes occur in
relation to any underlying periodic modulation of the

w xsystem 6 . For simplicity we consider the case of a
Ž .constant external drive A t s I and a simple peri-

odic modulation of the firing and resetting functions
Ž . Ž . Ž . Ž .so that h tq1 sh t and g tq1 sg t . In the

limit of zero decay t™` the study of a periodic
modulation of the threshold has been considered by
several authors with regards to biological entrain-

w xment of oscillators 7,8 . More general scenarios,
such as with t/0 and periodic variation of the
external input, may be handled with the approach
outlined below. Restricting attention to periodic spike
trains in which p spikes are fired in a period q, the
firing times may be written

n
nT s qyf q , n p sn mod p ,Ž .nŽ p.p

p ,qgZ 14Ž .
w xwhere . denotes the integer part and the f gnŽ p.

w .0,1 denote a collection of firing phases. In general
one wishes to follow the bifurcation sequence of

Ž . n nq1 neither the inter-spike interval ISI D sT yT
or the phase variable T nmod 1. Throughout the rest
of this paper we concentrate on the former sequence.

² :Construction of the average period D :

N1
n² :D s lim D 15Ž .Ý

NN™` ns1

Ž .shows that the ansatz 14 describe a solution with
² :D sqrp, which we shall call a q: p mode-locked

² :solution. When D is independent of initial condi-
tions and both q: p and qX: pX solutions can be found

Žthen another mode-locked solution is expected in
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.some intermediate region of parameter space where
X X Žthe entrainment is qqq : pqp at least in the

regime where the dynamics is described by a circle
.map – see later .

Ž . Ž . Ž . Ž .From Eq. 5 with G t given from 4 as G t s
It , the p firing phases are determined by the simul-
taneous solution of the p equations

q nq1 n
H F ,q 'exp y qfŽ .nŽ p. nŽ p.½t p p

yfŽnq1.Ž p. 5
Ityg yf qŽ .nŽ p.y s0 16Ž .

Ityh yf qŽ .Žnq1.Ž p.

Ž .where we have used the notation F' f , . . . ,f0 py1

to denote the set of phases for a mode-locked state.
The stability of a q: p mode-locked solution may be
found by perturbing the firing times such that T n™

n n Ž . nT qd and expanding 5 to first order in the d s
around the mode-locked solution. In this case we

nq1 Ž . nobtain d sk F ,q d , wherenŽ p.

q nq1
k F ,q sexp yŽ .nŽ p. žt p

n
y qf yfnŽ p. Žnq1.Ž p. /p

Ityg yf q yt gX yf qŽ . Ž .nŽ p. nŽ p.
= XItyh yf q yt h yf q .Ž . Ž .Žnq1.Ž p. Žnq1.Ž p.

17Ž .
Ž .Note that in deriving 17 we have assumed that

XŽ n.F T /0, which is certainly true in the regime
where the map of firing times has an explicit repre-
sentation. By the implicit function theorem continua-
tion of mode-locked solutions to other regions of

Ž .parameter space is possible whenever EH F ,D rnŽ p.
Eg /0, where the g are system parameters. Thea a

persistence of a q: p mode-locked state depends
upon the behaviour of the map

py1
nq1 nq1ypd s k F ,q d 18Ž . Ž .Ł mž /ms0

This has solutions of the form d nsennr p for ngC.
Hence, the stability of a mode-locked state is guaran-

Ž Ž .. Ž Ž ..teed for Re n F ,q - 0 where Re n F ,q s
< Ž . <ln k F ,q and

k F ,qŽ .
py1

s k F ,qŽ .Ł m
ms0

Xpy1 f U ,yf q yg yf qŽ . Ž .q m myqrtse Ł Xf U ,yf q yh yf qŽ . Ž .ms0 y m m

19Ž .

Note the condition for stability of a mode-locked
solution and the requirement that the Liapunov expo-

Ž .nent of such a solution, l F ,q , be negative are
Ž .consistent, since from 13

py11 1
l F ,q sy q lnŽ . Ł

t q ms0

=

Xf U ,yf q yg yf qŽ . Ž .q m m
20Ž .Xf U ,yf q yh yf qŽ . Ž .y m m

Ž .Whenever an explicit map of the form 6 exists
Ž . Ž .and h t , and g t have the form considered above

Ž .ie are periodic, with period one then it is a simple
Ž Ž . . 1rt Ž Ž ..matter to show that F C t q1 se F C t s

Ž Ž .. Ž . Ž .F C tq1 and hence that C tq1 sC t q1.
Ž .Indeed 6 may now be viewed as the iteration of a

ˆ Ž .circle mapping. Introducing the function C t s
ˆŽ . Ž .C t yk such that 0FC 0 -1 leads to the map-

nq1 ˆ n ˆ ˆŽ . Ž . Ž .ping T sC T with C tq1 sC t q1 so
ˆthat C may be regarded as the lift of a degree one

circle map. Introducing

ˆ n ˆ nC t C tŽ . Ž .
r t s lim inf , r t s lim supŽ . Ž .

n nn™` n™`

21Ž .
ˆallows the definition of the rotation interval of C as

ˆŽ . w xL C s r ,r wherey q

r s inf r t , r s sup r t 22Ž . Ž . Ž .y q
tgR tgR

When the rotation interval reduces to a single point,
Ž .denoted by r so that r sr , then r is called they q

ˆrotation number of C and the lim sup and lim inf in
Ž .21 can be replaced by a simple limit. The choice of
k ensures 0Fr-1 so that r measures an average
phase rotation per iteration. If r exists and is ratio-
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nal then there is an initial T 0 such that the sequence
� n 4T mod 1 approaches a periodic sequence asymptot-
ically for large enough n, ie mode-locking occurs.
However, if r is irrational then every solution is

� n 4ergodic and the sequence T mod 1 is dense in the
w .interval 0,1 . When a non-trivial rotation interval

exists a positive value for the topological entropy is
implied. For a detailed account of the possible routes

Žto chaos or more precisely positive topological en-
. w xtropy in circle maps see Mackay and Tresser 9 .

Typically, for two-parameter non-invertible circle
maps, the borders of regions with rational rotation

Ž .numbers Arnold tongues split into two branches in
parameter space. Consequently, extension of Arnold
tongues can cross, leading to a situation in which
two or more different periodic orbits associated with
different rotation numbers are found at the same

Ž .parameter values multi-stability . The complete
Arnold tongue structure is usually complex, with
borders defined by tangent and period doubling bi-
furcations. Beyond the accumulation points of the
period doubling sequences chaotic trajectories may
exist. Often, the region in parameter space between
the border defining a tangent bifurcation and a pe-
riod doubling one is a narrow one so that the locus
of superstable cycles may be used to build a skeleton

w xof the Arnold tongue structure 10 . Moreover, it is
usual to find a complex sequence of bifurcations
within the two branches of the extended tongue
structure. Most results concerning the global organi-
zation of such bifurcations have been found using a
combination of numerical and topological tech-
niques.

For the IF system considered here the borders of
the regions where mode-locked solutions become

Ž Ž ..unstable are defined by the conditions Re n F ,q
s0, where the set of phases F is obtained from the

Ž .solution of Eqs. 16 . Tangent bifurcations are de-
Ž . Žfined by k F ,q s1 whilst period doubling ones if
. Ž .they exist satisfy k F ,q sy1. Since a period

doubling bifurcation q: p™2 q:2 p preserves the
² :value of the average firing period, changes in D

are only expected as one crosses borders in parame-
ter space defined by tangent bifurcations. Superstable
cycles occur when an extremum of the implicitly

Ž .defined map in 5 lies on a periodic orbit. In fact we
Ž .see from 19 and the expression for the Liapunov
Ž . Ž . Ž .exponent 20 that k F ,q s0 implies l F ,q ™

y` as expected for a superstable cycle. The identifi-
cation of chaotic orbits, say at the end of a period
doubling cascade, is possible by establishing a posi-
tive value for the IF Liapunov exponent. Note that
for circle map dynamics it should be possible to
calculate the first accumulation point of such a pe-

w xriod doubling cascade using kneading theory 9 .
Other routes to chaos, such as the quasi-periodic
route, are also possible. For example, phase-un-
locked fully extended chaos for circle map dynamics
is expected in a region of parameter space where
there is no Arnold tongue structure adjacent to a

X X w xregion where r Fprq-p rq Fr 11 .y q

4. Examples

Periodic modulation of either the reset level or
firing threshold can lead to surprisingly rich dynam-
ics even in the presence of a simple constant external
drive. In the former case we shall demonstrate the
possibility of a period doubling route to chaos that
can be confirmed by evaluating the IF Liapunov
exponent derived in Section 2. Period doubling routes
to chaos have also been suggested in other IF type

w xmodels 8 . In these models the existence of chaotic
trajectories is easily verified since the map of firing
times reduces to a circle map and the standard notion
of Liapunov stability applies. Interestingly, IF type
systems with a non-instantaneous reset mechanism
and periodically modulated thresholds have been used
to model the respiratory rhythm and in particular the
entrainment of this rhythm to that generated by a
mechanical ventilator. For systems which linearly
approach a modulated threshold and then linearly
decrease to a modulated reset level one can generate
mode-locked behaviour reminiscent of that observed

w xin the periodically forced van der Pol equation 12 .
A model with two periodically modulated thresholds
has also been used to model the maintenance of the

w xcircadian rhythm 13 .
In this section we discuss the types of firing map

that can arise for periodic modulation of the firing or
resetting thresholds and construct regions in parame-
ter space where mode-locked solutions can occur. In
particular, numerical continuation of solutions from
the situation where the thresholds are constant is

Ž . Ž .practical. For example, when g t s0 and h t s1,
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Fig. 1. Arnold tongue structure of q:1 mode-locked states for an
IF oscillator with an external drive I, periodically modulated

Ž . Ž .firing threshold h t s1qK sin2p t, constant reset level g t s0
and a decay constant chosen as ts1. If It)1 the map of firing

Ž .times is described by a circle map for K-K ' Ity1 rc
2 2'1q4p t . Above this line the dynamics is no longer described

by a circle map. The borders of the tongues are defined by tangent
Ž Ž . .bifurcations solid lines with k F ,q s1 . In the bottom figure

² :y1we plot the average firing frequency D as a function of I
along the border KsK using a direct numerical integration ofc

the IF system. Note that the dominant modes of the Devil’s
staircase are 1:1 and 2:1, which is consistent with the Arnold
tongue structure shown in the top figure.

wq:1 mode-locked solutions exist with Its 1y
y1exp yqrt . Furthermore, we perform directŽ .

numerical simulations to show the existence of peri-
odic, quasi-periodic and chaotic spike-trains in pa-
rameter regimes that are consistent with those pre-
dicted from our analysis.

4.1. Periodic modulation of the firing threshold

Ž . Ž .Consider the case g t s0, h t s1qK sin2p t.
The zero decay limit t™` has previously been

w xdiscussed by Glass and Mackey 7 . For simplicity

we assume It)1 so that the system can reach
Ž . trt wthreshold when Ks0. We have F t se Ity1

x XŽ .yK sin2p t , so that F t /0 whenever K-K 'c
2 2 trt'Ž . Ž . Ž .Ity 1 r 1q4p t . Since F t q e h t s

e trt It)0 we see from the discussion of Section 1
that the map of firing times is described by a circle
map for K-K . Moreover, in this parameter regimec
Ž .K-K the circle map is always invertible sincec

XŽ . trt XŽ .C t se IrF C /0. Hence, in this instance
the generation of chaotic orbits is not possible and
the borders of the Arnold Tongues are defined by
tangent bifurcations only. In Fig. 1 we show a region

Ž .in the I, K parameter space where some of the q:1
mode-locked solutions exist as well as a plot of the
average firing frequency, for KsK , that exhibits ac

typical Devil’s staircase structure. In Fig. 2 we show

Fig. 2. Bifurcation sequence for the ISIs Dn as a function of the
external drive I along the critical line KsK , which defines thec

border between circle map and non-circle map dynamics. In the
bottom figure we show the corresponding IF Liapunov exponent.
As expected the dynamics is either periodic or quasi-periodic.
There is no parameter regime in which the dynamics can become
chaotic for this model.
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the bifurcation sequence of the ISIs along the critical
curve KsK . The corresponding construction of thec

IF Liapunov exponent shows that orbits are either
periodic or quasi-periodic as expected.

4.2. Periodic modulation of the reset leÕel

Ž . Ž .Consider the case h t s1, g t sK sin2p t. We
Ž . trt w x XŽ . y1 Ž .have F t s e Ity 1 and F t s t F t .
XŽ .Hence, F t /0 if It/1. For simplicity, we as-

sume It)1, so that when Ks0 the oscillator may
still reach threshold. Moreover, we shall also restrict
attention to the case K-1 so that there is no
conflict between the definitions for firing and reset

Ž . y1Ž .given by 2 . The inverse function F t s
w Ž .xt ln tr Ity1 has a natural domain t)0 so that an

Ž .explicit map of the form 6 is only possible if
Ž .g t - It which is guaranteed for K- It . In this

case the map C is given by

Ityg tŽ .
C t s tqt ln 23Ž . Ž .

Ity1

XŽ .By explicit construction ofC t and demanding that
XŽ . Ž .C t /0 for C t to be invertible we find that

when the map of firing times is a circle map it is
2 2' .invertible for K- Itr 1q4p t . When K)

2 2'Itr 1q4p t the attractor may exhibit chaotic
behaviour punctuated by windows of periodic mo-

Ž .tion in the I, K parameter plane. Moreover, since
XŽ .C t s0 for two or more values of t there exist

Ž .multiple attractors. In the limit t™`, C t reduces
to

1 K
C t s tq y sin2p t 24Ž . Ž .

I I

so that the map of firing times is identical in form to
the standard two-parameter sinusoidal circle map
Ž w x.see for example 9,14 . As demonstrated by Perez

w xand Glass 15 the threshold crossing times of a
dynamical system which instantaneously jumps from
a constant reset level to a sinusoidally modulated
threshold and then evolves on a straight line trajec-
tory back to the reset level can also be described by
the standard two-parameter sinusoidal circle map. In
Fig. 3 we show the Arnold tongue structure of the

Ž .q:1 mode-locked states in the I, K parameter plane.
Note that in contrast to the previous example, bor-

Fig. 3. Arnold tongue structure of q:1 mode-locked states for an
IF oscillator with an external drive I, constant firing threshold
Ž . Ž .h t s1, oscillatory reset level g t sK sin2p t and a decay

constant chosen as ts1. If It)1 the map of firing times is
described by a circle map for K- It which is invertible below

2 2'Ž .the dotted line Ks Itr 1q4p t . The lower borders of the
Žtongues are defined by tangent bifurcations solid lines with

Ž . .k F ,q s1 whilst the upper ones describe period doubling bifur-
Ž Ž . .cations dashed lines with k F ,q sy1 . In the bottom figure we

² :y1plot the average firing frequency D as a function of I along
the border of invertibility for the circle map of firing times using a
direct numerical integration of the IF system. Note that the
dominant modes of the Devil’s staircase are 1:1 and 2:1, which is
consistent with the analytical construction of the Arnold tongue
structure shown in the top figure.

ders are defined by both tangent and period doubling
bifurcations. In the regime where the firing map is
described by a non-invertible circle map a period
doubling route to chaos is possible. Also shown is a
plot of the average firing frequency along the locus
of points in parameter space defining the border
between an invertible and non-invertible circle map
for the firing times. Since chaotic trajectories are to
be expected at the end of a period doubling cascade
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Fig. 4. Bifurcation sequence for the ISIs Dn as a function of K
with Is1.2. Note the sequence of period doubling bifurcations
from the 2:1 mode-locked state starting around Kf0.55 giving
rise to a chaotic state beyond Kf0.7. Note also the co-existence
of the attractors around Kf0.65 as expected from the Arnold
tongue structure shown in Fig. 3 and knowledge that the circle
map of firing times is non-invertible in this regime.

Fig. 3 suggests searching for such behaviour in the
large K limit. Fig. 4 shows that the bifurcation
sequence of ISIs with increasing K does in fact yield
a period doubling route to chaos with a correspond-
ing positive value for the IF Liapunov exponent.
Hence, theories of neural processing based around
the firing phase of a spiking IF type oscillator in
comparison to some underlying periodic modulation
of the reset level are unlikely to involve any notion
of long termforecasting. This is consistent with the

w xrecent ideas proposed by Hopfield 6 where only the
very first few spikes, in an IF system with subthresh-
old periodic modulation of the membrane potential,
are needed to perform biologically relevant computa-
tions. It is worthwhile to note that many mathemati-
cal models of biological rhythms consider the effect

of pulsatile stimuli on limit cycle oscillators so that a
description in terms of circle maps is natural from
the outset. In these models chaos may also arise via a
period doubling cascade and of course the usual

w xnotion of Liapunov exponent applies 15–18 .

5. Discussion

In this Letter we have presented a systematic
programme for the construction of mode-locked so-
lutions, with rational average firing rate, for periodi-
cally driven IF dynamical systems with or without
periodic modulation of the thresholds for firing and
resetting. Moreover, we have investigated the form
that the map of firing times may take in these
instances. In certain cases the map of firing times
reduces to a circle map and the usual notions of
dynamical systems theory are easily applied. In the
more general case where the map of firing times is
only implicitly defined a revised notion of Liapunov
exponent is required. Using ideas first introduced for
the study of impact oscillators we have developed a
Liapunov exponent for IF systems that is consistent
with the notion of stability in the linearised model.
The conditions under which chaotic spike trains may
be generated in synaptically interacting networks of
IF oscillators is an important open question that may
be tackled using the notion of an IF Liapunov expo-
nent. Not only may this shed light on the role of
chaos in neural computation but will allow a test of
the stability of spike-coding strategies. As illustrated
in the examples, a further application of this work is
to the construction of Arnold tongue structures and
to the study of entrainment in driven IF systems such

w xas that considered by Keener et al. 19 . A full study
of the tongue structure in sinusoidally driven IF
systems including realistic synaptic interactions as
well as the issue of chaos in networks of IF oscilla-
tors are topics of current investigation.
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