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Summary

Word embeddings obtained as optimizers of objective functions in which the
word and context matrices (U and V respectively) appear only through their
product (UV ) are not unique. (E.g. LSA, word2vec, Glove)

The multiple solutions can perform differently on test data.

Disparity in test-data performance between word embeddings can sometimes
be due to different solutions being selected.

We propose two ways of addressing this non-identifiability:

Imposing constraints on optimisation to ensure uniqueness of word embedding
solution.
Optimizing test-data performance over the solution set.
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Introduction

Notation: Let X be a representation of the data, V the matrix of word
embeddings, U an auxiliary matrix, and D a test set.

Most word embedding models (e.g. GloVe, word2vec, LSA) can be written as an
optimization

min
V

f (X ,UV )

e.g., in LSA f (X ,UV ) = ||X − UV ||F .

Word embeddings are assessed by a function g (D,V ). Usually g is based on
cosine similarity between columns of V . For example, g can be taken as the
correlation coefficient between cosine similarities between word pairs and
human-assigned similarity scores in D.
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Non-identifiability

We can replace
(U,V )→ (UC−1,CV )

where C is an invertible d × d matrix, without changing the value of f .
However, this will change the value of g , unless C is an orthogonal matrix.

We want to find the set of transformations to which f is invariant, but not g .
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Group Theory

What is the set of transformations which leave f invariant but not g? It is helpful
to use some group theory here to formalise this.

f is invariant to transformation of the word embeddings by GL(d), the set of
invertible d × d matrices.

g is invariant to transformations by the set
cO(d) = {cQ ∈ GL(d) : c ∈ R,Q ∈ O(d)}.

Let Fd be the set of transformations to which f is invariant, but g is not. Then
Fd = F̃d − cI, where F̃d = GL(d) \ O(d). The set F̃d can be identified with the
set UT(d) of upper triangular d × d matrices.
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Solution 1: Imposing constraints

We can redefine f as a constrained optimization

arg min
U,V :V∈Cv

f (X ,UV )

where
Cv = {V ∈ Rd×p : VV T = Id}

Claim: Any solution which satisfies this constrained optimization problem will be
related by an orthogonal transformation, so all solutions will give the same value
for g .

By also imposing constraints on U we can get a unique solution.
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Solution 2: Optimization over Fd

Alternatively, we can optimize over the solution set of f to get embeddings which
perform best with respect to g .

One-dimensional optimization1: For SVD
embeddings, we approximate the matrix X by
X ≈ AdΣdB

T
d . We can then choose to take

V = Σα
dB

T
d , where α ∈ R.
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Figure: The graph shows the test scores for ΛαV ∗, where
V ∗ = BT

d , for different choices of diagonal Λ. BT
d was

found using the SVD of the document-term matrix of the
Corpus of Historical American English (COHA), with
d = 300. The red line is Λ = Σd . This does not seem to
perform significantly better than the other choices of Λ,
so there doesn’t seem to be any reason to restrict the
optimization to this particular subset.

1[Bullinaria and Levy, 2012], [Turney, 2013]
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Solution 2: Optimization over Fd

Optimization over UT(d):
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Figure: Histogram of
performance of CV ∗, where V ∗ is
a word2vec embedding and C is a
random element of UT(d). The
red line shows the performance of
the base embedding.

Embedding Spearman Pearson
V ∗word2vec 0.700 0.652

Optimized V ∗word2vec 0.797 0.838
V ∗GloVe 0.601 0.603

Optimized V ∗GloVe 0.679 0.760

Table: Test scores for word2vec and GloVe embeddings on the
WordSim-353 test set. The optimization is over ΛV ∗ where Λ
is diagonal. In all cases performance can be significantly
improved by optimization.
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Conclusions

Our main findings are summarized follows:

For many word embedding methods, the objective function does not have a
unique optimum. However, different solutions can perform differently on test
data.

This means that the disparity in performance of different embedding sets, for
example those tuned using hyperparameters, may be due to different
elements of the solution set being selected.

One way to deal with non-identifiability is to impose constraints on the
solution via constrained optimization.

Alternatively, we can try to optimize performance of the embeddings over the
solution set of the objective function. In some cases performance can be
significantly improved by selecting a different solution than that selected by
the embedding algorithm.
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