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Modelling Process: Recap

We have some observed data y ;

We formulate a model with parameters θ;

We are interested in the posterior density π(θ|y).

Bayes’ Theorem gives

π(θ|y) =
π(y |θ)π(θ)

π(y)

where

π(y |θ) is the likelihood;

π(y) is a normalising constant;

and hence we write
π(θ|y) ∝ π(y |θ)π(θ).
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Modelling Process: Recap

If the likelihood π(y |θ) is intractable then a solution is to introduce some missing
data (x) as extra variables to produce a tractable augmented likelihood, denoted by
π(x , y |θ) . . .

. . . and then use, for example, MCMC to sample from π(θ, x |y).

That is essentially what we did in Lectures 2 and 3 in which

the removal times (r) where the observed data y ;

the infection and removal rates (β, γ) were the parameters θ;

the infection times (i) were the missing data that we introduced to produce the
augmented likelihood π(x , y |θ).
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Outline

In this lecture we will look at an alternative method for sampling from the posterior
distribution π(θ|y).

Rejection sampling;

Approximate Bayesian Computation (ABC);

Homogeneously mixing - final size data

2-level mixing - final size data

ABC-MCMC

ABC-PMC
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Rejection Sampling

Suppose we have discrete data y (eg final size), prior π(θ) for parameters θ (eg
infection rate).

Consider the following algorithm:

ER1

1. Draw θ ∼ π(θ);

2. Accept θ with probability equal to π(y |θ);

3. Repeat until the required number of samples are drawn.

* One can show that the accepted values will be distributed according to the posterior
distribution π(θ|y).

* Note that this algorithm requires that the likelihood, π(y |θ), can be evaluated for
any θ (Step 2).
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Rejection Sampling – Exact Bayesian Computation

Consider the following algorithm:

ER2

1. Draw θ ∼ π(θ);

2. Draw y ′ ∼ π(·|θ), i.e. simulate data y ′ from the model;

3. Accept θ if y = y ′;

4. Repeat until the required number of samples are drawn.

* Algorithm ER2 is equivalent to algorithm ER1.

* The main difference is that the computation of the likelihood π(y |θ) (ER1, Step 2)
is substituted by the simulation of an event which occurs with that probability
(ER2, Steps 2 and 3).

* That means that the calculation of the likelihood is unnecessary as long as we can
simulate from our stochastic model.
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How are ER1 and ER2 useful for Epidemics?

Consider some final size data y (i.e. total number of infectives out of the initial
susceptible population of size N) from a Markov SIR model.

Suppose N = 100 and y = 70.

Let us also assume an Exponential infectious period of length 1 unit, Ri − Ii ∼ Exp(1)

We wish to make inference for the infection rate θ, i.e. draw samples from π(θ|y).

How can we draw samples from the posterior distribution π(θ|y)?

Shall we use MCMC? ER1? ER2?
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Inference for Final Size Data

Implementing an MCMC algorithm or the ER1 algorithm requires evaluation of
the likelihood π(y |θ) for any θ.

In other words, we need to able to compute how likely it is observe a final size of
70 out of a population of size 100 for any value θ ∈ (0,∞).

The triangular equations that were discussed in Lecture 4 could be used but unless
Multiple Precision Arithmetic (MPA) is used, then calculations will break down.

Hence, the likelihood π(θ|y) is intractable.

However, we know how to simulate from an SIR model (Lecture 1).
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Inference for Final Size Data

One option is to augment the observed data with missing data, treat them as
additional parameters, and perform data-augmentation MCMC.

However, algorithm ER2 can be used instead:

ER2

1. Draw θ ∼ π(θ);

2. Draw y ′ ∼ π(·|θ), i.e. simulate data y ′ from the model;

3. Accept θ if y = y ′;

4. Repeat until the required number of samples are drawn.

* Step 2 requires simulating from a Markov SIR model – we now how to do that (see
Lecture 1).

* Very straightforward implementation → exact samples from π(θ|y)!
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Inference for Final Size Data

Recall: N = 100, y = 70, γ = 1. We also assume that a priori θ ∼ Exp(1)

ER2

1. theta = rexp(n=1, rate = 1) # Draw from the prior

2. y.prime = simSIR.Markov(100, beta = theta, gamma = 1)

3. Accept theta if y.prime = 70

4. Repeat until the required number of samples are drawn.

There is no approximation up to this stage – ER2 will produce exact draws from the
desired posterior distribution.

What if N = 1000 and y = 782? Will it take long to hit the target?

10 / 37



Approximate Bayesian Computation (ABC)

Consider the following algorithm:

ABC

1. Draw θ ∼ π(θ);

2. Draw y ′ ∼ π(·|θ), i.e. simulate data y ′ from the model;

3. Accept θ if |y − y ′| ≤ h;

4. Repeat until the required number of samples are drawn.

* In Step 3 we no longer require an exact match between the observed data y the
simulated y ′ – Instead we allow for some discrepancy; large or small will depend on the
value of h.

* The ABC algorithm above produces samples from an approximation to the posterior
distribution π(θ|y).
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ABC – Some Remarks

Of course, if h = 0, then ABC2 is equivalent to ER2.

Increasing h will considerably improve the acceptance rate of the ABC algorithm.

However, there will now be accepted values of θ for which it was previously (using
ER2) unlikely to generate data such that y = y ′.

The hope is that if h remains small, then the resulting estimate of the posterior
will be still be close to the true posterior.

Naturally, there is trade off between efficiency and accuracy.

The marginal likelihood, π(y), is derived as a by-product. Can be used for model
choice (Bayes Factors etc).
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ABC – Practical Considerations

Step 3 can be more general; for example we can replace

3. Accept θ if |y − y ′| ≤ h;

with

3. Accept θ if ||y − y ′|| ≤ h;

where || · || is some distance measure, such as the Euclidean distance.

If we want a Gamma (2,2) infectious period instead of an Exp(1), we replace

2. y.prime = simSIR.Markov(100, beta = theta, gamma = 1)

with

2. y.prime = simSIR.Non.Markov.Gamma(100, beta = theta, gamma = 2,

delta = 2)
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ABC for Final Size Data: Recap

Input: observed data y , stochastic model π(·|θ), prior distributions for model
parameters π(θ), distance measure || · ||, tolerance h.

ABC

1. Draw θ ∼ π(θ);

2. Draw y ′ ∼ π(·|θ), i.e. simulate data y ′ from the model;

3. Accept θ if ||y − y ′|| ≤ h;

4. Repeat until the required number of samples are drawn.

Output: samples from (an approximation of) the posterior distribution π(θ|y).
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ABC for 2-Level Mixing Models

We consider epidemic models in populations which mix at two levels, “global” and
“local” (Lecture 4).

More precisely, we consider models in which

each infectious individual i has a ‘global’ rate λG for infecting each other
individual in the population . . .

. . . plus a ‘local’ rate λL, typically much larger, of infecting each other individual
among a set of neighbours, N(i).

Our main concern is the case where the population is partitioned into local groups or
households (or farms/yards etc).
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Asian influenza epidemic household data

The Table below presents some Asian influenza epidemic household data taken from
Longini & Koopman (1982). There is a community which consists of 42 households
each of them of size 3.

Number of cases Number of households
0 29
1 9
2 2
3 2

Task: Assuming a constant infectious period of 1 unit, infer the infection rates λL and
λG .
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EBC for 2-level Mixing Models

ER2

1. Draw θ ∼ π(θ);

2. Draw y ′ ∼ π(·|θ), i.e. simulate data y ′ from the model;

3. Accept θ if y = y ′;
4. Repeat until the required number of samples are drawn.

The total final size is equal to 47 but the actual data are

y = (y0, y1, y2, y3) = (29, 9, 2, 2)

corresponding to 29 households where nobody got infected, 9 households where only 1
individual got infected, 2 households where 2 individuals got infected etc.

Step 3 now is more ambitious than before since we need to hit the target of the
total final size but also the exact number of households with finali size 0,1,2 and 3.
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ABC for 2-level Mixing Models

Doing exact inference seems very challenging and therefore, we seek for alternative,
but approximate ways to draw inference for θ = (λL, λG ).

ABC

1. Draw θ ∼ π(θ);

2. Draw y ′ ∼ π(·|θ), i.e. simulate data y ′ from the model;

3. Accept θ if ||y − y ′|| ≤ h;

4. Repeat until the required number of samples are drawn.

Obvious question:

What distance measure || · || should we use?
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Various Choices of Distance Measures

Compare the total final size and ignore the group structure (not very clever):

||y − y ′|| =

∣∣∣∣∣
3∑

i=0

yi −
3∑

i=0

y ′i

∣∣∣∣∣
Compare the final sizes in each groups::

||y − y ′|| =
3∑

i=0

∣∣yi − y ′i
∣∣

. . .
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Data: Influenza Outbreak

Data on influenza outbreak in Tecumseh @ Michigan, Winter 1980-1981 are shown
below:
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Data: Influenza Outbreak

Households are not all the same size.

ER2 will be very inefficient in this case.

Data y consist of the number of households of size j with final size i denoted by

y = {yij}, for i ,= 1, . . . , 7 j = 1, . . . , 7.

A sensible distance measure could be

||y − y ′|| =
7∑

i=1

7∑
j=1

∣∣yij − y ′ij
∣∣
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Data: Equine Influenza

Baguelin et. al (2009) implemented an ABC-type algorithm to draw inference for a
two-level mixing model on some data on equine influenza on horses.

Data look like this:

Yard Ni di
1 60 18
2 83 78
3 103 80
4 141 78
5 36 6
6 25 19
7 19 16
8 190 139
9 32 30

10 41 21
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Data: Equine Influenza – Remarks

The number of initially susceptible horses in each yard (Ni ) is different across
yards.

A natural distance measure could be :

||y − y ′|| =
n∑

i=1

∣∣∣∣di − d ′i
Ni

∣∣∣∣
in which look at discrepancies of the proportions of the number of infectives per
yard (di/Ni ) rather than discrepancies at the absolute numbers (di ).
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ABC Challenges

ABC algorithms are:

fairly intuitive;

easy to implement;

amenable to routine analysis of data.

However, (at least the vanilla) ABC algorithms can be very inefficient.

Why?

Simulating from (complex) models can be expensive;

If the prior is vague, it will take ages to hit the target.
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ABC within MCMC

To overcome issues caused by a low acceptance probability when the prior and
posterior distributions are rather different Marjoram et al. developed the
ABC-MCMC algorithm.

ABC-MCMC embeds the simulation step of ABC into a standard
Metropolis–Hastings algorithm.

ABC-MCMC is very similar to the standard MCMC algorithm:

MCMC

1. Propose θ′ ∼ q(·|θ)

2. Accept θ′ with probability

min

(
1,
π(y |θ′)
π(y |θ)

π(θ′)

π(θ)

q(θ|θ′)
q(θ′|θ)

)
3. Repeat until required posterior samples are obtained.
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ABC-MCMC

ABC-MCMC

1. Propose θ′ ∼ q(·|θ);
2. Simulate K datasets, y1, y2, . . . , yK , from the model using the parameter θ and

calculate

r(y , θ′) =
1

K

K∑
k=1

I(||y − yk || ≤ h)

3. Accept θ′ with probability

min

(
1,

r(y , θ′)

r(y , θ)

π(θ′)

π(θ)

q(θ|θ′)
q(θ′|θ)

)
4. Repeat until required posterior samples are obtained.

Essentially, the ratio π(y |θ′)/π(y |θ) is approximated by the ratio of proportion of K
simulations that “match the data”.

Intuition says that the larger the K the better; it turns out that there is no much
improvement for large K .
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ABC within Sequential Monte Carlo (SMC)

We can also embed ABC simulation steps in Sequential Monte Carlo (SMC)
algorithms.

The idea is to sample from a sequence of approximate ABC posteriors under
successively lower acceptance tolerances.

The sample from one iteration, known as particles, is used to help choose which θ
values to simulate from in the next.

SMC methods for ABC have a number of potential advantages over MCMC and
vanilla ABC.

Unlike vanilla ABC they concentrate on simulating datasets from θ regions with
relatively high acceptance probabilities, avoiding wasting computational resources.

Unlike MCMC, they can adapt tuning choices, such as acceptance tolerances,
during their operation
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ABC-PMC

There are many ways via which we can embed ABC within SMC.

Here we focus on the algorithm proposed by Toni et al. (2009).

Effectively it performs repeated importance sampling, also known as population Monte
Carlo (PMC).

Ingredients:

observed data y , tolerances ε1 > . . . > εM , distance measure || · ||, number of particles
N, kernel K (·|·), parameters governing π(θ).

Output:

weighted samples from (an approximation to) π(θ|y)

29 / 37



ABC-PMC

Algorithm 1 ABC-PMC

1: Let t = 1.
2: Repeat the following steps until there are N acceptances.

(a) Sample θ∗ from the importance density qt(θ) given in (1) below.

(b) If π(θ∗) = 0 reject and return to (a).

(c) Simulate dataset y∗ from the model using parameters θ∗.

(c) Accept θ∗ if ||y − y∗|| ≤ εt
Denote by θt1, θ

t
2, . . . , θ

t
N the accepted parameter values.

3: Let
w t
i = π(θti )/qt(θ

t
i )

for i = 1, 2, . . . ,N.
4: Increment t = t + 1.
5: Repeat Steps 2 and 3 until t = M.
6: Return final accepted sample and weights. 30 / 37



ABC-PMC: Importance weights

The importance density in Step 2a) is given by

qt(θ) =


π(θ) if t = 1,∑N

i=1 w
t−1
i Kt(θ|θt−1i )/

∑N
i=1 w

t−1
i otherwise.

(1)

In other words, in the first iteration qt(θ) is the prior.

For the subsequent iterations, weighted samples from the previous particle population
are drawn and then perturbed using the kernel Kt .
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ABC-PMC: Kernel

The choice of the kernel is arbitrary.

A good choice is
K (θt |θt−1) = φ

(
θt−1, 2 · Σt−1)

where

φ(·, ·) is the density of a (multivariate) Normal distribution;

Σt−1 is the empirical covariance matrix of the particle population at time t − 1,
{θt−1i }1≤i≤N , calculated using weights {w t−1

i }1≤i≤N .
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ABC-PMC: Tolerances

The choice of the tolerance ladder ε1 > . . . > εM is arbitrary.

However, the efficiency of the algorithm depends (among other things) on
ε1 > . . . > εM .

One approach is to determine the sequence of tolerances adaptively during the
algorithm.
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ABC-PMC: Tolerances

To do so one selects an initial tolerance, such as ε1 =∞, and then selects εt+1

between steps 3 and 4.

The value used is the α quantile of d t
1 , d

t
2 , . . . , d

t
N ,where these are the ||y − y∗||

distances from the accepted simulations at time t, and 0 < α < 1 is a tuning
parameter.
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Summary

Key ideas relating to drawing (approximate) Bayesian inference for stochastic
epidemic models using ABC methods;

Broadly speaking, the methods are very flexible and can be used for more complex
models;

However, as with any application of ABC (or even MCMC methods), the existence
of an algorithm does not necessarily imply that is either efficient or practical.

ABC methods are very well suited for cases where the models of interest have a
relatively few parameters but the likelihood of the observed data is either
unavailable or difficult to compute.
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Further Considerations

ABC is a very active area of research;

Temporal data →summary statistics: how?

Distance metrics;

Computational aspects;
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