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Abstract. A Markovian model for a quantum automata, i.e. an open quan-
tum dynamical system with input and output channels and a feedback is de-
scribed. A multi-stage version of the theory of quantum measurement and
statistical decisions applied to the optimal control problem for quantum dy-
namical discrete-time objects is developed. Quantum analogies of Stratonovich
non-stationary �ltering and Bellman quantum dynamical programming for the
time being discrete are obtained.

The Gaussian case of quantum one-dimensional linear Markovian dynam-
ical system with a quantum linear transmission line is studied. The optimal
quantum multi-stage decision rule consisting of the classical linear optimal
control strategy and quantum optimal �ltering procedure is found. The latter
contains the optimal quantum coherent measurement on the output of the line
and the recursive processing by Kalman�Bucy �lter.

All the results are illustrated by an example of the optimal control problem
for a quantum open oscillator at the input of a quantum wave transmission
line.

1. Introduction

High perspective of applying quantum coherent electromagnetic generators of
optical and infra-red frequency band for communication and control of quantum
dynamical objects stimulates an increase of the interest in theoretical investigations
of potential possibilities of information systems containing quantum channels.
Due to fundamental limitations of quantum-mechanical measurement a speci�c

problem of optimal nondemolition measurement on the input and the output of
quantum channels arises in such investigations. Here we shall consider such a
problem for the channels with a feedback, corresponding to the optimal control in
quantum open systems. It is essential in quantum theory that systems under the
observation should be open, i.e. matched with channels, in order not to demolish
them, by letting out an information.
This paper gives the positive answers in a mathematically constructive way to

the following fundamental questions of quantum systems theory: Is it possible at
all to observe and control a quantum dynamical system in the real time without
not destroying it? If yes, what are the optimal strategies of that observation and
control? How the dynamics of a quantum system is to be changed under the
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obtained information and its use as a feedback? What is are the fundamental
limitations of quantum observability and controllability? Is there any possibility
to obtain a time continuous limit of such observation and control in a quantum
system?
The non-dynamical problem of quantum measurement optimization formulated

primarily for detection and estimation in the static quantum communication sys-
tems by K. Helstrom [1] was studied intensively by several authors [2�7] within
the framework of the single-stage (static) quantum-statistical decision theory. The
dynamic problem of quantum nondemolition measurement for communication and
control has been studied in details by author even in continuous time [8,9] since
the pioneering paper [10]. However the earlier paper [11] on the solution of the
discrete-time problem of optimal measurement has never been published in full, in
spite of the practical importance of this case for the digital communication and con-
trol in quantum channels with a feedback. The novelty of this paper was such, that
only a few people working in the newly open area of quantum stochastic processes
could appreciate it at that time, and it was too far yet from applications. Recently,
however, in view of the new possibilities of quantum computations, the interest
to quantum theory of communication and control has been renewed, and the time
development of the discrete models of quantum open systems for communication
and control became actual. Moreover, after the development of time-continuous
theory of quantum nondemolition measurement and �ltering within the quantum
stochastic calculus approach [12], these models can be considered as discrete time
analogous and approximations of this theory. The discrete time case is mathemat-
ically simpler, it doesn�t need the theory of quantum stochastic integration, and
might be considered on its own as a dynamical programming for quantum compu-
tations, or multi-stage variant of optimal quantum-statistical decision theory.
The quantum dynamical programming for multi-stage optimal measurement

problem can be considerably simpli�ed due to assumption that not only the process-
ing of the measurement results but also the quantum measurement itself may de-
pend on all previous measurement results. It corresponds to the assumption that
we can choose a quantum measurement apparatus on the basis of the previous
measurement data separately at every instant in time. Though in reality it is pos-
sible to imagine such a situation only for a �nite number of stages and a �nite set
of measurement results (time and measuring scale being discrete), this extension
of admissible measurement and decision procedures is mathematically very conve-
nient and from the physical point of view is not contradictory. The choice of the
measuring apparatus and of the observed data processing according to all previous
measurement results on the whole de�nes the strategy in multi-stage quantum deci-
sion theory described here. Within the framework of such an approach the problem
of quantum �ltering of random signal sequences was reduced in [13] to the well-
studied problem of the static optimal quantum measurement on every �xed stage
with conditional a priori distribution depending on the previous observed data.
Here we describe the multi-stage quantum statistical decision theory applied to

the problem of optimal control of a quantum Markovian discrete time system with
a matched quantum channel. This theory may be considered as a quantum (oper-
ational) analogue of the stochastic control theory, based on Stratonovich theory of
conditional Markovian processes [14], and Bellman dynamic programming [15].
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The optimal �ltering and the control strategy are found here in case of one-
dimensional quantum linear Markovian system with quantum Gaussian noises and
the mean-square loss function both in the discrete and continuous time.
In order to pose the problem of measurement and control correctly from the

physical point of view , let us consider the following motivating example.

2. Controlled quantum open oscillator with quantum transmission
line

We are going to give a Markovian model of the simplest quantum system with a
communication channel: the quantum open oscillator matched with a transmission
line. It is an excellent mathematical model of a single-mode antenna for quantum
radiophysics and optical control and communication.
Let x be an operator of complex amplitude of a quantum oscillator with Hamil-

tonian 
x�x, which satis�es the canonical commutation relations with x� being an
adjoint operator

(2.1) [x; x�] = xx� � x�x = ~1
where 1 is the unit operator, and ~ > 0 is the Planck constant.
Assume that in general case this oscillator is controlled by the complex amplitude

u by means of a quantum-mechanical transmission line with wave resistance 
=2,
where the operator of the wave y

�
t� s

c

�
travelling from the oscillator into the line

is measured. In the simplest case of ideal conjugation between the line and the
measuring apparatus, when there is no re�ection of the wave travelling from the
oscillator, i.e. in case of the matched line, x (t) and y (t) are described by the pair
of linear equations [16]

(2.2) dx (t) =dt+ �x(t) = 
u(t) + v (t) ; x (0) = x;

(2.3) y (t) = ��x (t)� dx (t) =dt = 
 (x (t)� u (t))� v (t) ;
where, generally speaking, � is a complex number with �xed real part, �+ �� = 
,
and with arbitrary imaginary part depending on the choice of the representation,
v
�
t+ s

c

�
the amplitude operator of the wave travelling out of line towards the

oscillator, this operator is responsible for the commutator preservation. Under
natural for super-high and optical frequencies assumption of narrowness of the
frequency band which we deal with the commutators for v (t) in the representation
of �rotating waves�have delta-function form [17]:

(2.4) [v (t) ; v (t0)] = 0;
�
v (t) ; v (t0)

��
= 
~1� (t� t0) :

Integrating equation (2.2) and taking into account that v (t) does not depend
on x(t0) when t > t0, it is easy to verify that the commutator

�
x (t) ; x (t)

�� is
constant, moreover, x (t) commutes both with y (t0) and y (t0)� when t > t0, and
the commutators for y (t) ; y (t0) ; y (t0)� coincide with (2.4). The latter means that
considering von Neumann reduction which appears as a result of some quantum
measurement of y (t) at previous instants of time t0 < t does not a¤ect the future
behavior of x

�
t1
�
; y
�
t1
�
; t1 > t, so that equations (2.2), (2.3) remain unchanged.

This fact together with the Markovianity hypothesis of the quantum process x (t)
which hold for quantum thermal equilibrium states of the wave v(t) in case of narrow
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band approximation [17] simpli�es to the large extent optimal measurement and
control problems for the simplest quantum dynamical system mentioned above.
Let us assume, that the initial state x is Gaussian with the mathematical expec-

tation hxi = z and

h(x� z) (x� z)i = 0;


(x� z)� (x� z)

�
= ~�;

v (t) is the quantum Gaussian white noise, which is described by the following
correlations

hv (t) v (t0)i = 0;


v (t)

�
v (t0)

�
= ~�� (t� t0) ;

with � = 
 (exp (~
=kT )� 1)�1for the equilibrium state with the temperature T ,
where k > 0 is the Boltzmann constant.
As an example, let us try to choose the optimal measurement of the controlled

quantum oscillator (2.2) with transmission line (2.3), so that to minimize its energy

 hx� (t) x (t)i at the �nal instant of time t = � by means of the control strategy
the norm

R �
0
j u (t) j2 dt of which should not be too great. If we want also to force

the quantum amplitude x(t) to follow the classical process u(t), this problem can
be characterized by the quality criterion

(2.5) 



x (�)

�
x (�)

�
+

Z �

0



�u (t)

�
u (t) + ! (x (t)� u (t))� (x (t)� u (t))

�
dt:

Here �; ! � 0 are parameters responsible for the measurement quality: when � =

 = 0 (2.5) corresponds to the problem of pure �ltration, when ! = 0; � 6= 0, it
corresponds to the pure control problem.
It will be shown below (see §5) that the optimal measurement minimizing cri-

terion (2.5) is statistically equivalent to the measurement of the stochastic process
z (t) = bx (t) + x� (t) described by Kalman�Bucy �lter:
(2.6) dx̂ (t) =dt+ �x̂ (t) = 
u (t) + � (t) (y (t)� 
 (x̂ (t)� u (t))) :

Here x̂ (0) = z; � (t) = (
� (t)� �) = (�+ �) ;� (t) is the solution of the equation

d� (t) =dt = (� � 
� (t)) (�+ 
� (t)) = (�+ �) ; � (0) = �;

(2.7) dx� (t) =dt+ �x� (t) = � (t) (v� (t)� 
x� (t)) ; x� (0) = 0;

where v� (t) is the amplitude operator with commutators

[v� (t) ; v� (t0)] = 0;
�
v� (t) ; v� (t0)

��
= �~
�(t� t0)

which change the quantum process x̂ (t) into the classical (commutative) di¤usion
complex process, and with correlations of vacuum noise of the intensity � = 0 if

 � 0 and � = 
 if 
 > 0:

(2.8) hv� (t) v� (t0)i = 0;


v� (t)

�
v� (t0)

�
= ~�� (t� t0) :

For instance, such measurement takes place by the heterodyning [7] where v� (t)
stands for a standard wave. In this case the optimal control strategy uo (t) coincides
with the classical one: uo (t) = �� (t) z (t), where �(t) = (

 (t)� !) = (� + !), and

 (t) is a solution of the equation:

(2.9) �d
 (t) =dt = (! � 

 (t)) (� + 

 (t)) = (� + !) ; 
 (�) = 
;
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which together with (2.7) de�nes the minimum quantity of losses (2.5):

~
�

 (0)� +

Z �

0

�

 (t)� + (

 (t)� !)2 � (t) = (� + !)

�
dt

�
+
(0) j z j2 :

By setting � = 0; ! = 0, we obtain in particular the solution of the terminal
control problem for an oscillator with thermal noise equal to zero. But in this case
unlike the classical one the optimal measurement remains indirect and the equation
(2.7) remains regular corresponding to the white noise in the channel of intensity
j 
 j ~. Thus to consider the quantum measurement postulates is statistically
equivalent to the adding of white noise into the channel of intensity j 
 j ~ what
excludes the singular case of pure measurement of the amplitude x̂.
It is interesting to note that, in the stationary case � = �=
, e.g. in the case of

thermal equilibrium when 
 > 0; T > 0 and � = (exp f~
=kTg � 1)�1, the optimal
ampli�cation coe¢ cient � (t) equals to zero which means the possibility of optimal
control of the quantum oscillator without measurement. It also holds when ! = 

,
the solution of equation (2.9) is stationary and optimal feed-back coe¢ cient � (t)
equals to zero. But in the contrary case 
 < 0; T < 0 which corresponds to the
active medium of the oscillator (laser) the optimal coe¢ cients � (t) ; � (t) are strictly
negative and non-zero even for the stationary solution � (t) = 0; 
 (t) = �= j 
 j of
equations (2.7), (2.9).

3. Quantum dynamical filtering

Now let us give a rigorous setting of the quantum dynamical observation problem
for the optimal control of a quantum-mechanical object when time is discrete t 2
ftkg k=0; 1;:::. Let Ak be von Neumann algebras on a Hilbert space H, each is
generated by one or a few dynamical variables (operators) xk =

�
xik
�i2I

in H. One
can consider a quantum-mechanical object in the Heisenberg picture at the instant
of time tk+1 > tk > 0 with xk = x (tk), such that all algebras Ak are equivalent to
the initial algebra A0 = A, generated by the positions and momentums x = (q; p)
at t = 0. Let Bk; k = 1; 2; ::: be von Neumann algebras of observables generated

in H by output dynamical variables yk =
�
yjk

�j2J
, by means of which this object

can be observed in a nondemolition way say, on the time intervals (tk�1; tk]. As it
has been shown above on the example of the matched transmission line, the output
observables bk 2 Bk in the matched channels should commute with all present and
future operators ak1 2 Ak1 ; k1 � k of the dynamical system, but not necessarily
with the past ones ak0 2 Ak0 , k

0
< k. This commutativity condition together with

the commutativity b0kbk0 = bk0b
0
k for all b

0
k 2 Bk, bk0 2 Bk0 8k0 6= k will be referred

as the nondemolition condition.
Let us denote Pk; Rk the dual spaces to Ak;Bk with respect to some standard

pairings < :; : >, say the subspaces of trace class operators �k 2 Ak; �k 2 Bk which
are dual to the simple algebras of all bounded operators ak 2 Ak; bk 2 Bk on the
corresponding Hilbert spaces with respect to the bilinear trace-forms

< �k; ak >= tr [�kak] ; < �k; bk >= tr [�kbk] ;

and denote Sk the corresponding subspace dual to the von Neumann algebra Bk _Ak
generated by the commutating Bk and Ak. We shall use the operational terminol-
ogy, brie�y summarized in the Appendix. Thus we shall call the positive normalized
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elements �k 2 Pk; �k 2 Rk and �k 2 Sk, which are usually described by the statis-
tical density operators, the statistical states of the quantum object at the instants
of time tk, the states of the channel on the interval (tk�1; tk], and the joint state
of the object and channel at the moment tk respectively, or simply the states on
Ak; Bk and Bk _ Ak � Bk 
Ak.
Now we adopt the hypothesis of Markovianity of the Heisenberg dynamics,

restricted to the described quantum object and output channel in H, with re-
spect to a given state of the whole system !. Let all the induced states �k =
!j (Bk _ Ak) ; k = 1; 2 : : : and their restrictions �k; �k on Bk; Ak be de�ned by the
initial state �0 = � on A0 = A and by a family fMkg k�1;2::: of statistical mor-
phisms �k�1 7! �k = �k�1Mk. These transition maps Pk�1 ! Sk can be described
as the pre-dual to positive normalized superoperatorsMk : Bk
Ak ! Ak�1 having
for the simple algebras the form

Mk ck = trB�k [�
�
k ck] ; 8ck 2 Bk 
Ak:

Here ��k; k = 1; 2; : : : are states on some algebras B�k, for which the simple algebras
Bk 
 Ak are isomorphic to the von Neumann tensor products Ak�1 
 B�k, and
trB� is the partial trace on B� such that Mk [ak�1 
 b�k] =< ��k; b

�
k > ak�1 for all

ak�1 2 Ak�1; b�k 2 B�k. This assumption corresponds to the requirement that the
channel should be matched with the object and implies the semigroup dynamics [20]
�k�1 7! �k = trBk f�kMkg of the quantum-mechanical object with discrete time.
Furthermore, we shall suppose that every morphismMk may depend on the results
�k = f�k0gk0<k of previous measurement data �k0 2 Z; k0 < k, say via dependence
of some controlled parameters u 2 U of the sequence f�k0gk0<k due to a feedback
�k 7! u.
The nondemolition measurements during the time intervals (tk�1; tk] are de-

scribed by positive operator-valued measures bk (d�) 2 Bk; k = 1; 2; : : : on the
data space Z 3 � with a given Borel structure of the measurable subsets dz � Z
such that bk (Z) = 1 is the identity operator of Bk. We shall assume that every
Z-measurement bk (d�) also may depend on all preceding measurement results
�1; : : : ; �k�1, and not only due to a dependence on u 2 U and the feedback, but

directly, being adaptive in time. The functions �k 7! (Mk

�
�k
�
; bk

�
�k; d�

�
) are

supposed to be weakly measurable in the sense that for all �k�1 2 Pk�1 and ak 2 Ak
and all Borel subsets d� � Z the complex functions

�k 7!< �k�1Mk

�
�k
�
; bk

�
�k; d�

�
ak >

are Borel functions on Zk =
Q
k0<k Zk0 ; where Zk = Z;Z0 = U . We shall call every

sequence
n
bk

�
�k; d�

�o
k=1;2;:::

of such �conditional�, or adaptive measurements the

measurement strategy.

Let us denote Bk
�
�k; d�

�
the conditional transition measures Pk�1 ! Pk, that

is the operational-valued conditional measures on Z, de�ned as the predual to

superoperator values Bk
�
�k; d�

�
: Ak ! Ak�1 by the formula

(3.1) ak 7! Bk

�
�k; d�

�
ak =Mk

�
�k
� h
bk

�
�k; d�

�

 ak

i
;
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and denote �k
�
d�k+1

�
the Pk - valued measures on Zk+1 obtained for k = 1; 2; : : :

by the recurrency

(3.2) �k

�
d�k � d�

�
= �k�1

�
d�k
�
Bk

�
�k; d�

�
with the initial condition �0

�
d�1
�
= ��

�
u0; d�

1
�
if Z1 = U .

Lemma 1. All the measures �k
�
d�k+1

�
are positive in the sense thatZ

< �k

�
d�k+1

�
; ak

�
�k+1

�
>� 0

for all Ak - valued positive measurable functions ak
�
�k+1

�
� 0 and are normalized,

< �k
�
Zk+1

�
;1 >= 1, where 1 is the identity operator of Ak.

Proof As the superoperator-valued measures Bk
�
�k; d�

�
are positive and nor-

malized in the sense that
R
Bk

�
�k; d�

� h
ak

�
�k; �

�i
� 0 for all ak

�
�k+1

�
� 0 and

Bk

�
�k; Z

�
1 = 1, the lemma can be easily proved by induction, using the positivity

and normalization of �0. Thus the measure �k
�
d�k+1

�
, obtained by the recurrency

(3.2), describes the total statistical state on the algebra Ak and on the expanding
space Zk+1 = Zk � Z
Let us de�ne a posteriori state of the object at time tk as Pk �valued Radon-

Nikodim derivative

(3.3) �k�1

�
�k
�
= �k�1

�
d�k
�
= < �k�1

�
d�k
�
; 1 >

which exists in the weak sense due to absolute continuity of �k�1 with respect to
< �k�1;1 >.

Theorem 1. The a posteriori states �k
�
�k+1

�
; k = 1; 2; : : : can be obtained by

the non-linear recurrency

�k

�
�k; �

�
= �k�1

�
�k
�
Tk

�
�k; �; �k�1

�
�k
��
; �0

�
�1
�
= �;

where Tk
�
�k+1; �k�1

�
is the (Pk�1 ! Pk)-valued Radon-Nikodim derivative

Tk

�
�k; �; �k�1

�
= Bk

�
�k; d�

�
= < �k�1Bk

�
�k; d�

�
;1 > :

Proof The nonlinear transition operations Tk are de�ned in the weak sense almost
everywhere by the Radon-Nikodim derivatives

< �k�1Tk

�
�k+1; �k�1

�
; ak >=< �k�1Bk

�
�k; d�

�
; ak > = < �k�1Bk

�
�k; d�

�
;1 > :

The proof of the theorem follows immediately by induction due to the Bayes formula

< �k

�
d�k � d�

�
;1 >= < �k�1

�
d�k
�
; 1 >=< �k�1

�
�k
�
Bk

�
�k; d�

�
;1 >;

from the de�nitions (3.2), (3.3)
Note that the equation (3.4), describing the conditional Markovian evolution of

a posteriori state of a quantum-mechanical object, can be regarded as a quantum
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generalization of Stratonovich nonlinear �lter equation with discrete time. A semi-
quantum case when a partially observed object is described by a classical Markovian
process fxkgk=0;1;::: and the channel is non-classical, was considered in [12].

4. Quantum dynamical programming

Let us consider the problem of optimization of the observations
n
bk

�
�k; d�

�o
on

the �xed discrete time interval [0;K]. The optimal strategy fbokgk2[0;K) is de�ned
as a strategy, which minimizes the average cost

(4.1) � =< �K ; aK > +
KX
k=1

Z
< �k�1

�
d�k
�
; ck�1

�
�k
�
>;

given by a self-adjoint semi-bounded operator aK 2 AK of �nal losses, and by

similar operator-valued functions �k+1 7! ck

�
�k+1

�
2 Ak, k = 0; : : : ;K�1. (In the

case of unbounded aK and ck
�
�k+1

�
only their spectral measures should belong

to AK and Ak.) Let us remark that the cost (4.1) does not depend on the last
measurement bK

�
�K ; d�

�
which can be chosen arbitrarily, and �K = �K

�
ZK+1

�
.

As it follows from de�nitions (3.1), (3.2) the
Pk

k0=1 in (4.1) for any k = 1; : : : ;K

is independent of the measures bk1
�
�k

1

; d�
�
for k1 � k. Hence in order to �nd

the optimal Z�measurement bk
�
�k; d�

�
from some k < K it is enough to vary the

future average observation cost functional

(4.2) �k =< �K ; aK > +
KX

k0=k+1

Z
< �k0�1

�
d�k

0
�
; ck0�1

�
�k

0
�
> :

Lemma 2. The explicit dependence of �k on bk
�
�k; d�

�
is a¢ ne

(4.3) �k =

Z
Zk

Z
Z

< �k

�
d�k; �

�
; bk

�
�k; d�

�
>;

where �k
�
d�k; �

�
= �k�1

�
d�k
�
Ak

�
�k; �

�
. Here Ak

�
�k+1

�
is a (Pk�1 ! Rk)

�valued function on �k+1 which is de�ned as predual to the superoperators

(4.4) bk 7! Ak

�
�k+1

�
bk =Mk

�
�k
� h
bk 
 ak

�
�k+1

�i
; 8bk 2 Bk;

where ak
�
�k+1

�
is an operator-valued function on Zk satisfying the linear inverse-

time recurrency

(4.5) ak�1

�
�k
�
=

Z
Bk

�
�k; d�

�
ak

�
�k; �

�
+ ck�1

�
�k
�
;

k = 1; :::;K with the boundary condition �K
�
�K+1

�
= aK .

Proof First let us prove that the future losses (4.2) can be represented as

�k =

Z
Zk

Z
Z

< �k

�
d�k � d�

�
; ak

�
�k; �

�
>;
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where ak
�
�k+1

�
2 Ak is the solution to the equation (4.5). It is obviously valid for

k = K, and if it is true for a k < K, then substituting (3.2) into this representation
of �k, we obtainZ

< �k

�
d�k+1

�
; ak

�
�k+1

�
> +

Z
< �k�1

�
d�k
�
; ck�1

�
�k
�
>

=

Z
Zk
< �k�1

�
d�k
�
;

Z
Z

Bk

�
�k; d�

�
ak

�
�k; �

�
> +ck�1

�
�k
�
:

So this is also valid for �k�1 with ak�1 given in (4.5), and by using the inverse-time
induction, it is valid for any k 2 [0;K). Now we can obtain (4.3) by

< �k

�
d�k � d�

�
; ak

�
�k; �

�
>=< �k�1

�
d�k
�
Bk

�
�k; d�

�
; ak

�
�k; �

�
>

=< �k�1

�
d�k
�
Mk

�
�k
�
; bk

�
�k; d�

�

 ak

�
�k; �

�
>

=< �k�1

�
d�k
�
Ak

�
�k
�
; bk

�
�k; d�

�
>=< �k

�
d�k; �

�
; bk

�
�k; d�

�
>;

where we used the de�nitions (3.1) and (4.4) for the operations Bk and Ak

Theorem 2. If the strategy
n
bok

�
�k; d�

�o
k2[1;K)

is optimal for the cost functional

(4.1), it satis�es the following system of equations

(4.6)
�
�k

�
d�k; �

�
� �k

�
d�k
��
bok

�
�k; d�

�
= 0;

k 2 [1;K), where

�k

�
d�k
�
=

Z
Z

�k

�
d�k; �

�
bok

�
�k; d�

�
:

These equations together with the system of inequalities

(4.7) �k

�
d�k; �

�
� �k

�
d�k
�
; k 2 [1;K)

give the necessary and su¢ cient conditions of the optimality for quantum measure-
ment strategy bok, k = 1; :::K � 1 corresponding to the minimal values

(4.8) �ok =

Z
< �k

�
d�k
�
; 1 >

of the future average costs (4.2).

Proof As the variables bk
�
�k; d�

�
; k = 1; 2; : : : ;K of the functional (4.2) are inde-

pendent, the optimal measure bok
�
�k; d�

�
minimizes the a¢ ne functional separately

for every �xed family
n
bk1
�
�k

1

; d�
�o

k1>k
. The necessary and su¢ cient conditions

(4.6), (4.7) of optimality for bok
�
�k; d�

�
, minimizing the a¢ ne functional (4.3) with

a �xed k, follow immediately by the linear programming method, as it was noted
in the single-stage theory of optimal quantum measurements [2, 4�7]
Note that the minimal value �o of the total average cost (4.1) is given by the

solution ao = ao0 of the recurrency (4.5) with Bk = B
o
k at k = 0 as �

o =< �; ao >.
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Let us note that with the help of the a posteriori states �k
�
�k
�
, one can write

conditions (4.6), (4.7) in the following form

(4.9)
�
�k

�
�k; �

�
� �k

�
�k
��
bok

�
�k; d�

�
= 0;

(4.10) �k

�
�k+1

�
� �k

�
�k
�
; k 2 [1;K);

where �k
�
�k+1

�
= �k�1

�
�k
�
Ak

�
�k+1

�
. According to the Bellman dynamical

programming method [15] the veri�cation of the optimality condition formulated
above can be carried out sequentially in inverse time k = K � 1; : : : ; 1 applying the
recurrence (4.5) for the superoperator Ak

�
�k+1

�
after solving the �ltering recurrent

equation (3.4).
The optimal control of Markovian partially observed quantum-mechanical ob-

ject can be reduced to the optimal measurement problem investigated above as
follows. Let Mk (uk�1) : Pk�1 ! Rk 
 Pk be the quantum statistical morphisms
(transitions) controlled by some parameters uk 2 U; k = 0; : : : ;K � 1. A control
strategy f
kgk<K is given by a choice of the feedback, de�ned by a measurable
dependence 
k of each uk on all measurement data �k0 2 Y; k0 � k, and also
on the preceding controls uk0 ; k0 < k. The optimal control for a �xed measure-
ment strategy is supposed to minimize the average cost de�ned by a �nal oper-
ator aK and operator-valued cost functions ck (uk) ; k = 0; : : : ;K � 1. Denoting
�1 = u0, �

k =
�
u0; �1; u1; : : : ; �k�1; uk�1

�
, � = (�; u) ; the average cost functional

even with random control strategies can be represented in the form (4.1), given by

the quantum measurement strategy
n
bk

�
�k; d�

�o
on Z = Y � U of the form

(4.11) bok

�
�k; d� � du

�
= bok

�
�k; d�

�
�
�

ok

�
�k; �

�
; du

�
and c0

�
�1
�
= c0 (u0), ck

�
�k+1

�
= ck (uk). The quantum optimal control problem

can be formulated then as one of searching for the optimal Y � U �measurements

bok

�
�k; d�

�
; k 2 (1; k) ; and an optimal initial control uo corresponding to the

minimal value
�o = inf

u
< �1 (u) ;1 > + < �0; c0 (u) >

of average cost (4.1). In general, the optimal measurement strategy may not be
in the product form (4.11), but if there exists a non-randomized strategy uok =


ok

�
�k; �

�
; k 2 [1; K) for some Y -measurements bok

�
�k; d�

�
for which the Y � U

- measurements are optimal, where � (�; �) is the Dirac �- measure, then the data
spaces Y may be called the su¢ cient spaces. The optimal measurements bok

�
�k; d�

�
on su¢ cient data spaces Y satisfy obviously the equations�

�k

�
�k; �; 
ok

�
�k; �

��
� �k

�
�k
��

bok

�
�k; d�

�
= 0; k 2 [1; K);

where

�k

�
�k
�
=

Z
�k

�
�k; �; 
ok

�
�k; �

��
bok

�
�k; d�

�
;

which together with the inequalities (4.10) are necessary and su¢ cient for the non-
randomized control strategy f
okg.
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5. Quantum filtering in Boson linear Markovian system in a Gaussian
state

We examine a Markovian one-dimensional quantum dynamical system, described
at discrete instants tk = k� by the algebras Ak and Bk, which are generated by the
non-selfadjoint operators xk 6= x�k and yk 6= y�k respectively, satisfying the canonical
commutation relations. Let us suppose that they act in the same Hilbert space H,
where they satisfy the linear quantum stochastic equations

(5.1) xk = �xk�1 + �uk�1 + vk

(5.2) yk = 
xk�1 + �uk�1 + wk:

Here �; �; 
; � are some, in general complex parameters, the controls uk can also
accept complex values, x0 = x is the initial operator in H, generating the algebra
A, and vk; wk are some operators in H; generating the algebras B�k. To obtain
the Markov dynamics, we need to assume the independence of x and all the pairs
(vk; wk) such that the algebras A and B�k, corresponding to di¤erent instants of
time tk, commutate, and the joint state ! is the product of the states on A and
all B�k; k = 1; 2 : : :. We shall de�ne the canonical commutation relations for the
generating operators x; vk; wk with their adjoints as following:

[x; x�] = ~1 [vk; v
�
k] =

�
1� j � j2

�
~1;

(5.3) [wk; w
�
k] =

�
"� j 
 j2

�
~1; [wk; v

�
k] = � ��
~1;

where ~ > 0 and 1 is the identity in H ( other, unwritten commutators, including
all those corresponding to di¤erent instants of time to be equal to zero.) Here the
choice of the commutator [wk; v�k], responsible for the commutativity [yk; x

�
k] = 0 is

essential, the other nonzero commutators are chosen so that the commutators

[xk; x
�
k] = ~1; [yk; y

�
k] = "~1

should be constant. The described system we shall call the discrete linear Markovian
quantum open oscillator.
Let us describe the states �k 2 Pk by the Glauber [21] distributions pk (�), � 2 C,

normalized on the complex plane C with respect to the Lebesgue measure d� =
dRe�dIm�=�~. In the representation described in the Appendix, the Markovian
morphisms Pk�1 ! Pk, corresponding to the linear equations (5.1), (5.2), transform
the distributions pk�1 (�) into the two-dimensional distributions

(5.4) gk (�; �) =

Z
qk
�
� � ��1 � �u; � � 
�1 � �u

�
pk�1

�
�1
�
d�1;

where qk (�; �) are some other (not necessarily Glauber) distributions on C2, which
describe the independent states ��k on algebras B�k.
When " = 0, the operators yk; y�k are simultaneously measurable, and the a

posteriori states on Ak under the �xed spectral values yk0 = �k0 and uk0 , k0 < k are
de�ned recurrently by the a posteriori Glauber distribution pk

�
� j �k�1

�
according

the Bayes formula

pk

�
� j �k�1

�
= gk

�
�; �k j �k

�
=rk

�
�k j �k

�
:
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Here gk
�
�; � j �k

�
are the distributions obtained by substitution of pk�1

�
� j �k

�
into (5.4) instead of pk�1 (�), and

rk

�
� j �k

�
=

Z
gk

�
�; � j �k

�
d�

are the probability distributions, describing the complex values �k, which arise as
the results of the direct measurements of yk under the �xed �

k.
When " 6= 0, only indirect measurement of yk are possible which are described,

for instance, by the Bk �valued measures

(5.5) bk (d�) = #mk (� � yk)#d�;

represented by some distributions mk (�) on C as it is described in the Appendix
(A.3). In this case in order to calculate a posteriori Glauber distribution one should
change qk (�; �) in formula (5.4) for the distribution

(5.6) q1k (�; �) =

Z
mk

�
� � �1

�
qk
�
�; �1

�
d�1:

Theorem 3. Let the initial state � of the quantum oscillator be described by the
Glauber distribution of Gaussian type

(5.7) p (�) =
1

�
exp

�
� j � � z j2 =~�

	
;

the distributions qk (�; �), describing the transitions (5.4), be also Gaussian:

(5.8) qk (�; �) =
exp

�
�
�
� j � j2 +2Re���� + � j � j2

�
=~
�
��� j � j2

�	
��� j � j2 ;

and the measures bk are described as in (5.5), by the Gaussian distributions

(5.9) mk (�) =
1

�
exp

�
� j � j2 =~�

	
:

Then a posteriori states (3.3) at each instant k = 1; 2; : : : ; are given by the condi-
tional Glauber distributions of Gaussian form

(5.10) pk

�
� j �k+1

�
=

1

�k
exp

�
� j � � zk j2 =~�k

	
;

where zk;�k are de�ned by the recurrent equations of the complex Kalman �lter:

(5.11) zk = �zk�1 + �uk�1 + �k (�k � 
zk�1 � �uk�1) ; z0 = z;

(5.12) �k =j � j2 �k�1 + �� j �k j2 	k; �0 = �;

where

�k = (��
�k�1 � �) =	k 	k =j 
 j2 �k�1 + �1; �1 = � + �:

Proof Due to the chosen representation, the proof is similar to the derivation of
the classical one-dimensional Kalman �lter for the complex Gaussian process xk
given by (5.1) and y1k = yk + w

�
k, where w

�
k are independent Gaussian variables

with zero mean values and the covariances � � ". (For this proof see, for instance,
[22].) One should only take into account that distributions (5.6) are also Gaussian
of the type (5.8) with the parameter �1 = �+� instead of �. Substituting q (�; �) in
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(5.4) by q1 (�; �) and pk�1 (�) by the conditional distribution pk�1
�
� j �k

�
of type

(5.10), we obtain

g1k

�
�; � j �k

�
= pk

�
� j �k�1

�
r1k

�
� j �k

�
;

where pk
�
� j �k�1

�
is the Gaussian distribution (5.10) with the parameters (5.11),

(5.12), and

(5.13) r1k

�
� j �k

�
=

1

	k
exp

�
� j � � 
zk�1 j2 =~	k

	
:

Thus the quantum Gaussian �ltering is controlled by the classical Kalman �lter for
the complex amplitude in the Glauber representation
Note, that in distinction from the classical case, the covariance matrix of distri-

butions (5.8), (5.9) should not only be non�negative de�nite but should also satisfy
the Heisenberg uncertainty principle

(5.14)
�

� ��
��� �

�
�
�
j � j2 �1 ��


�� j 
 j2 �"

�
; � � ";

as it follows from inequality (A.5). In particular it excludes the case � = 0 of the
direct observation of yk when " > 0.
As shown in the next paragraph, a posteriori mathematical expectations zk with

� = max (0; ") appear to be the optimal estimates uok = zk of the operators xk with
respect to the square quality criterion ck (uk) =:j xk�uk j2: with the minimal mean
square error ~�k. In the commutative case [xk; x�k] = 0 this optimality was proved
in [11].
Note, that instead of calculating zk by means of the recurrent formula (5.11)

using the results (�1; :::; �k) of the indirect measurement (5.5) one may regard zk
itself as a results of the measurement described by the Bk�valued measure:

(5.15) bk

�
�k; dz

�
= #nk (z � x̂k)#dz;

where

nk (z) =
1

j �k j2
mk (z= j �k j) ;

and

(5.16) x̂k = �zk�1 + �uk�1 + �k (yk � 
zk�1)
is an operator, depending on the values zk�1; uk; and independent of the preceding
measurement and control results.
It is interesting to consider the time continuous limit, when the quantum oscil-

lator (5.1), (5.2) is described by the quantum stochastic di¤erential equations

(5.17) dx (t) + �x (t) dt = �u (t) dt+ v (dt) ;

(5.18) y (dt) = 
x (t) dt+ �u (t) dt+ w (dt) ;

i.e. by equations (5.1), (5.2) with x (tk) = xk; y (�tk) = yk; � ' 1� ��; � '
��; 
 ' 
�; " ' "�; where (�tk) = tk � tk�1 = � tends to zero. In addition
to that the commutation relations (5.3) change in the following way

[x; x�] = ~1;
�
v (dt) ; v (dt)

��
= (�+ ��) ~dt1;�

w (dt) ; w (dt)
��
= "~dt1;

�
w (dt) ; � (dt)

��
= �
~dt1;



14 V. P. BELAVKIN

and the other commutators including those corresponding to the di¤erent instants
of time are equal to zero. By passing to the limit as � �! 0 when � ' ��; � '
� � �; � ' � � �, it is easy to obtain under the assumptions of the Theorem 3
that a posteriori state �

�
t; �t

�
is described by the Glauber distribution p

�
t; � j �t

�
of Gaussian type (5.10) with the parameters z (t) ;� (t) which correspond to the
Kalman�Busy �lter

(5.19) dz (t) + �z (t) dt = �u (t) dt+ � (t) (� (dt)� (
z (t)� �u (t)) dt) :
Here � (t) = (�
� (t)� �) =�1; �1 = v + �; z (0) = z; � (0) = �;

d� (t) =dt+ (�+ ��) � (t) = �� j � (t) j2 �1;
and � (dt) are the results of the corresponding indirect measurement of y (dt) which
are realized by the measurement of the sum y (dt) + w� (dt), where w� (dt) is an
independent quantum white noise, de�ned by the coe¢ cients "; � :�

w� (dt) ; w� (dt)
��
= �"~dt1;



w� (dt)

�
w� (dt)

�
= �~dt:

As shown at the end of the next paragraph, such �continuous� measurement
appears to be also optimal in the Gaussian case when � = max (0; ").

6. Optimal measurement and control in quantum open linear system

In the following theorem it is not required that the distributions p0; qk and mk

should be Gaussian and it is assumed only that they should have the zero math-
ematical expectations, and the covariances should coincide with the covariances
�; �; �; �; � of the distributions (5.7) �(5.9) respectively, not necessary being of the
form (5.11).

Theorem 4. Let the operator of �nal losses be quadratic: aK = 
x�KxK , where

 � 0, and
(6.1) ck (uk) = !x

�
kxk � #�ukxk � �#ukx�k + #1 j uk j2; ! � 0; #1 > 0

be quadratic loss operators for all k 2 [0;K). Suppose uk = ��kzk; k 2 [0;K) is a
linear control strategy, where zk are the linear estimates (5.11) based on the results
�k of the indirect measurement (5.5), and

(6.2) �k =
�
���
k+1 � #

�
=�k;

with �k =j � j2 
k+1 + #1 and 
k satisfying the following equation
(6.3) 
k =j � j2 
k+1 + !� j �k j2 �k; 
K = 
:

Then the operators of future losses (4.5) are also quadratic:

ak

�
�k+1

�
= dk1+�k j uk + �kzk j2 +
kx�kxk

(6.4) +�k (zk � xk)� (zk � xk)� 2Re�k (uk + �kzk)� (zk � xk) ;
where

dk = ~
KX

i=k+1

�

i� + �i

�
� + 2Rexi�� + �

1 j �i j2
��
;

(6.5) �k =j �k j2 �k+ j �� �k+1
 j2 �k+1; �k = 0;

and
�k = ���
k+1 � #:
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Proof In the representation

aK =: �K (xK) :; ck (uk) =: � (xk; uk) :; ak

�
�k+1

�
=: �k+1

�
xk; �

k+1
�
:

the recurrent equation (4.6) has the form �k

�
�k; �

k+1
�
=

(6.6)
Z
�k+1

�
�; �k+1; �; u

�
q1 (� � ��k � �uk; � � 
�k � �uk) d�d� + � (�k; uk)

where
u = ��k+1z; z = �zk + �uk + �k+1 (� � 
zk) :

Let us assume that the function �k (�) has the quadratic form (6.4); in particular,
it has this form at k = K, namely �K (�) = 
 j � j2. Inserting the latter into
(6.6) and integrating, we obtain, that the function �k�1 is of the same form with
�k�1 = #

1+ j � j2 
k and 
k�1;�k�1 given by (6.3) and (6.5), and
dk�1 = dk + ~

�

k� + �k

�
� + 2Re�k�� + �

1 j �k j2
��
:

Summing �Ki=k (di�1 � di) and taking into account that dK = 0 and �K = 0, we
obtain (6.4) also for k � 1

Lemma 3. Let us assume that starting from the instant k+ 1, the controls uk are
chosen to be linear uk1 = ��k1zk1 with the coe¢ cients (6.2), where zk1 ; k1 > k de-
pend linearly on the results of the subsequent indirect measurement �k+1; : : : ; �K�1
by virtue of the formula (5.11) with the initial condition zk = z. Let also the in-
direct measurements be described by the Gaussian distributions (5.9) up to the k.

Then the operator �k
�
�k; �

�
, de�ned in (4.9), has the following normal form

�k

�
�k; �

�
= �k

�
�k
�
+

(6.7) + :
�
�k j u+ �kx̂k j2 + j �� �k+1
 j2 �k+1 j z � x̂k j2

�
rok

�
yk j �k

�
:;

where

�k

�
�k
�
=:
�

k j x̂k j2 +(~ (
k + �k) �k + dk)1

�
rok

�
yk j �k

�
:;

the operator x̂k, de�ned in (5.16), is linear with respect to yk, and rok
�
� j �k

�
is

the distribution (5.14) with the parameters �o = � + �o, where �o = max (0; ").

Proof Indeed, the operator �k
�
�k+1

�
similar to the density operator � 2 Rk is

de�ned by the distribution

(6.8) rk

�
�; �k+1

�
=

Z
�k

�
�; �k+1

�
pk

�
�j�k+1

�
d�;

where

pk

�
�j�k+1

�
=

Z
qk
�
� � ��k�1 � �uk�1; � � 
�k�1 � �uk�1

�
pk�1

�
�k�1 j �k

�
d�k�1:

It is a symbol of the contrary order (see the Appendix), which is normal when " < 0
and antinormal when " > 0. In the former case, inserting the operator symbol (6.4)
into (6.9) and integrating with respect to the Gaussian type of the distribution

pk�1

�
�k�1 j �k

�
, we obtain (6.7), where rok

�
� j �k

�
coincides with the distribution
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rk

�
� j �k

�
of the Gaussian type (5.13) with the parameter v1 = �. In the latter

case " > 0, the normal symbol of the operator �k
�
�k+1

�
is obtained from (6.9) by

means of the convolution of type (A.2) with the distribution (5.9) with � = ", and

in the result of the parameter � increases for ". In this case rok
�
�j�k

�
is also the

normal symbol of the conditional density operator �k
�
�k
�
on Bk

Theorem 5. Let the quantum oscillator (5.1), (5.2) be described by the Gauss-
ian initial and transitional distributions of the Gaussian form (5.7), (5.8), and the
quality criterion (4.2) be de�ned by the quadratic �nal and transitional operators
�K = 
x�KxK and ck (uk) of form (6.1) respectively. Then the optimal strategy is
linear: uk = ��kzk, where �k is de�ned by (6.2), and zk are optimal linear esti-
mates (5.11) based on the results f�igi�k of the coherent measurements (5.5) which
are described by the distributions (5.9) with the minimal value of the parameter
� = �o.

Proof We should verify the necessary and su¢ cient optimality conditions (4.10),
(4.11) for the operator (6.7) and the mentioned above measurement at each instant

k. As �k;�k � 0, and the density operator : rk
�
yk j �k

�
: is non�negative de�nite,

the di¤erences �k
�
�k+1

�
� �k

�
�k
�
are non-negative de�nite operators as well. It

remains to verify the equations (4.13) for the optimal strategy 
ok
�
�k; �

�
= ��kzk

of the coherent measurements (5.5) or, what is the same, of the measurements
(5.15) with the Gaussian distributions nok (z), corresponding to the case � = �o.
Inserting u = ��kz into (6.7) and taking into account (6.5), we obtain

�k

�
�k; �; 
ok

�
�k; �

��
� �k

�
�k
�
= �k :j z � x̂k j2 rk

�
yk j �k

�
: :

Thus, equations (4.13) with " > 0 can be written in the form

(6.9) (z � x̂k)#nok (z � x̂k)# = 0;

and the adjoint ones can be written for " < 0 also as

(6.10) #no (z � x̂k)# (z � x̂k) = 0:

The operators#nok (z � x̂k)# described by the Gaussian distributions nok (z), which
realize the lower bound of the Heisenberg inequality, are well known as proportional
to coherent projectors [8]. The operators x̂k when " > 0, are proportional to the
annihilation operators, and when " < 0, they are proportional to the creation oper-
ators, for which the coherent projectors are the right and the left eigen-projectors
respectively. Hence, the equations (6.9) is satis�ed in the case " > 0, and the equa-
tion (6.10) is satis�ed if " < 0. Note that, in the antinormal case when the coherent
projectors are described by the Dirac distributions � (z) on C, these equations are
written as the identities

(z � x̂k)#� (z � x̂k)# = #(z � x̂k) � (z � x̂k)# = 0; " > 0;

#� (z � x̂k)# (z � x̂k) = #� (z � x̂k) (z � x̂k)# = 0; " < 0:
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The minimal losses, corresponding to the optimal quantum strategy are de�ned
by the following formula

(6.11) �o = 
0 j z j2 +~
 

0�+

KX
k=1

�

k� + ��k�1

�
���
k � #

�
�k�1

�!
;

where �k;
k are de�ned by (6.2), (6.3), and �k;�k by (5.11), (5.12) with � =
max (0; ")
Let us also obtain the solution to the corresponding time-continuous optimal

control problem for the quantum open system, described by the linear stochastic
di¤erential equations (5.17), (5.18) and the quadratic integral criterion



�
:j x (�) j2:

�
+

Z �

0

�
! :j x (t) j2: �2Re#�u (t)x (t) + #1 j u (t) j2

�
dt:

This criterion is obtained by setting ! ' !�; # ' #�; #1 ' #1� in the con-
ditions of the Theorem 6.1; and passing to the limit as � �! 0. So, the solution
to the quantum optimal control problem for the time continuous quantum open
system (5.17), (5.18) with quantum white noises v; w is de�ned as the limit of the
solution to the discrete problem at � �! 0.
The optimal strategy, obtained in this limit, is obviously linear with respect to

the optimal estimate z (t) of x (t) as in the classical case [20]: u (t) = �� (t) z (t),
where � (t) =

�
��
 (t)� #

�
=#1; 
 (�) = 
; and 
 (t) satis�es the equation:

�d
 (t) =dt+ (�+ ��)
 (t) = !� j � (t) j2 #1:
The optimal estimate z (t) is obtained by coherent measurements, corresponding
to the case � = max (0; ") in the time-continuous Kalman �lter, and the minimal
mean square losses are de�ned by the integral

�o = 
0 j z j2 +~
�

0�+

Z �

0

�

 (t)� + �� (t)

�
��
 (t)� #

�
� (t) dt

��
:

In particular, when � = 
 = " = � + �� > 0; � = � = �; #1 = # + �; # = !,
we obtain the solution to the optimal control problem for the quantum open
oscillator matched with the transmission line (2.3) of the wave resistance 
=2
which was considered as the motivating example in §2. In this case the equa-
tions (5.17), (5.18) are reduced to (2.2), (2.3), where the generalized derivatives
v (t) = v (dt) =dt; y (t) = y (dt) =dt represent the direct and reverse waves on the
input of the open oscillator.

Appendix A. APPENDIX

Let A, B be von�Neumann algebras, i.e. selfadjoint weakly closed subalgebras of
operators in a complex Hilbert space H including the identity operator 1, and P, R
be predual spaces of ultra weakly continuous functionals on A and B, respectively.
The elements � 2 P and � 2 R are called states on A and B respectively if < �; a >
� 0, < �; b >� 0 8a � 0; b � 0 (a; b � 0 means the non-negative de�niteness of
the operators a 2 A and b 2 B), and if < �;1 > = 1, < �;1 > = 1. Linear operators
transforming operators b 2 B into operators a 2 A are called superoperators, and
the predual linear maps P ! R are called operations. The typical example of
a superoperator gives a representation b 7! u�bu, where u is a unitary operator.
An operation M : � 7! �M 2 R is called the (statistical) morphism if the dual
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superoperator b 7! Mb 2 A is positive1 Mb � 0; 8b � 0 and M1 = 1 (it is
convenient to denote the morphisms and dual superoperators by the same symbol
with the right and the left action respectively: < �M; b >=< �;Mb >.)
A B�valued measure b (d�) on some Borel space Z 3 � is called Z�measurement,

if b (d�) � 0 for any Borel d� � Z and
R
b (d�) = 1 in the same sense. IfM : P ! R

is a morphism describing a quantum channel, ��the state on its input and b (d�) �
the measurement on its output, then the probability distribution on Z is calculated
by any of the formulas

(A.1) P (d�) =< �M; b (d�) >=< �;Mb (d�) > :

Let, for instance, the subalgebras A and B be generated by the operators x and
y respectively with the canonical commutation relations

[x; y] = 0; [x; x�] = ~1; [y; x�] = 
~1; [y; y�] = "~1;

where 
 2 C; " 2 R and ~ > 0 is a constant.
It may be assumed that y = 
x+v holds, where v is an operator in H commuting

with x and x�, but not commuting with the adjoint one: [v; v�] =
�
"� j 
 j2

�
~1,

and the algebra generated by the pair x; y can be represented in the form of the
tensor product A 
 B�, where B� is the von�Neumann algebra generated by the
operator v.
We shall write the operators, generated by the operators x and v in the form

#' (x; v)#, where ' (�; �) are complex�valued functions of �; � 2 C, called symbols,
and the notation # � # indicates such order of action for the operators between
them, that �rst act the operators x; v, and then their conjugate. For instance,
# j x j2 # = x�x. In a su¢ ciently wide class of symbols any operator from A
B�
can be represented in such a form, and this representation is single-valued and
injective. In the case y = 
x+ v the operators a 2 A are described by the symbols
' (�; �) = � (�) and the operators b 2 B by the symbols ' (�; �) = � (
� � �)as in the
classical commutative case ~ = 0. The states in this quasi-classical representation
are described by distributions q (�; �), generalizing the probability densities and
representing the density operators as the symbols of the contrary order, which are
dual to the order for the symbols ' (�; �). Due to ~ > 0, x�=

p
~ is the standard

creation operator, and x=
p
~ is the standard annihilation operator, so that the

representation a = #� (x)# of operators a 2 A is normal [19], described by the
holomorphic symbols � (�) with respect to both �; ��. The corresponding symbols
p (�) of the states � on A are described by the Glauber distributions p (�), which
are de�ned as the linear functionals

< �; a >=

Z
p (�)� (�) d� (d� = dRe�dIm�=�~) ;

describing the symbols of the density operator �, appropriate to the antinormal
order. The normal order is denoted by the parentheses : : , so we have#� (x)# =:
� (x) : when [x; x�] � 0. Note, that the antinormal symbol p (�) of the density

1For a physical realization of the statistical morphisms by conditional expectations of the
representations a stronger condition of complete positivity [Mbik]i;k=1:::n � 0; 8n, where
[bik]i;k=1:::n � 0 is any non-negative de�nite operator-matrix with the elements bik 2 B, should
be imposed on the morphisms.
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operator � and the normal symbol po (�) are connected by the convolution [21]

(A.2) po (�) =

Z
exp

�
� j � � �1 j2 =~

	
p
�
�1
�
d�1:

The appropriate representation of the algebra B�; and hence A
 B�, is normal
only if " >j 
 j2, when [v; v�] > 0. If m (�) is a distribution which de�nes a state
on B� and there is no statistical dependence, a state on A
B� is described by the
product p (�)m (�) and a state on the sub-algebra B by the convolution

(A.3) r (�) =

Z
m (� � 
�) p (�) d�:

A superoperator B ! A, which is dual to a morphism (A.3), is described by the
symbol transformation

� (�) =

Z
� (�)m (� � 
�) d�:

For the normality of the appropriate representation b = #� (y)# of the opera-
tors b 2 B with the distribution (A.3) being Glauber, it is su¢ cient, that " > 0.
When " < 0, the distribution r (�) is the normal symbol of the appropriate density
operator � = #r (y)#.
Let us consider the complex measurements, described by the measurements of

the sum �y+w = z, where w is an operator in H, which commutes with y and y�,
but does not commute with the adjoint one w�:

[w;w�] = �" j � j2 ~1;
so that [z; z�] = 0 (it is assumed that the space H is chosen su¢ ciently wide,
otherwise such an operator in H may not exist.)
If � (�) is a distribution describing a state on the algebra B1 generated by the

operator w, then the probability distribution of the results of such a measurement on
the output of the channel is described by the normed with respect to the Lebesgue
measure d� density

s (�) =

Z Z
n (� � ��)m (� � 
�) p (�) d�d�:

In accordance with formula (A.1) such a measurement is described by the B �valued
measure

(A.4) b (d�) = #n (� � �y)#d�;
and the distribution n (�) satis�es the condition

(A.5)
Z
j � j2 n (�) d� � max

�
" j � j2 ~; 0

	
in accordance with the inequality w�w � f[w�; w] ; 0g. When " > 0 and representa-
tion (A.4) is normal, inequality (A.5) prohibits, in particular, distributions of Dirac
� �form.
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